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Abstract

The efficient delivery of intensity modulated radiation therapy (IMRT) de-

pendends on finding optimized beam intensity patterns that produce dose

distributions, which meet given constraints for the tumor as well as any crit-

ical organs to be spared. Many optimization algorithms that are used for

beamlet-based inverse planning are susceptible to large variations of neigh-

boring intensities. Accurately delivering an intensity pattern with a large

number of extrema can prove impossible given the mechanical limitations of

standard MLC delivery systems. In this study, we apply Cimmino’s simul-

taneous projection algorithm to the beamlet-based inverse planning problem,
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modeled mathematically as a system of linear inequalities. We show that us-

ing this method allows us to arrive at a smoother intensity pattern. Including

non-linear terms in the simultaneous projection algorithm to deal with dose-

volume histogram (DVH) constraints does not compromise this property from

our experimental observation. The smoothness properties are compared with

those from other optimization algorithms which include simulated annealing

and gradient descent method. The simultaneous property of these algorithms

is ideally suited to parallel computing technologies.

I. INTRODUCTION

Intensity modulated radiation therapy (IMRT) with two-dimensional (2D) modulated

beams obtained from inverse planning methods makes it possible to create dose distributions

that conform to both convex and concave shaped targets(Haas 1999). The success of such a

radiation treatment technique depends as much on the accurate and efficient delivery of the

intensity profiles as on the derivation of such intensities from the inverse planning process.

The inverse planning process starts with the specification of constraints on required and

permitted dose distributions to target and critical organs, and usually the assignment of

importance weights to these constraints. The constraints may be modeled as a system of

linear and/or non-linear inequalities, e.g., Starkschall (Starkschall 1984), Webb, Convery

and Evans (Webb, Convery and Evans 1998), Xia and Verhey (Xia and Verhey 1998), Xiao

et al. (Xiao, Galvin, Hossain and Valicenti 2000) and Bednarz et al(Bednarz, Michalski,

Houser, Huq, Xiao, Anne and Galvin 2002), with or without an objective (cost) function

imposed on them.

A basic difficulty, associated with this approach for many of the planning algorithms,

is that the beam intensities can exhibit complex patterns due to the fact that the whole

optimization process is susceptible to high-frequency spatial fluctuations. The accurate

and efficient delivery of these irregular beam intensities remains a practical clinical chal-
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lenge. Smooth intensities, i.e., intensities which exhibit moderate changes between adjacent

beamlets, are preferable for the following reasons: (i) they are not sensitive to treatment

uncertainties; (ii) they may be easier to generate under the limitations of the delivery sys-

tem; they require fewer segments for multiple-static-fields (MSF) delivery with multileaf

collimator (MLC) (Xia and Verhey 1998); they may be more favorable to dynamic deliv-

ery with MLCs (DMLC) with reduced “beam-on” time ((Webb et al. 1998) and (Spirou,

Fournier-Bidoz, Yang, Chui and Ling 2001)).

Extensive research has been concentrated on the generation of smooth beamlet intensity

patterns. Stochastic inverse planning processes are being adjusted to redistribute the beam-

let intensity patterns into smoother beams. Through the iteration process filters are applied

to constrain the intensity distributions (Webb et al. 1998). Two methods are commonly

employed for treatment planning systems which use gradient inverse planning algorithm

(Spirou et al. 2001): (i) smoothing applied outside the objective function; (ii) inclusion of a

term representing smoothness of the profiles in the objective function used in the optimiza-

tion process. Smoothing was also implemented within the objective function by imposing a

minimal surface smoothing constraint, e.g. by Alber and Nusslin (Alber and Nusslin 2000).

All these approaches yield acceptable dose distributions with smoother intensity patterns.

