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ABSTRACT

The convex feasibility problem of �nding a point in the intersection of �nitely many nonempty closed convex sets
in the Euclidean space has many applications in various �elds of science and technology� particularly in problems of
image reconstruction from projections� in solving the fully discretized inevrse problem in radiation therapy treatment
planning� and in other image processing problems� Solving systems of linear equalities and�or inequalities is one of
them� Many of the existing algorithms use projections onto the sets and may� �i� employ orthogonal�� entropy�� or
other Bregman�projections� �ii� be structurally sequential� parallel� block�iterative� or of the string�averaging type�
�iii� asymptotically converge when the underlying system is� or is not� consistent� �iv� solve the convex feasibility
problem or �nd the projection of a given point onto the intersection of the convex sets� �v� have good initial behavior
patterns when some of their parameters are appropriately chosen�

Keywords� Projection algorithms� Block�iterative� Bregman projections� convex feasibility� string�averaging�

�� INTRODUCTION

Projection Algorithms employ projections onto convex sets in various ways� They may use di�erent kinds of pro�
jections and� sometimes� even use di�erent projections within the same algorithm� They serve to solve a variety of
problems which are either of the feasibility or the optimization types� They have di�erent algorithmic structures�
of which some are particularly suitable for parallel computing� and they demonstrate nice convergence properties
and�or good initial behavior patterns� This class of algorithms has witnessed great progress in recent years and its
member algorithms have been applied with success to fully discretized models of problems in image reconstruction
and image processing� see� e�g�� Stark and Yang�� Censor and Zenios�� Our aim in this paper is to introduce the
reader to this �eld by reviewing algorithmic structures and speci�c algorithms for the convex feasibility problem�

The convex feasibility problem is to �nd a point �any point� in the non�empty intersection C �	 �mi��Ci �	 � of
a family of closed convex subsets Ci � Rn� 
 � i � m� of the n�dimensional Euclidean space� It is a fundamental
problem in many areas of mathematics and the physical sciences� see� e�g�� Combettes��� and references therein� It
has been used to model signi�cant real�world problems in image reconstruction from projections� see� e�g�� Herman��

in radiation therapy treatment planning� see Censor� Altschuler and Powlis� and Censor�� and in crystallography�
see Marks� Sinkler and Landree�	 to name but a few� and has been used under additional names such as set theoretic
estimation or the feasible set approach� A common approach to such problems is to use projection algorithms� see�
e�g�� Bauschke and Borwein�
 which employ orthogonal projections �i�e�� nearest point mappings� onto the individual
sets Ci� The orthogonal projection P��z� of a point z � Rn onto a closed convex set � � Rn is de�ned by

P��z� �	 argminfk z � x k� j x � �g� �
�

where k � k� is the Euclidean norm in R
n� Frequently a relaxation parameter is introduced so that

P����z� �	 �
� ��z � �P��z� �
�

is the relaxed projection of z onto � with relaxation ��

Another problem that is related to the convex feasibility problem is the best approximation problem of �nding
the projection of a given point y � Rn onto the non�empty intersection C �	 �mi��Ci �	 � of a family of closed convex
subsets Ci � Rn� 
 � i � m� see� e�g�� Deutsche�s recent book��� In both problems the convex sets fCigmi�� represent
mathematical constraints obtained from the modeling of the real�world problem� In the convex feasibility approach
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any point in the intersection is an acceptable solution to the real�world problem whereas the best approximation
formulation is usually appropriate if some point y � Rn has been obtained from modeling and computational e�orts
which initially did not take into account the constraints represented by the sets fCigmi�� and now one wishes to
incorporate them by seeking a point in the intersection of the convex sets which is closest to the point y�

Iterative projection algorithms for �nding a projection of a point onto the intersection of sets are more complicated
then algorithms for �nding just any feasible point in the intersection� This is so because they must have� in their
iterative steps� some built�in �memory� mechanism to remember the original point whose projection is sought after�
The sequential or parallel algorithms of Dykstra��� Haugazeau��� Bauschke�� and others and their modi�cations
employ di�erent such memory mechanisms� We will not deal with these algorithms here although many of them
share the same algorithmic structural features described below�

