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Abstract

We study iterative projection algorithms for the convex feasibility
problem of Þnding a point in the intersection of Þnitely many nonempty,
closed and convex subsets in the Euclidean space. We propose (with-
out proof) an algorithmic scheme which generalizes both the string-
averaging algorithm and the block-iterative projections (BIP) method
with Þxed blocks and prove convergence of the string-averaging method
in the inconsistent case by translating it into a fully sequential algo-
rithm in the product space.
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1 INTRODUCTION
This paper discusses theoretically new algorithmic structures of iterative pro-
jection algorithms for solving the convex feasibility problem. Let V = Rn

be the n-dimensional Euclidean space and let C1, C2, . . . , Cm, be nonempty
closed convex subsets of V . The convex feasibility problem is to Þnd a point
x∗ ∈ C := ∩mi=1Ci. If C 6= ∅ the problem is consistent, otherwise it is incon-
sistent. See Bauschke and Borwein [3] for a general overview of projection
algorithms for the consistent case. In practical applications one often does
not know in advance whether a given problem is consistent or not and any
change of the sets Ci, i = 1, 2, . . . ,m, can turn a consistent problem into
an inconsistent one and vice versa. Therefore, it is desirable to know the
behavior of an algorithm for both the consistent and the inconsistent cases.
The algorithmic structures studied here use an arbitrary point x0 ∈ V

as an initial approximation and generate a sequence
©
xk
ª
k≥0 ⊆ V by re-

peated application of an algorithmic operator T , i.e., xk+1 = T
¡
xk
¢
. For the

consistent case any generated sequence should, ideally, converge to a limit
point x∗ = limk→∞ xk in C. Inconsistent problems pose two questions: Does
the generated sequence

©
xk
ª
k≥0 converge at all? If so, can its limit point

be characterized? The algorithms we focus on here employ orthogonal pro-
jections (projections, for short) onto convex sets. Projections belong to the
broader class of nonexpansive operators, whose properties we use to prove
convergence and to characterize the limit point x∗ whenever it exists. The
algorithms under study differ in the amount of computation parallelism that
they allow, which is a desirable feature when implementing such algorithms
on parallel computers. The algorithms are inherently parallel which means,
according to [11, Preface, p. vii], that they �are logically (i.e., in their mathe-
matical formulations) parallel, not just parallelizable under some conditions,
such as when the underlying problem is decomposable in a certain manner�.
We study, in particular, the string-averaging algorithm, recently proposed
and studied by Censor, Elfving and Herman [12] and the block-iterative pro-
jections (BIP) algorithm of Aharoni and Censor [1]. The string-averaging
algorithm projects a point sequentially along several independent strings of
constraints. Projecting along each string is sequential, but the strings are in-
dependent and projecting along them can be performed in parallel. The BIP
algorithm projects a point onto blocks of constraints sets, moving sequen-
tially from one block to the next. Projecting a point onto a block (of sets)
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is parallel since it is done by projecting the point on each set independently
and then combining the projections. The behavior of these algorithms for the
consistent case is known, i.e., both algorithms converge to a point common
to all sets of the convex feasibility problem.
The contribution of this paper is two-fold. First we develop a general