Historically, the inverse problem of a fully discretized model in IMRT has been formulated

and solved as a mathematical feasibility problem by Altschuler and Censor (Altschuler and

Censor 1984) and Cimmino’s algorithm was proposed for this problem by Censor, Altschuler

and Powlis in (Censor, Altschuler and Powlis 1988b) and (Powlis, Altschuler, Censor and

Buhle 1989). Cimmino’s algorithm has been shown to be effective and efficient for solv-

ing a system of inequalities resulting from the full discretization of the problem. In the

present study we demonstrate experimentally that, for feasible problems, the feasible solu-

tions obtained from simultaneous Cimmino-type algorithms lead to very smooth intensity

patterns without need for any external filtering. Our experiments show that this smoothness

property is inherent to this class of algorithms. We describe the implementation of such a

Cimmino algorithm to the three-dimensional (3D) beamlet-based inverse planning system
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and compare the dose and intensity distributions with a commercially available beamlet-

based inverse planning system. The smoothness of the solutions obtained by Cimmino’s

algorithm is clearly demonstrated. In order to accommodate DVH dose objectives in the

simultaneous projection algorithm, non-linear terms have to be introduced in the modeling

and iteration process. However, from our experimental observation, the smoothness quality

of the resulting intensity patterns are comparable to those from the Cimmino’s algorithm.

Dose distribution and intensity patterns from this algorithm are also included in the com-

parison.

This inherent smoothness of solutions obtained by Cimmino’s algorithm is another advan-

tageous property of this algorithm, that we have recently studied in (Xiao, Censor, Michalski

and Galvin 2003). If initialized at zero, the algorithm always generates a sequence which

converges to a very good approximation of the least-intensity feasible (LIF) solution. The

property of having least-squared values of the intensities naturally translates into smoother

distributions without extreme irregularities.

The paper is laid out as follows. In Section II we review the fully-discretized model

and the feasibility approach, with/without DVH objectives implementation. The fully si-

multaneous (Cimmino) algorithm and the variation of the algorithm incorporating DVH

objectives are described in Section III and , in Section IV, we discuss the relationship be-

tween a few iterative algorithms for inverse treatment planning. Following a description of

our experimental setup, in Section V, we present our results (Section VI) and discuss them

(Section VII). We conclude in Section VII.

II. THE SIMULTANEOUS PROJECTION ALGORITHM

The fully discretized feasibility model is included in the appendix.

In this section we discuss briefly some relevant projection algorithms and put the specific

algorithm that we use here in context. We also describe how the algorithm that we use is

related to the class of gradient methods that were used in the field of IMRT.
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Projection algorithms employ projections onto convex sets with the underlying philos-

ophy that whenever an intersection of a family of given convex sets is considered then

performing projections onto the individual members of the family of sets is easier than

performing a projection onto the intersection of sets (Hiriart-Urruty and Lemarechal 2001,

Chapter A, Section 3). The linear feasibility problem (LFP), presented in the previous sec-

tion, is a special instance of the convex feasibility problem (CFP) where the convex sets are

the half-spaces described by the inequalities in (25). Let Rm be the m-dimensional Euclid-

ean space and let C1, C2, . . . , Cn, be nonempty closed convex subsets of R
m. The convex

feasibility problem is to find a point x∗ ∈ C := ∩nj=1Cj. If C 6= ∅ the problem is consistent,

otherwise it is inconsistent.

The well-known “Projections Onto Convex Sets” (POCS) algorithm for the convex fea-

sibility problem is a sequential projection algorithm (Stark and Yang 1998). Starting from

an arbitrary initial point x0 ∈ Rm, the POCS algorithm’s iterative step for calculation of
the next iterate xk+1 from the current one xk is

xk+1 = xk + λk(PCj(k)(x
k)− xk), (1)

where {λk}k≥0 are relaxation parameters and {j(k)}k≥0 is a control sequence, 1 ≤ j(k) ≤
n, for all k ≥ 0, which determines the index of the individual set Cj(k) onto which the

current iterate xk is projected. A commonly used control is the cyclic control in which

j(k) = kmodn+1, but other controls are also available (Censor and Zenios 1997, Definition

5.1.1). The simultaneous counterpart of (1) is the, so-called, Cimmino algorithm for the

convex feasibility problem. Cimmino (Cimmino 1938) originally invented it for the solution

of linear equations, i.e., a system of the form haj, xi = dj, for all j = 1, 2, · · · , n, and
originally used reflections instead of projections. Auslender (Auslender 1976) generalized