�� BREGMAN PROJECTIONS

Bregman projections onto closed convex sets were introduced by Censor and Lent��� based on Bregman�s seminal
paper��� and were subsequently used in a plethora of research works as a tool for building sequential and parallel
feasibility and optimization algorithms� see� e�g�� Censor and Elfving��� Censor and Reich��� Censor and Zenios��

De Pierro and Iusem��	 Kiwiel��
��� Bauschke and Borwein�� and references therein� to name but a few�

A Bregman projection of a point z � Rn onto a closed convex set � � Rn with respect to a� suitably de�ned�
Bregman function f �see� e�g�� Censor and Zenios�� is denoted by P f

��z�� It is formally de�ned as

P f
��z� �	 argminfDf �x� z� j x � � � clSg ���

where clS is the closure of the open convex set S� which is the zone of f � and Df �x� z� is the so�called Bregman
distance� de�ned by

Df �x� z� �	 f�x�� f�z�� hrf�z�� x� zi� ���

for all pairs �x� z� � clS � S� where h�� �i is the standard inner product in Rn� If � � clS �	 �� then ��� de�nes a

unique P f
��z� � clS� for every z � S�� If� in addition� P f

��z� � S� for every z � S� then f is called zone consistent
with respect to �� If f is a Bregman�Legendre function �see Bauschke and Borwein��� and S 	 int�dom f�� then f
is zone consistent with respect to any closed convex set � such that � � clS �	 ��

Orthogonal projections are a special case of Bregman projections� obtained from ��� by choosing� f�x� 	
�
�
�kxk� and S 	 Rn� Bregman generalized distances and generalized projections are instrumental in several
areas of mathematical optimization theory� They were used� among others� in special�purpose minimization meth�
ods� in the proximal point minimization method� and for stochastic feasibility problems� These generalized distances
and projections were also de�ned in non�Hilbertian Banach spaces� where� in the absence of orthogonal projections�
they can lead to simpler formulas for projections� see� e�g�� Butnariu and Iusem�� and references therein�

Bregman�s method for minimizing a convex function �with certain properties� subject to linear inequality con�
straints employs Bregman projections onto the half�spaces represented by the constraints�����	 Recently the extension
of this minimization method to nonlinear convex constraints has been identi�ed with the Han�Dykstra projection
algorithm for �nding the projection of a point onto an intersection of closed convex sets� see Bregman� Censor and
Reich��� It looks as if there might be no point in using non�orthogonal projections for solving the convex feasi�
bility problem in Rn since they are generally not easier to compute� But this is not always the case� Shamir and
co�workers����� have used the multiprojection method of Censor and Elfving�� to solve �lter design problems in
image restoration and image recovery posed as convex feasibility problems� They took advantage of that algorithm�s
�exibility to employ Bregman projections with respect to di�erent Bregman functions within the same algorithmic
run� Another example is the seminal paper by Csisz�ar and Tusn�ady��� where the central procedure uses alternat�
ing entropy projections onto convex sets� In their �alternating minimization procedure�� they alternate between
minimizing over the �rst and second arguments of the Kullback�Leibler divergence� This divergence is nothing but
the generalized Bregman distance obtained by using the negative of Shannon�s entropy as the underlying Bregman
function� Recent studies about Bregman projections �Kiwiel�
�� Bregman�Legendre projections �Bauschke and Bor�
wein���� and averaged entropic projections �Butnariu� Censor and Reich��� � and their uses for convex feasibility
problems in Rn discussed therein � attest to the continued theoretical and practical interest in employing Bregman
projections in projection methods for convex feasibility problems�



�� ALGORITHMIC STRUCTURES

Projection algorithmic schemes for the convex feasibility problem and for the best approximation problem are� in
general� either sequential or simultaneous or block�iterative �see� e�g�� Censor and Zenios� for a classi�cation of
projection algorithms into such classes� and the review paper of Bauschke and Borwein
 for a variety of speci�c
algorithms of these kinds�� In the following subsections we explain and demonstrate these structures along with
the recently proposed string�averaging structure� The philosophy behind these algorithms is that it is easier to
calculate projections onto the individual sets Ci then onto the whole intersection of sets� Thus� these algorithms
call for projections onto individual sets as they proceed sequentially� simultaneously or in the block�iterative or the
string�averaging algorithmic modes�

���� Sequential Projections

The well�known �Projections Onto Convex Sets� �POCS� algorithm for the convex feasibility problem is a sequential
projection algorithm� see Bregman��� Gubin� Polyak and Raik��	 Youla�
 and the review papers by Combettes����

Starting from an arbitrary initial point x� � Rn� the POCS algorithm�s iterative step is

xk
� 	 xk � �k�PCi�k� �x
k�� xk�� ���

where f�kgk�� are relaxation parameters and fi�k�gk�� is a control sequence� 
 � i�k� � m� for all k 	 �� which
determines the individual set Ci�k� onto which the current iterate x

k is projected� A commonly used control is the
cyclic control in which i�k� 	 kmodm�
� but other controls are also available�� Bregman�s projection algorithm�����

allowed originally only unrelaxed projections� i�e�� its iterative step is of the form

xk
� 	 P f
Ci�k�

�xk�� for all k 	 �� ���

For the Bregman function f�x� 	 �
�
�kxk� with zone S 	 Rn and for unity relaxation ��k 	 
� for all k 	 ��� ���
coincides with ����

���� The String Averaging Algorithmic Structure

The string�averaging algorithmic scheme was proposed by Censor� Elfving and Herman��� For t 	 
� 
� � � � �M� let
the string It be an ordered subset of f
� 
� � � � �mg of the form

It 	 �i
t
�� i

t
�� � � � � i

t
m�t��� ���

with m�t� denoting the number of elements in It� Suppose that there is a set S � Rn such that there are operators
R�� R�� � � � � Rm mapping S into S and an operator R which maps S

M 	 S�S�� � ��S �M times� into S� Initializing
the algorithm at an arbitrary x� � S� the iterative step of the string�averaging algorithmic scheme is as follows�
Given the current iterate xk � calculate� for all t 	 
� 
� � � � �M�

Ttx
k 	 Rit

m�t�
� � � Rit�

Rit�
xk � ���

and then calculate

xk
� 	 R�T�x
k� T�x

k� � � � � TMxk�� ���

For every t 	 
� 
� � � � �M� this algorithmic scheme applies to xk successively the operators whose indices belong
to the t�th string� This can be done in parallel for all strings and then the operator R maps all end�points onto
the next iterate xk
�� This is indeed an algorithm provided that the operators fRigmi�� and R all have algorithmic
implementations� In this framework we get a sequential algorithm by the choice M 	 
 and I� 	 �
� 
� � � � �m� and a
simultaneous algorithm by the choice M 	 m and It 	 �t�� t 	 
� 
� � � � �M�

We demonstrate the underlying idea of the string�averaging algorithmic scheme with the aid of Figure 
� For
simplicity� we take the convex sets to be hyperplanes� denoted by H�� H�� H�� H�� H�� and H�� and assume all
operators Ri to be orthogonal projections onto the hyperplanes� The operator R is taken as a convex combination