algorithmic scheme which generalizes both the string-averaging and BIP al-
gorithms. While a proof of convergence of this general algorithmic scheme,
for the general case, is still missing, the scheme is of interest due to its great
practical potential and due to the fact that its special cases of the string-
averaging and BIP algorithms have been proven to converge in the consistent
case. Secondly, we provide, for the string-averaging algorithm a convergence
result for the inconsistent case, which is a new Þnding because this algo-
rithm was until now studied only for the consistent case [12]. Our analysis
is done by translating the string-averaging algorithm into a fully sequential
algorithm in a product space and applying a convergence result for the se-
quential algorithm. We extend Gubin, Polyak and Raik�s theorem of cyclic
convergence of sequential projection algorithms for the inconsistent case [18,
Theorem 2] so that it can cover also affine (thus unbounded) sets, and use
this extension in the product space. Our work complements in a new way
earlier results for convergence of fully simultaneous projection algorithms
both in the consistent and the inconsistent case, see, e.g., Combettes [15],
and for sequential projection algorithms, see, Bauschke, Borwein and Lewis
[4, Section 5]. See also Reich [22] and Goebel and Reich [17]. The paper is
laid out as follows. The string-averaging algorithm and the BIP method are
reviewed in Section 3 and the general algorithmic scheme is presented. Our
extension of the theorem of Gubin, Polyak and Raik is presented in Section
4 along with the product space formulation. Finally, the convergence of the
string-averaging algorithm in the inconsistent case is given in Section 5. Since
the appearance of the Þrst paper on the string-averaging method [12], more
work was done on this algorithm by Crombez [16] who generalized it to the
problem of Þnding Þxed points of strict paracontractions in the consistent
case, by Hyangjoo Rhee [23] who applied it to a problem in approximation
theory, and by Bauschke, Matouùsková and Reich [5] who discuss convergence
in Hilbert spaces.
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2 PRELIMINARIES
In the n-dimensional Euclidean space V = Rn with Euclidean scalar product
h·, ·i norm k·k and distance function d, the distance between a point and a
set is deÞned by d (x, C) := inf {d (x, y) | y ∈ C} . The projection of a point
x ∈ Rn onto a set Ω ⊆ Rn is denoted by PΩ (x) and deÞned as a point of
Ω for which PΩ (x) = argmin{k x − z k| z ∈ Ω}. Projections belong to a
broader class of nonexpansive operators some of whose properties we shall
use in our work. Let T : V → V, then T is nonexpansive on V if

kT (x)− T (y)k ≤ kx− yk , for all x, y ∈ V. (1)

It is well-known that projection operators are nonexpansive as shown,
e.g., by Cheney and Goldstein [14, Theorem 3], in the next proposition.

Proposition 2.1 If C a is nonempty closed convex subset of V then for
all x, y ∈ V we have kPC (x)− PC (y)k ≤ kx− yk, and equality holds only if
kx− PC (x)k = ky − PC (y)k .

Combining nonexpansive operators is done by composition or by convex
combination.

Definition 2.2 ω ∈ Rm is a weight vector if ωi ≥ 0, i = 1, 2, . . . ,m, andPm
i=1 ωi = 1.

Proposition 2.3 If T1, T2, . . . , Tm, are nonexpansive operators and ω ∈ Rm
is a weight vector then

(i) the composition Tm · · ·T2T1 is nonexpansive, and
(ii) the convex combination

Pm
i=1 ωiTi is nonexpansive.

Applying the last propositions to projections implies that a Þnite com-
position of projections as well as a convex combination of projections are
nonexpansive operators.

3 PROJECTION ALGORITHMS
The algorithmic schemes for solving the convex feasibility problem that we
study here employ an algorithmic operator that combines projections in a
special manner. The algorithmic operator T and the algorithmic scheme itself
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are sequential, simultaneous or have both properties depending on the way
that projections are combined. In all algorithms, the starting point x0 ∈ Rn is
arbitrary. Sequential algorithms project the current point xk (sequentially)
onto the next set to produce xk+1, i.e., T = Pm · · ·P2P1, where Pi is the
projection onto Ci, i = 1, 2, . . . ,m. Simultaneous algorithms project xk onto
all m sets simultaneously and produce xk+1 as a positive convex combination
of those projections, i.e., T =

Pm
i=1 ωiPi, where ω is a positive weight vector.

Throughout this paper we use the following general algorithm.

Algorithm 3.1 (General Algorithm).
Initialization: x0 ∈ V is an arbitrary starting point.
Iterative Step: Given xk compute xk+1 by

xk+1 = T
¡
xk
¢
. (2)

Next we describe the string-averaging and the Þxed-blocks BIP algo-
rithms, followed by the general algorithmic scheme which generalizes them.