Cimmino’s idea to convex sets. Adding to Auslender’s algorithm relaxation parameters

{λk}k≥0 and weights of importance {wj}nj=1, such that wj > 0 and
Pn
j=1wj = 1, one arrives

at the algorithmic iterative step:
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xk+1 = xk + λk(
nX
j=1

wjPCj(x
k)− xk). (2)

For half-spaces as constraints sets, i.e.,

Cj = {x ∈ Rm | haj, xi ≤ dj}, for all j = 1, 2, · · · , n, (3)

the simultaneous projections methods of Cimmino for the LFP (26)(Censor et al. 1988b)

and non-linear DVH terms (28)(Michalski, Xiao, Censor and Galvin 2004) are as follows :

Algorithm 1 Cimmino’s Algorithm (CIM), and the algorithm dealing with DVH

constraints (CIM-DVH).

Initialization: x0 ∈ Rm is arbitrary.
Importance Weights: These are user-chosen positive real numbers wj > 0, for all

j = 1, 2, · · · , n, with Pn
j=1wj = 1.

Iterative Step: Given xk, calculate the next iterate xk+1 by the formula

xk+1 = xk + λk
nX
j=1

wjcj(x
k)aj, (4)

where

cj(x
k) = min(0,

dj − haj, xki
kajk2 ), (5)

and go back to the beginning of the Iterative Step (k · k stands for the Euclidean norm).
Relaxation Parameters: λk are user-chosen real numbers such that ε ≤ λk ≤ 2 − ε,

for all k ≥ 0, with some, arbitrarily small ε > 0.

Cimmino’s algorithm converges regardless of the consistency of the system of inequalities

(26), i.e., in the inconsistent case, when there is no solution to the system, the CIM algo-

rithm still generates convergent sequences {xk}k≥0 of beamlet intensities which converge to
a minimum value of a proximity function

F (x) := (1/2)
nX
j=1

kx− PCj(x)k2, (6)
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which measures the sum of the squares of the distances to all inequalities of the system

(Byrne and Censor 2001). In addition, CIM is a simultaneous algorithm whose operations

can be performed on a parallel computer.

The iterative step for the additional non-linear inequalities is different from that of

equation 4 (Michalski et al. 2004). The algorithm is referred to as CIM-DVH for clarity

throughout the document. The gradient of gt (equation 28), ∂gt, is utilized:

xk+1 = xk + λk(
TX
t=1

wtYt − xk), where, (7)

Yt = x
k − ∂gt(x

k)×max(0, gt(xk))
k∂gt(xk)k2

(8)

The simultaneous property is retained in these iterations for dose-volume constraint

implementation.

III. RELATED ITERATIVE ALGORITHMS FOR INVERSE TREATMENT

PLANNING

The sequential POCS algorithm (1) for the linear feasibility problem (25) arising in

the full discretization approach to the inverse problem of RTTP was first used in (Censor,

Altschuler and Powlis 1988a) where it was called “the relaxation method of Agmon, Motzkin

and Schoenberg (AMS)”. Later it was used by Lee et al. (Lee, Cho, II and Oh 1997) and

Cho et al. (Cho, Lee, Marks, Redstone and Oh 1997), (Cho, Lee, Marks, Oh, Sutlief and

Phillips 1998). Both the sequential POCS and the simultaneous Cimmino algorithm are

special cases of the more general iterative scheme called Block-Iterative Projections (BIP)

which appeared in (Aharoni and Censor 1989) (Censor and Zenios 1997, Section 5.6). The

BIP scheme allows processing of subsets of constraints other than a single constraint at a time

(as in POCS) or all constraints at a time (as in Cimmino’s algorithm). An excellent review

on projection methods for convex feasibility problems is done by Bauschke and Borwein

(Bauschke and Borwein 1996). A state of the art snap shot of ongoing research in this field

is included in (Butnariu, Censor and Reich 2001). Cho and Marks II (Cho and Marks 2000)
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used the POCS method to include MLC hardware constraints in the IMRT model. The

Cimmino algorithm was also used by Kolmonen, Trevo and Lahtinen (Kolmonen, Trevo and

Lahtinen 1998) in conjunction with continuous approximation for the dose deposition kernel.