R�x�� x�� � � � � xM � 	

MX
t��

�tx
t� �
��



with �t � �� for all t 	 
� 
� � � � �M� and
PM

t�� �t 	 
�

Figure 
�a� depicts the purely sequential algorithm� This is the so�called POCS �Projections Onto Convex Sets�
algorithm which coincides� for the case of hyperplanes� with the Kaczmarz algorithm� see� e�g�� Algorithms ��
�
 and
������ respectively� in Ref� 
� The fully simultaneous algorithm appears in Figure 
�b�� With orthogonal re�ections
instead of orthogonal projections it was �rst proposed� by Cimmino��� for solving linear equations� Here the current
iterate xk is projected on all sets simultaneously and the next iterate xk
� is a convex combination of the projected
points� In Figure 
�c� we show how a simple averaging of successive projections �as opposed to averaging of parallel
projections in Figure 
�b�� works� In this case M 	 m and It 	 �
� 
� � � � � t�� for t 	 
� 
� � � � �M� This scheme�
appearing in Bauschke and Borwein�
 inspired the formulation of the general string�averaging algorithmic scheme
whose action is demonstrated in Figure 
�d�� It averages� via convex combinations� the end�points obtained from
strings of sequential projections and in this �gure the strings are I� 	 �
� �� �� ��� I� 	 �
�� I� 	 ��� ��� Such schemes
o�er a variety of options for steering the iterates towards a solution of the convex feasibility problem� It is an inherently
parallel scheme in that its mathematical formulation is parallel �like the fully simultaneous method mentioned above��
We use this term to contrast such algorithms with others which are sequential in their mathematical formulation but
can� sometimes� be implemented in a parallel fashion based on appropriate model decomposition �i�e�� depending on
the structure of the underlying problem�� Being inherently parallel� this algorithmic scheme enables �exibility in the
actual manner of implementation on a parallel machine�
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Figure �� �a� Sequential projections� �b� Fully simultaneous projections� �c� Averaging of sequential projections�
�d� String�averaging� �Reproduced from Censor� Elfving and Herman����

At the extremes of the �spectrum� of possible speci�c algorithms� derivable from the string�averaging algorithmic
scheme� are the generically sequential method� which uses one set at a time� and the fully simultaneous algorithm�
which employs all sets at each iteration� The �block�iterative projections� �BIP� scheme of Aharoni and Censor�� also
has the sequential and the fully simultaneous methods as its extremes in terms of block structures �see also Butnariu
and Censor��� Bauschke and Borwein�
 Bauschke� Borwein and Lewis��� Elfving�� and Eggermont� Herman and
Lent���� The question whether there are any other relationships between the BIP and the string�averaging algorithmic
schemes is of theoretical interest and is still open� However� the string�averaging algorithmic structure gives users a
tool to design many new inherently parallel computational schemes�



The behavior of the string�averaging algorithmic scheme� or special instances of it� in the inconsistent case when
the intersection C 	 �mi��Ci is empty is also not fully answered at this time� For results on the behavior of the
fully simultaneous algorithm with orthogonal projections in the inconsistent case see� e�g�� Combettes�� or Iusem
and De Pierro��	 Another way to treat possible inconsistencies is to reformulate the constraints as c � Ax � d
or jjAx � djj� � �� Also� variable iteration�dependent relaxation parameters and variable iteration�dependent string
constructions could be interesting future extensions� The practical performance of speci�c algorithms needs also to
be evaluated in applications and on parallel machines�

���� The Block�Iterative Algorithmic Scheme With Underrelaxed Bregman Projections

In this subsection we brie�y review the block�iterative algorithmic scheme with �underrelaxed� Bregman projections
for the solution of the convex feasibility problem proposed by Censor and Herman��
 By block�iterative we mean that�
at the k�th iteration� the next iterate xk
� is generated from the current iterate xk by using a subset �called a block�
of the family of sets fCig

m
i�� of the convex feasibility problem�

� We use the term algorithmic scheme to emphasize
that di�erent speci�c algorithms may be derived by di�erent choices of Bregman functions� and by various block
structures� For example� if all blocks consist of a single set Ci� then our scheme gives rise to a sequential row�action

��

type algorithm� Taking the other extreme� if we let every block contain all sets� then we obtain a fully simultaneous
algorithm� Such a block�iterative scheme for the convex feasibility problem was �rst proposed by Aharoni and
Censor��� using orthogonal projections onto convex sets� That block�iterative projections �BIP� method generalizes
the sequential POCS method� The block�iterative scheme� described below� extends Aharoni and Censor�s BIP
method by employing underrelaxed Bregman projections which contain the underrelaxed orthogonal projections as
a special case� The underrelaxed Bregman projection with Bregman function f and relaxation parameter � � ��� 
�

of a point z onto a closed convex set �� denoted by P f
����z�� is given by

rf�P f
����z�� 	 �
� ��rf�z� � �rf�P f

��z��� �

�

Appealing to the de�nition of a convex combination with respect to a Bregman function f as de�ned by Censor and
Reich��� the natural formula for a block�iterative step using underrelaxed Bregman projections is

rf�xk
�� 	
mX
i��

vki rf�P
f

Ci��
k

i

�xk��� �

�

where xk is the k�th iterate� �ki � ��� 
� is the relaxation parameter used in the underrelaxed Bregman projection onto
the set Ci during the k�th iterative step and the v

k
i are the weights of the convex combination for the k�th iterative

step �i�e�� vki 	 � for 
 � i � m and
Pm

i�� v
k
i 	 
�� Substituting �

� into �

�� de�ning w

k
i �	 vki �

k
i � for 
 � i � m�

and introducing

wkm
� �	 
�
mX
i��

wki and Cm
� �	 Rn� �
��

we get the following alternative formulation of the block�iterative step �

�

rf�xk
�� 	
m
�X
i��

wki rf�P
f
Ci
�xk��� �
��

with wki 	 � for 
 � i � m � 
 and
Pm
�

i�� wki 	 
� The block�iterative nature of this scheme stems from the fact
that for every iteration index k some of the parameters wki can be set to zero� The set of those indices i for which
wki �	 � at the k�th iteration de�nes the �block� of active constraints at this iteration� These index sets might vary
dynamically from iteration to iteration as long as some technical conditions are observed��


Many other block�iterative algorithms were studied by Byrne����� in reference to image reconstruction from
projections� where such algorithmic schemes are sometimes termed ordered subset methods� See also the work of
Combettes�� and Section � of his paper on quasi�Fej�erian methods���



�� BICAV� BLOCK�ITERATIVE COMPONENT AVERAGING

A recent member of the powerful family of block�iterative projection algorithms is the BICAV �block�iterative compo�
nent averaging� algorithm of Censor� Gordon and Gordon�� which was applied to a problem of image reconstruction
from projections� The BICAV algorithm is a block�iterative companion to the CAV �Component averaging� method
for solving systems of linear equations��	 In these methods the sparsity of the matrix is explicitly used when
constructing the iteration formula� Using this new scaling considerable improvement was observed compared to
traditionally scaled iteration methods�

In Cimmino�s simultaneous projections method��� see also� e�g�� Censor and Zenios� with relaxation parameters
and with equal weights wi 	 
�m� the next iterate x

k
� is the average of the orthogonal projections of xk onto the
hyperplanes Hi de�ned by the i�th row of the linear system Ax 	 b and has� for every component j 	 
� 
� � � � � n�
the form

xk
�j 	 xkj �
�k
m

mX
i��

bi � hai� xki

kaik��
aij � �
��

where ai is the i�th column of the transpose AT of A and bi is the i�th component of the vector b and �k are
relaxation parameters� When the m � n system matrix A 	 �aij� is sparse� only a relatively small number of the

elements fa�j � a
�
j � � � � � a

m
j g of the j�th column of A are nonzero� but in �
�� the sum of their contributions is divided

by the relatively large m� This observation led to the replacement of the factor 
�m in �
�� by a factor that depends
only on the nonzero elements in the set fa�j � a

�
j � � � � � a

m
j g� For each j 	 
� 
� � � � � n� denote by sj the number of

nonzero elements of column j of the matrix A� and replace �
�� by

xk
�j 	 xkj �
�k
sj

mX
i��

bi � hai� xki

kaik��
aij � �
��

Certainly� if A is sparse then the sj values will be much smaller than m� The iterative step �
�� is a special case of

xk
� 	 xk � �k

mX
i��

wi
bi � hai� xki

kaik��
ai � �
��

where the �xed weights fwig
m
i�� must be positive for all i and

Pm

i�� wi 	 
� The attempt to use 
�sj as weights
in �
�� does not �t into the scheme �
��� unless one can prove convergence of the iterates of a fully simultaneous
iterative scheme with component�dependent �i�e�� j�dependent� weights of the form

xk
�j 	 xkj � �k

mX
i��

wij
bi � hai� xki

kaik��
aij � �
��

for all j 	 
� 
� � � � � n� To formalize this consider a set fGigmi�� of real diagonal n�nmatricesGi 	 diag�gi�� gi�� � � � � gin�
with gij 	 �� for all i 	 
� 
� � � � �m and j 	 
� 
� � � � � n� such that