3.1 The String-Averaging Algorithm

Let C1, C2, . . . , Cm, be nonempty closed convex subsets of V . Let the string
It be a Þnite nonempty subset of {1, 2, . . . ,m}, for t = 1, 2, . . . , S, of the
form

It =
¡
it1, i

t
2, . . . , i

t
γ(It)

¢
, (3)

where the length of the string It, denoted by γ (It) , is the number of elements
in It. The projection along the string It operator is deÞned as the composition
of projections onto the sets indexed by It, that is,

Tt := Pit
γ(It)

· · ·Pit2Pit1 , for t = 1, 2, . . . , S. (4)

Given a positive weight vector ω ∈ RS we deÞne the algorithmic operator

T =
SX
t=1

ωtTt. (5)

Using this T in Algorithm 3.1 gives the string-averaging algorithm.
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3.2 The Fixed-Blocks Block-Iterative Algorithm

Given a weight vector ω, a block with respect to ω is the subfamily of sets
{Ci | ωi > 0} . The Þxed-blocks BIP algorithm is a special case of the BIP
algorithm of [1] which allows variable blocks, see also [13, Algorithm 5.6.1].
It projects the current iterate xk successively onto B Þxed blocks which are
given by weight vectors ω1,ω2, . . . ,ωB ∈ Rm. The projection onto the block
ω operator is deÞned by

Pω :=
mX
i=1

ωiPi. (6)

The algorithmic operator T is now

T = PωB · · ·Pω2Pω1, (7)

and using this T in Algorithm 3.1 gives the Þxed-blocks BIP algorithm. We
restrict ourselves to Þxed blocks because we can assure convergence for in-
consistent problems only for this case. If the blocks are not Þxed over the
iterations and the problem is inconsistent, it is possible to Þnd a series of
blocks for each iteration that will toggle the point xk between two or more
non-overlapping sets.

3.3 The General Algorithmic Scheme

The general algorithmic scheme that we propose here performs projections
along blocks of strings. At the end of each block of strings the end points of
the strings are averaged and the averaged point is projected onto the next
block of strings. The string-averaging algorithm is a special case where only
one block of strings is used and the Þxed-blocks BIP algorithm is a special
case in which the strings in all blocks contain only one subset, i.e., the length
of all strings is 1. To clarify the algorithmic structure we Þrst discuss an
example and proceed with the formal deÞnition later. At this time we are
unable to prove the convergence of this general algorithmic scheme.

Example 3.2 The algorithmic operator T that we use in this example is
illustrated in Figure 1. The number of blocks of strings here is B = 3.
For each block we define the strings that it uses, the positive weight vector
for averaging, and some additional parameters. For each block of strings
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b = 1, 2, 3, the number of strings in the block is denoted by Sb, the length of
the block of strings is denoted by Lb and defined as the length of its longest
string. For b = 1, 2, 3, the strings are denoted by Ib,t, where t = 1, 2, . . . , Sb.
These parameters are all summarized in the table given below.

Block of strings 1 Block of strings 2 Block of strings 3
I1,1 = (2, 4, 2, 3) I2,1 = (1, 5) I3,1 = (3)
I1,2 = (1, 3) I2,2 = (4, 2, 1) I3,2 = (5, 1)
I1,3 = (5) ––— ––—
ω1 =

¡
1
4
, 1
4
, 1
2

¢
ω2 =

¡
1
3
, 2
3

¢
ω3 =

¡
1
2
, 1
2

¢
L1 = 4 L2 = 3 L3 = 2
S1 = 3 S2 = 2 S3 = 2

The projection along the string Ib,t operator Tb,t is defined as in (4), for
example, T1,1 = P3P2P4P2. The projection along the block operator Tb is
defined as a convex combination of the end points of its strings, for example,
T1 =

PS1

t=1 ω
1
t T1,t =

1
4
T1,1+

1
4
T1,2+

1
2
T1,3. Finally, the algorithmic operator T

is the composition of projections along the blocks, i.e., T = T3T2T1.

C 1/4

1/4
1/2

2 C4 C2 C3

C1 C3

C5
C4 C2 C1

C1 C5 1/3

2/3 C5 C1

C3 1/2

1/2
kx 1kx +

Figure 1: An example of the operator in the general algorithmic scheme.