Recent publications report on the experimental finding that the initial practical con-

vergence of Cimmino’s algorithm can be accelerated by using relaxation parameters λk in

(4) which are larger then the value λk = 2(Höffner, Decker, Schmidt, Herbig, Ritter and

Wiss 1996)(Michalski et al. 2004). Wu et al. (Wu, Jeraj, Lu and Mackie 2004), also used

the possibility to accelerate the Cimmino algorithm by overrelaxation within their work on

using the algorithm for adaptive radiotherapy.

The comparisons made by the group of Cho, Marks II, et al. have revealed advantages

of [the sequential] projections onto convex sets (POCS) method over simulated annealing.

They found that more uniform target dose distributions were obtained with POCS method

as compared with the simulated annealing technique using a quadratic objective function.

Also it was noted that the beam intensity profiles generated by the POCS method correspond

more closely to the target-organ geometry than those produced by the simulated annealing

method(Cho et al. 1997, p. 312). They also found that the convex projection method can

find solutions in much shorter time with minimal user interaction(Cho et al. 1998, p. 442).

Of particular interest is the precise relationship between Cimmino’s algorithm and gradi-

ent and gradient-like iterative algorithms, such as the iterative algorithms that were used by

Bortefeld et al. (Bortfeld, Bürkelbach, Boesecke and Schlegel 1990), Xing and Chen (Xing

and Chen 1996), Xing et al. (Xing, Hamilton, Spelbring, Pelizzari, Chen and Boyer 1998),

Spirou and Chui (Spirou and Chui 1998). A precise mathematical comparative analysis has

not yet been done, but partial results, scattered in the literature, might hint towards the

possibility that some of these gradient-type iterative algorithms may share some of the prop-

erties of Cimmino’s algorithm. A precise analysis, however, has to consider also the different

mathematical models used there, such as quadratic optimization over linear equations which

represent the dose constraints, optimization of a penalized cost function, or other models.

In this respect it is interesting to note the analysis of Barakat and Newsam (Barakat and
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Newsam 1985, Section 4). Our experimental results confirm that for the clinical cases we

studied, intensity patterns from the gradient method tend to be relatively smoother than

those from the stochastic algorithm (e.g. simulated annealing).

IV. EXPERIMENTAL SETUP

Since most institutions where IMRT is implemented include treatment of prostate cancer

as one of the disease sites, it is of general interest to compare inverse plans for this particular

disease site. We selected a number of planning cases for the treatment of prostate cancer

to illustrate the differences between the different mathematical planning algorithms. IMRT

planning for this site has been studied extensively with a number of algorithms. In our study,

we compare the results from a CORVUS IMRT system with standard MLC and Cimmino’s

algorithm applied to IMRT inverse planning package of the FOCUS system. The same set

of contoured CT (computerized tomography) images was taken as input to both systems.

We choose approximately the same geometrical point for each patient as the isocenter for

all planning exercises. We specify the same dose-volume histogram constraints (DVH) for

the planning target volume (PTV), bladder and rectum. The beam angles selected for

the inverse planning systems are 0o, 55o, 90o, 145o, 215o, 270o and 305o(Varian convention,

Varian Medical Systems, Inc., CA), as illustrated in figure 1. A simulated annealing (COR-

SA) (Webb (Webb 1989) (Webb 1993, Reprinted with corrections 2001b)(Webb 1997)(Webb

2001a)) algorithm is chosen within the CORVUS system for searching the beamlet intensity

distributions. We experimented also with the other gradient algorithms within the system

(Downhill, COR-DH). We found that the number of segments and monitor units required to

deliver an IMRT plan are generally higher for ones obtained with the simulated annealing

algorithm. The plan quality in terms of tumor dose homogeneity and critical structure

sparing is somewhat better. For some of the cases of prostate cancer solvable readily with the

simulated annealing algorithm, it may require more interations to obtain clinically acceptable

treatment plans using the COR-DH algorithm. We include the results from these algorithms
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for comparison. We elected to use the built-in ”sliding window” segmentation package within

CORVUS for Varian MLCs for final dose analysis and comparison. For the prostate case,

the optimization time required for COR-SA, COR-DH, CIM, CIM-DVH are 360 s, 300 s, 62

s and 21 s respectively on similar dual 1 Ghz processor computers.