Pm
i��Gi 	 I� where I is the unit matrix� Referring

to the sparsity pattern of A one needs the following de�nition��	

Definition �� A family fGig
m
i�� of real diagonal n � n matrices with all diagonal elements gij 	 � and such thatPm

i��Gi 	 I is called sparsity pattern oriented �SPO� for short� with respect to an m � n matrix A if�
for every i 	 
� 
� � � � �m� gij 	 � if and only if aij 	 ��

The Component Averaging �CAV� algorithm combines three features� �i� Each orthogonal projection onto Hi

in is replaced by a generalized oblique projection with respect to Gi� denoted below by P
Gi

Hi
� �ii� The scalar weights

fwig in �
�� are replaced by the diagonal weighting matrices fGig� �iii� The actual weights are set to be inversely
proportional to the number of nonzero elements in each column� as motivated by the discussion preceding Equation
�
��� The iterative step resulting from the �rst two features has the form

xk
� 	 xk � �k

mX
i��

Gi

�
PGi

Hi
�xk�� xk

�
� �
��



The basic idea of the block�iterative CAV �BICAV� algorithm is to break up the system Ax 	 b into �blocks� of
equations and treat each block according to the CAV methodology� passing cyclically over all the blocks� Throughout
the following� T will be the number of blocks and� for t 	 
� 
� � � � � T� let the block of indices Bt � f
� 
� � � � �mg� be
an ordered subset of the form Bt 	 fit�� i

t
�� � � � � i

t
m�t�g� where m�t� is the number of elements in Bt� such that every

element of f
� 
� � � � �mg appears in at least one of the sets Bt� For t 	 
� 
� � � � � T � let At denote the matrix formed
by taking all the rows of A whose indices belong to the block of indices Bt� i�e��

At �	

�
������

ai
t
�

ai
t
�

���

a
itm�t�

�
������
� t 	 
� 
� � � � � T� �
��

The iterative step of the BICAV algorithm� developed and experimentally tested by Censor� Gordon and Gordon���

uses� for every block index t 	 
� 
� � � � � T� generalized oblique projections with respect to a family fGt
ig
m
i�� of diagonal

matrices which are SPO with respect to At� The same family is also used to perform the diagonal weighting� The
resulting iterative step has the form

xk
� 	 xk � �k
X

i�Bt�k�

G
t�k�
i

�
P
G
t�k�
i

Hi
�xk�� xk

	
� �

�

where ft�k�gk�� is a control sequence according to which the t�k��th block is chosen by the algorithm to be acted
upon at the k�th iteration� thus� 
 � t�k� � T � for all k 	 �� The real numbers f�kgk�� are user�chosen relaxation
parameters� Finally� in order to achieve the acceleration� the diagonal matrices fGt

ig
m
i�� are constructed with respect

to each At� Let s
t
j be the number of nonzero elements a

i
j �	 � in the j�th column of At and de�ne

gtij �	


��
�




stj

� if aij �	 ��

� � if aij 	 ��

�

�

It is easy to verify that� for each t 	 
� 
� � � � � T�
Pm

i��G
t
i 	 I holds for these matrices� With these particular SPO

families of Gt
i �s one obtains the block�iterative algorithm�

Algorithm �� BICAV

Initialization� x� � Rn is arbitrary�

Iterative Step� Given xk � compute xk
� by using� for j 	 
� 
� � � � � n� the formula�

xk
�j 	 xkj � �k
X

i�Bt�k�

bi � hai� xkiPn

l�� s
t�k�
l �ail�

�
aij � �
��

where �k are relaxation parameters� fstlg
n
l�� are as de�ned above� and the control sequence is cyclic� i�e�� t�k� 	

kmodT � 
� for all k 	 ��
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