We now give a formal deÞnition of the algorithmic operator T of the
general algorithmic scheme. This operator is composed of projections along
B blocks of strings. Each block contains Sb, b = 1, 2, . . . , B, strings, and has
a positive weight vector

ωb =
¡
ωb1,ω

b
2, . . . ,ω

b
Sb

¢ ∈ RSb, b = 1, 2, . . . , B, (8)

associated with it. We denote by Ib,t the t-th string in the b-th block of
strings. Each Ib,t is a Þnite nonempty sequence whose elements belong to the
set of {1, 2, . . . ,m}, i.e., for each b = 1, 2, . . . , B,

Ib,t =

µ
ib,t1 , i

b,t
2 , . . . , i

b,t

γ(Ib,t)

¶
, t = 1, 2, . . . , Sb, (9)
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where γ (Ib,t) denotes the length of the string Ib,t. The elements of the se-
quence Ib,t need not be distinct. For each block of strings, b = 1, 2, . . . , B,
and each string, t = 1, 2, . . . , Sb, we deÞne the projection along the string Ib,t
operator by

Tb,t := Pib,t
γ(Ib,t)

· · ·Pib,t2
Pib,t1

. (10)

The projection along the block of strings b operator Tb is deÞned as a positive
convex combination of the projections along the strings of the block, i.e.,

Tb :=

SbX
τ=1

ωbτTb,τ , b = 1, 2, . . . , B. (11)

Finally, the algorithmic operator is deÞned by

T := TB · · ·T2T1. (12)

The new general algorithmic scheme is formed by using the operator T
of (12) in Algorithm 3.1 and yields the following.

Algorithm 3.3 (The General Algorithmic Scheme).
Initialization: x0 ∈ V is an arbitrary starting point.
Iterative Step: Given xk compute xk+1 by

xk+1 = TB · · ·T2T1
¡
xk
¢
. (13)

where Tb, b = 1, 2, . . . , B, are as in (11).

A general convergence analysis for Algorithm 3.3 is still missing. In the
sequel, however, we establish the new Þnding that the string-averaging al-
gorithm, which was proposed and studied for the consistent case by Censor,
Elfving and Herman [12], converges in the inconsistent case.

4 TOOLS FOR THE CONVERGENCE
ANALYSIS

Our approach to proving convergence of the string-averaging algorithm in the
inconsistent case is based on showing that the algorithmic operator has a fully
sequential equivalent in a product space. Then we apply our generalization
(Theorem 4.4 below) of Gubin, Polyak and Raik�s convergence theorem [18]
for sequential algorithms in the inconsistent case.
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4.1 Cyclic Convergence of Sequential Algorithms in
the Inconsistent Case

Consider the following cyclically controlled sequential iterative projection
algorithm for the convex feasibility problem.

Algorithm 4.1 (The Successive Projections Algorithm).
Initialization: x0 ∈ V is an arbitrary starting point.
Iterative Step: Given xk compute xk+1 by

xk+1 = P(kmodm)+1
¡
xk
¢
. (14)

where m is the number of sets.

This algorithm originates in Bregman [6] and is also known by the name
�projections onto convex sets� (POCS), see, e.g., Stark and Yang [24] or
[13, Chapter 5]. Gubin, Polyak and Raik proved convergence of this algo-
rithm, regardless of the consistency of the given convex feasibility problem
[18, Theorem 2]. They showed that any cyclic subsequence of points lying in
the same subset converges to a limit point in the subset. As a result, the lim-
iting sequence is a cyclic m Þxed-points sequence, where m is the number of
subsets, i.e., the limiting sequence consists of the points {x∗,1, x∗,2, . . . , x∗,m}
such that x∗,2 = P2 (x∗,1) , x∗,3 = P3 (x∗,2) , . . . , x∗,1 = P1 (x∗,m).

Theorem 4.2 (Theorem 2 of [18]). Let C1, C2, . . . , Cm, be nonempty
closed convex subsets of V , such that at least one of them (for explicitness,
say C1) is bounded. Then there exist points x∗,i ∈ Ci, i = 1, 2, . . . ,m, such
that Pi+1(x∗,i) = x∗,i+1, i = 1, 2, . . . , (m − 1), and P1(x∗,m) = x∗,1, and for
i = 1, 2, . . . ,m, we have

lim
k→∞

xkm+i+1 − xkm+i = x∗,i+1 − x∗,i, (15)

lim
k→∞

xkm+i = x∗,i, (16)

where
©
xk
ª
k≥0 is any sequence generated by Algorithm 4.1.