We also chose a more complex case for experimentation and comparison, a case of oropha-

ryngeal cancer. Structure and target definition, and dose prescription followed the guidelines

set by RTOG protocol #H-0022 and is summarized in table 9. The RTOG #H-0022 proto-

col is aimed at testing IMRT for this disease site. The prescription is written in such a way

that the total dose for each target region will be treated in the same 30 fractions. The 66 Gy

region is to be treated at a dose rate of 2.2 Gy per fraction, the 60 Gy region at a rate of 2.0

Gy per fraction, and the 54 Gy region at a rate of 1.8 Gy per fraction. We used nine beam

angles for all the planning: 180o, 235o, 270o, 325o, 35o, 90o and 125o. The relative location of

target volumes and some of the critical structures are shown in figure 2. For this head and

neck case, the optimization time required for COR-SA, COR-DH, CIM, CIM-DVH are 420

s, 360 s, 210 s and 78 s respectively on similar dual 1 Ghz processor computers.

Goal (Gy) volume below(%) volume above(%)

Gross Tumor/Lymph nodes 66 <5 −

High Risk Subclinical 60 < 5 -

Subclinical 54 < 5 -

Brainstem <54 <5

Spinal Cord 45 0

Mandible 70 0

Unspecified Normal Tissue 72.6 0

Parotid 30 <50

(9)

Cimmino algorithm for linear inequalities(CIM) and CIM-DVH algorithm are both in-

corporated in an in-house system for beamlet-based inverse planning. This in-house system

10



uses the FOCUS system for intensity segmentation and final dose calculation. This particu-

lar CIM implementation uses upper and lower dose limits for involved tumor and structures.

The lower limit for the target volume is specified as the goal dose and the upper limit is 10%

higher than that of the goal dose. The upper limits for the critical structures are used as the

optimization upper limits. The DVH compliances are evaluated with the resulting beamlet

intensities. For the implementation of CIM-DVH algorithm, the DVH constraints are input

as specified in table 10. For the target volumes, upper dose volume limits are also imposed

to achieve acceptable dose homogeneity. They are specified as no more than 5% of the target

volumes are to receive more than 5% higher dose than the goal dose. Beam arrangements are

made using the user interface of the planning system. The dose calculations are performed

with the calculation engine within the system. Dose matrices to voxels due to each of the

beamlets are then extracted. The resolution of the dose matrices is 3 mm. Only those vox-

els that intercept target volumes are included in the dose matrices extracted. The resulting

intensity patterns from Cimmino’s algorithm and CIM-DVH algorithm are fed back into

the FOCUS system for segmentation. The ”sliding window” segmentation package within

FOCUS for Varian MLCs is used for this purpose for consistency with the CORVUS sys-

tem. The doses from the segmented fields are calculated using the superposition-convolution

algorithm and analyzed.

We compared intensity patterns (overlay with anatomy), smoothness parameters for the

intensity patterns, DVHs, isodoses for selected cross-sections and the resulting number of

segments and monitor units.