We will use the Þxed-point theorem of Browder and Petryshyn [10], given
below, (see also Ortega and Rheinboldt [20, theorem 5.1.4]) instead of Brow-
der�s theorem, in the proof of Theorem 4.2.
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Theorem 4.3 (Browder and Petryshyn’s Theorem [10]). If T is a
nonexpansive operator on a closed convex subset C such that T (C) ⊆ C then
T has a fixed-point in C if and only if the sequence xk+1 = T

¡
xk
¢
, k =

0, 1, 2, . . . is bounded for at least one x0 ∈ C.

The generalization of Theorem 4.2 that we arrive at is as follows.

Theorem 4.4 Let C1, C2, . . . , Cm, be nonempty closed convex subsets of V .
If for at least one set (for explicitness, say C1) the cyclic subsequence (of
points in C1)

©
xkm+1

ª
k≥0 of a sequence {xk}k≥0, generated by Algorithm

4.1, is bounded for at least one x0 ∈ Rn then there exist points x∗,i ∈
Ci, i = 1, 2, . . . ,m, such that Pi+1(x∗,i) = x∗,i+1, i = 1, 2, . . . , (m − 1),
and P1(x∗,m) = x∗,1, and for i = 1, 2, . . . ,m, we have

lim
k→∞

xkm+i+1 − xkm+i = x∗,i+1 − x∗,i, (17)

lim
k→∞

xkm+i = x∗,i, (18)

where
©
xk
ª
k≥0 is any sequence generated by Algorithm 4.1.

Proof. Careful analysis of the proof of Theorem 4.2, shows that Gubin,
Polyak and Raik use the assumption on the boundedness of one of the sets,
namely C1, for precisely two purposes. Firstly, they rely on Browder�s the-
orem [8, Theorem 1] (see also [9, Thoerem 8.1]) which states that if V is
a uniformly convex Banach space and T is a nonexpansive operator from a
bounded closed convex subset C of V to itself, then T has a Þxed-point in C.
They deÞne

T = P1Pm · · ·P3P2, (19)

which is a nonexpansive operator from a bounded closed convex subset C1
to itself and establish in this way the existence of the Þxed-point x∗,1 ∈ C1 of
T . This is taken care of in our theorem by the application of Theorem 4.3.
Secondly, they deduce from the boundedness of C1 that the cyclic sub-

sequence {xkm+1}k≥0 of any sequence {xk}k≥0, generated by Algorithm 4.1,
is always (regardless of the initial point x0) bounded, thus has a convergent
subsequence. We deduce this by observing that the operator T of (19) is
Lipshitzian with Lipshitz constant one, thus also its powers T k are, for every
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k ≥ 0. If bx0 ∈ Rn is any other initial point for a sequence ©bxkª
k≥0 generated

by Algorithm 4.1, then

k T k(x0)− T k(bx0) k≤k x0 − bx0 k (20)

and, therefore, any sequence {xk}k≥0, generated by Algorithm 4.1, is always
(regardless of the initial point x0) bounded. In this respect see also Goebel
and Reich [17, Theorem 5.2]. The remainder of the proof is identical to the
proof of Theorem 4.2 in [18, pp. 12�13].

The requirement in Theorem 4.2 that at least one subset (i.e., C1) is
bounded is only a sufficient condition for the conditions on C1 in our The-
orem 4.4, therefore, Theorem 4.4 generalizes Theorem 4.2. An important
case occurs when all subsets are affine to which Theorem 4.2 is obviously
not applicable. However, we can rely on Aharoni, Duchet and Wajnryb [2]
(and later Meshulam [19]) who proved that any sequence produced by suc-
cessive projections on Þnitely many affine subsets is bounded. Hence, our
Theorem 4.4 covers this case and supplies an alternative proof for this case
to Bauschke, Borwein and Lewis [4, Theorem 5.6.1] result on the limiting
cycle of cyclic projections onto convex polyhedra. This is a signiÞcant im-
provement of Theorem 4.2 since many real-world applications are modeled as
convex feasibility problems with all subsets being affine. For an exhaustive
text on projection methods for systems of linear or nonlinear equations see,
e.g., Brezinski [7].