V. RESULTS

For the prostate case that we study we obtained plans that meet all the dose-volume

constraints, as listed in the table presented in (10), from COR-SA and COR-DH of CORVUS

system, and our in-house beamlet-based inverse planning system with CIM and CIM-DVH

algorithms. The dose-volume histograms, in Figure 3, show that we have similar coverage
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of the PTV volume from the plans;

Goal (Gy) volume below(%) volume above(%)

PTV 75.6 <5 −

rectum <65 − <20

bladder <65 − <20

(10)

with the plan from CORVUS covering PTV at 95% of the volume with the prescription

dose and the plan from CIM and CIM-DVH algorithms covering also at 95%. The maximum

doses for all these plans are around 87 Gy with about 10% of the PTV volume getting more

than 85 Gy. The dose level for bladder and rectum are all acceptable with less than 20% of the

organ at risk (OAR) getting more than 65 Gy. Isodose distributions for transversal, coronal

and sagittal cross-sections from the plans of COR-SA, CIM algorithms are shown in Figures

4, 5, and 6, respectively (the ones from COR-DH and CIM-DVH are similar). We used

addtional 3 mm margin around PTV except the posterior region where rectum is overlapping

with PTV. Overall, we observe similar coverage of tumor volumes from the algorithms of the

CORVUS system and the in-house system with CIM and CIM-DVH algorithms. However,

for similar dose coverage from the plans, we obtained intensity patterns that are different.

Figures 7 - 10 show the intensity distributions for five level segmentations for the beam

angles 0o, 55o, 90o, 145orespectively, from COR-SA, COR-DH, in-house beamlet-based sys-

tem with CIM and CIM-DVH algorithms. We observe qualitatively the differences in struc-

ture of intensity distributions from all these sources. The intensity patterns obtained with

COR-DH, CIM and CIM-DVH algorithms show less irregularity than the patterns from the

simulated annealing method.

To give a quantitative illustration of the smoothness comparison we analyzed beamlet

intensities from all beam angles, i = 1, 2, . . . ,m. To do so we index the gantry angles by

g = 1, 2, . . . , G, and the two-dimensional beamlets location within each beam by (u, v) for

u = 1, 2, . . . , U, and v = 1, 2, . . . , V. In this manner each beamlet index i is mapped onto

the triplet (g, u, v) denoting its beam index g and the beamlet location (u, v) inside that
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beam. The intensity of the i-th beamlet, which was denoted by xi in Section II, will thus

be denoted by x(g, u, v).

In the prostate case, shown in our example, we have seven gantry angles, i.e., G = 7,

at angles 0o, 55o, 90o, 145o, 215o, 270o and 305o. Within each gantry angle, we have a 2D

intensity map of size 12 × 12, i.e., U = V = 12. The 2D intensity patterns x(g, u, v) for

g = 1, ..., 7 are normalized to its maximum value for that particular beam angle to take

values from 0, 20, ... to 100 ( the five levels). We use the smoothness indicators defined

by Webb, Convery and Evans (Webb et al. 1998, p. 2787). To this end we calculate the

first and second order derivatives of these normalized intensity numbers with respect to the

intensity intervals for each of the beam angle, e.g.,

d

dv
x(g, u, v) and

d2

d2v
x(g, u, v). (11)

Then we define the mean modulus first derivative of the beamlets as the first smoothness

indicator by

S1 =
1

V × U
VX
v=1

UX
u=1

| d
dv
x(g, u, v) |+ | d

du
x(g, u, v) | (12)

and the mean modulus second derivative of the beamlets as the second smoothness indicator

by

S2 =
1

V × U
VX
v=1

UX
u=1

| d
2

d2v
x(g, u, v)|+ | d

2

d2u
x(g, u, v)|. (13)
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S1 S2

Beam Angle COR-SA COR-DH CIM CIM-DVH COR-SA COR-DH CIM CIM-DVH

0o 18.5 12.5 10.1 9.7 16.7 12.5 8.2 8.2

55o 14.5 8.9 10.7 9.0 13.6 7.3 9.6 7.6

90o 14.4 10.7 10.1 8.3 12.9 10.3 9.4 7.4

145o 15.3 14.1 13.1 8.9 14.2 13.6 11.8 7.4

215o 16.3 14.4 11.5 8.8 14.8 13.9 9.1 6.9

270o 14.4 12.8 9.9 8.3 13.4 12.1 9.6 7.4

305o 12.8 7.8 10.1 8.5 11.8 7.3 8.8 7.4

Total 106 81 75 62 97 77 66 52

(14)

In table 14 we list the normalized summation of first and second derivatives of the

normalized intensity numbers (11), namely, the smoothness indicators S1 and S2 for all the

beam angles. Listed in the table are values from COR-SA, COR-CH, the ones from the

in-house system with CIM and CIM-DVH algorithms. Included are values for gantry angles

listed to the left of the table. There are obvious differences between the values of these

smoothness indicators for the intensity patterns obtained from the CORVUS system with

simulated annealing and downhill gradient and those from either the CIM or the CIM-DVH

method. The smoothness values decrease with the following order: COR-SA, COR-DH,

CIM and CIM-DVH, which confirms our qualitative observation from the intensity maps.

The smoothness of the intensity distribution affects the number of segments and monitor

units required for delivery. While the DVHs and the isodose distributions obtained from all

three methods are of similar clinical quality,table (15) shows differences in the number of

segments (for each beam angle) that are required to achieve the intensity distributions shown

in Figures 7 - 10. The numbers of monitor units for delivery of these segments (for each

beam angle) are also listed. The monitor units are for delivery of 75.6 Gy in 42 fractions.
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The delivery efficiency that can be adjusted within the CORVUS system to reduce number

of segments and monitor units are not used in this case because the quality of the resulting

plan in the interest of comparison. Some of the differences may lie in the different intensity

segmentation software inplemented in CORVUS system and FOCUS system. However, one

sees the general trend of decreased number of segments and monitor units in the same

ordering: COR-SA, COR-DH and CIM/CIM-DVH.

Segments Monitor Units

Beam Angle COR-SA COR-DH CIM CIM-DVH COR-SA COR-DH CIM CIM-DVH

0o 26 14 6 7 200 264 63 83

55o 29 13 7 5 207 169 57 66

90o 21 18 8 6 172 136 86 80

145o 25 17 7 5 195 55 47 44

215o 20 25 6 5 182 97 46 42

270o 22 25 7 5 127 98 80 78

305o 22 11 6 7 166 174 60 65

Total 165 123 47 40 1249 992 439 458

(15)

We observe the same trend for the results of the oropharyngeal cancer. The DVH for

the results from all systems are presented in two separate figures 11 and 12 in the interest

of clarity. DVHs for PTV66, PTV60, PTV54, cord and parotid are presented. We observe

that the target objectives of having more than 95% of the volume PTV66, PTV60, PTV54

receiving more than 66 Gy, 60 Gy and 54 Gy respectively are met by all the systems. The

maximum doses for cord are all less than 45 Gy. The doses to 50% of the parotid volume

are all controlled to be under 30 Gy.

The smoothness indicator S1 and S2 are also calculated for the intensity maps from all

systems of all beam angles. They are listed in table 16. We observe the same trend, namely,
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S1 and S2 decrease in the following order: COR-SA, COR-DH, CIM and CIM-DVH.

S1 S2

Beam Angle COR-SA COR-DH CIM CIM-DVH COR-SA COR-DH CIM CIM-DVH

0o 15.2 16.1 14.7 15.3 13.9 15.4 14.3 13.7

40o 15.4 10.2 8.4 8.2 14.5 8.2 7.7 7.3

80o 12.6 11.8 10.1 10.1 12.6 10.2 8.9 9.2

120o 16.8 14.0 12.1 8.6 13.8 14.2 12.3 8.8

160o 19.3 13.2 11.0 10.6 18.9 14.0 11.5 10.5

200o 19.1 13.0 11.1 8.6 17.8 13.3 11.0 8.6

240o 20.6 17.6 15.6 13.8 19.0 16.1 14.6 11.0

280o 15.5 14.2 12.1 9.0 13.6 14.3 12.7 8.9

320o 12.8 16.1 14.3 11.3 11.3 15.6 13.9 11.4

Total 147 126 109 95 136 121 106 89

(16)