4.2 The Product Space Setup

The product space setup, proposed by Pierra [21], enables the conversion of
a simultaneous algorithm into a sequential one to which convergence results
for sequential algorithms can be applied. Let the product space be V := V m

for some positive integer m. A vector x ∈ V is x =(x1, x2, . . . , xm) where
xi ∈ V , i = 1, 2, . . . ,m. Given a positive weight vector ω ∈ Rm, the scalar
product in V, denoted and deÞned by

hhx,yii :=
mX
i=1

ωi

xi, yi

®
, for all x,y ∈ V, (21)

induces the norm ||| · ||| and the distance function d (observe our notational
convention to use bold-face letters for quantities associated with the product
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space). It is easy to verify that for all x ∈ V we have |||x|||2 =Pm
i=1 ωi kxik2 .

The diagonal subset, deÞned by

D := {x ∈ V | x = (x, x, . . . , x), x ∈ V } , (22)

is a subspace of V and the canonical mapping δ : V → D is deÞned by

δ(x) := (x, x, . . . , x) ∈ D. (23)

Projections in the product space V can be characterized. Let C1, C2, . . . , Cm,
be nonempty closed convex subsets of V and deÞne

C := C1 × C2 × · · · × Cm =
mY
i=1

Ci. (24)

It is clear that C is a nonempty closed convex subset of V since all Ci enjoy
these properties in V . The following lemma characterizes the projections
onto the product set C and onto the diagonal set D (see [21]).

Lemma 4.5 If, for all i = 1, 2, . . . ,m, Pi is the projection onto the set Ci
in V, and x ∈ V then

(i) the projection of x ∈ V onto C is

PC(x) =
¡
P1(x

1), P2(x
2), . . . , Pm(x

m)
¢
, (25)

(ii) if ω is the positive vector in the definition of the scalar product in V
(21) then the projection of x ∈ V onto D is

PD(x) =

Ã
mX
i=1

ωix
i,

mX
i=1

ωix
i, . . . ,

mX
i=1

ωix
i

!
. (26)

Equation (25) characterizes the projection onto a product set as the con-
catenated vector of projections onto the individual sets, while (26) character-
izes the projection onto the diagonal set via the (positive) linear combination
of the vector components of the given point.
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5 CONVERGENCE OF THE STRING-
AVERAGING ALGORITHM IN THE
INCONSISTENT CASE

The product space is deÞned here by V = V S, where S is the number of
strings of the form (3). The positive weight vector ω ∈ RS which is used to
average the strings in (5) is used also in the deÞnition of the inner product
(21). The length of the algorithmic operator T , denoted by L, is the length
of the longest string, i.e.,

L := max {γ (It) | t = 1, 2, . . . , S} . (27)

Strings shorter then L are extended with copies of V , and product sets,
denoted by Cj, j = 1, 2, . . . , L, are deÞned by

Cj :=
SY
t=1

Cj,t (28)

where

Cj,t :=

½
Citj , if 1 ≤ j ≤ γ (It) ,
V, otherwise.

(29)

Example 5.3 might help to clarify (29). The algorithmic operator T in the
product space is deÞned by

T := PDPL · · ·P2P1, (30)

where Pj = PCj
, j = 1, 2, . . . , L, and PD is the projection onto the diago-

nal subset D. We proceed by showing that the algorithmic operators in the
original space V and in the product space V are equivalent.

Theorem 5.1 If T and T are the projection operators in V and V, defined
in (5) and (30), respectively, then

δ (T (x)) = T (δ (x)) , for all x ∈ V, (31)

where δ is the canonical mapping as in (23).
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Proof. Let x ∈ V and x = δ (x). By Lemma 4.5(i) and (28) we have, for
all j = 1, 2, . . . , L,

Pj (x) = (Pj,1 (x) , Pj,2 (x) , . . . , Pj,S (x)) (32)

where Pj,t = PCj,t . Using Lemma 4.5(i) repeatedly we may write

y := PL · · ·P2P1 (x)

= (PL,1 · · ·P2,1P1,1 (x) , PL,2 · · ·P2,2P1,2 (x) , . . . , PL,S · · ·P2,SP1,S (x)) .
(33)

By Lemma 4.5(ii) averaging is done by projecting onto the diagonal subset
D, thus, obtaining

PD (y) = δ

Ã
SX
t=1

ωty
t

!
= δ (T (x)) , (34)

and the result follows.
Now we are ready to prove convergence of the string-averaging algorithm

without consistency assumption. The idea of the proof is based on transform-
ing the string-averaging algorithm into a sequential algorithm in the product
space, applying Theorem 4.4 in that space and then translating the conclu-
sion back to the original space. Identifying D with the set C1 of Theorem
4.4 we obtain the following result.

Theorem 5.2 Let C1, C2, . . . , Cm, be nonempty closed convex subsets of V .
If for at least one x0 ∈ V the sequence

©
xk
ª
k≥0, generated by the string-

averaging algorithm (Algorithm 3.1 with T as in (5)), is bounded then it
converges for any x0 ∈ V .

Proof. DeÞne x0 = δ(x0)∈ D and let T be as in (30). Identifying D
with the set C1 of Theorem 4.4, and using also Theorem 5.1, we reach, by
Theorem 4.4, the conclusion that any sequence

©
xk
ª
k≥0 generated by

xk+1 = T(xk) (35)

converges in the product space. Using again Theorem 5.1, we conclude the
required result.
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Alternatively, we may identify the set C1 of Theorem 4.4 with one of
the sets {Cj}Lj=1 in the product space and obtain another set of sufficient
conditions. The (appropriately modiÞed versions of) comments made after
Theorem 4.2 apply here. In particular, if one of the sets {Ci}mi=1 is bounded
then all assumptions of Theorem 5.2 hold.

Example 5.3 Let V be a finite-dimensional Euclidean space and let {Ci}5i=1
be nonempty closed convex subsets of V . Define three strings I1 = (2, 4, 2, 3),
I2 = (1, 3) and I3 = (5). The string projection operators are T1 = P3P2P4P2,
T2 = P3P1 and T3 = P5. Choosing ω = (1

4
, 1
4
, 1
2
) we get T = 1

4
T1+

1
4
T2+

1
2
T3.

See Figure 2. The number of strings S = 3 and the length of the operator,

C 1/4

1/4
1/2

2 C4 C2 C3

C1 C3

C5

kx 1kx +

Figure 2: An illustration of the string-averaging algorithmic operator.

defined by its longest string, is L = 4. We show now how the operator T ,
defined in V, can be translated to a fully sequential operator T in some product
space. Define V = V 5 with a scalar product as in (21) using the weight vector
ω. We use an L×S matrix Γ to construct L product sets to be projected onto.
The matrix is constructed in the following manner. In the first column of Γ
we write the subsets of the first string I1, in the second column we write the
subsets of the second string I2, etc. We extend strings shorter then L by
copies of V, thus, obtaining

Γ =


C2 C1 C5
C4 C3 V
C2 V V
C3 V V

 . (36)

We produce L product sets, denoted by Cj, j = 1, 2, . . . , L, as product of the

15



sets in the rows of Γ yielding the sets (37).

C1 = C2 × C1 × C5,
C2 = C4 × C3 × V,
C3 = C2 × V × V,
C4 = C3 × V × V.

(37)

The algorithmic operator T is then defined as,

T (x) := PDPC4PC3PC2PC1, (38)

where PD is the projection onto the diagonal subset D of V. We need to show
that the original operator T and the product space operator T are equivalent.
We do so by showing that δ (T (x)) = T (δ (x)) for every x ∈ V. Let x ∈ D,
i.e., x =(x, x, x). By Lemma 4.5(i),

PC1 (x) = (PC2 (x) , PC1 (x) , PC5 (x)) . (39)

Using Lemma 4.5(i) repeatedly and noting that PV (x) = x yields

y = PC4PC3PC2PC1 (x)

= (PC3PC2PC4PC2 (x) , PV PVPC3PC1 (x) , PV PV PV PC5 (x))

= (PC3PC2PC4PC2 (x) , PC3PC1 (x) , PC5 (x))

= (T1 (x) , T2 (x) , T3 (x)) . (40)

Finally, averaging the strings is done, using Lemma 4.5(ii), by projection
onto the diagonal subset D, thus,

T (x) = PD (y) = δ

Ã
SX
t=1

ωty
t

!
= δ

Ã
SX
t=1

ωtTt (x)

!
= δ (T (x)) . (41)
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