The number of segments and monitor units required to deliver these intensity distribu-

tions are listed in table 17. Similarly, some of the difference may be explained by the different

intensity segmentation software incorporated in CORVUS and FOCUS system. However,

the same tendency still holds. The number of segments and monitor units decrease with the

same order: COR-SA, COR-DH, CIM and CIM-DVH.
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Segments Monitor Units

Beam Angle COR-SA COR-DH CIM CIM-DVH COR-SA COR-DH CIM CIM-DVH

0o 36 24 9 13 198 349 69 66

40o 24 20 7 9 124 245 60 61

80o 26 16 7 10 134 198 46 55

120o 28 12 10 8 194 27 86 72

160o 36 30 9 8 238 68 28 52

200o 28 20 10 8 179 40 52 100

240o 22 20 10 12 86 48 93 99

280o 22 28 16 9 98 62 55 70

320o 32 24 10 12 140 54 129 83

Total 256 197 88 89 1391 1091 618 658

(17)

VI. DISCUSSION

We detected this smoothness phenomenon of Cimmino’s algorithm recently when work-

ing with aperture-based inverse planning (ABIP)(Xiao et al. 2003). It was discovered that

Cimmino’s algorithm always generated in our experimental computational work, when ini-

tialized at zero, solutions that were surprisingly good approximations of the LIF (least-square

intensity feasibility) solution. This was explained and put on firm mathematical ground in

the other publication(Xiao et al. 2003) . In order to achieve the least-square of the total

intensity, extreme intensity values are discriminated against. The smoothness intensity pat-

terns without large variations are thus created. In what follows we explain the inherent

smoothness property of intensity patterns generated by Cimmino’s algorithm. We consider

a vector x = (xi)
m
i=1 ∈ Rm, translate it, in an agreed manner, into a K × K matrix (so
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that m = K2) X = (xst)
K
s,t=1 whose elements xst are obtained from the components of the

vector x by xst = x(s−1)K+t, for all s, t = 1, 2, . . . ,K, and speak interchangeably about the

vector and the associated matrix. The smoothness of the vector x (or the matrix X) is a

local property that should reflect by how much does a value of one component (bixel) differ

from its surrounding components’ values.

A commonly used smoothness indicator σ(X) of an image represented in a discretized

form by a matrix X = (xst)
K
s,t=1 is defined by

σ(X) = (1/8)
KX

s,t=1

X
(y,z)∈N(s,t)

(xyz − xst)2 (18)

where N(s, t) is the set of indices of the eight surrounding elements neighborhood of the

element (s, t), see, e.g., Li, Jiang and Evans (Li, Jiang and Evans 2000). Since we are

interested in matrices of only nonnegative elements (intensities), this can be equivalently

written as

σ(X) = (1/8)
KX

s,t=1

kxst1− exk2 (19)

where 1 is a nine-dimensional vector all of whose components are equal to one and ex is
a nine-dimensional vector whose components are equal to the values in the (s, t)∪ N(s, t)
square region. Now we show that σ(X) is a convex function.

Proposition 2 Given finitely many vectors xr, for r = 1, 2, . . . , ρ, we have

σ(
ρX
r=1

αrx
r) ≤

ρX
r=1

αrσ(x
r), (20)

for any set of real positive numbers αr such that
Pρ
r=1 αr = 1.

We have σ(y) = (1/8)
PK
s,t=1 kyst1− eyk2

= (1/8)
PK
s,t=1 k

Pρ
r=1 αr

³
xrst1−fxr´ k2

≤ (1/8)PK
s,t=1

Pρ
r=1 αrkxrst1−fxrk2

=
Pρ
r=1 αrσ(x

r), where we have used (19) and the convexity of the function k · k2, and the
proof is complete.
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This shows that the smoothness indicator of any convex combination of vectors is smaller

(not larger, to be precise) then the convex combination of the smoothness indicators of the

individual vectors comprising the convex combination. Since Cimmino’s algorithm takes

convex combinations of the individual projections onto the physical dose constraints at each

and every step it systematically strives to have smoother iterates.

The experiments of inverse treatment planning performed here reveal yet another im-

portant feature of the Cimmino algorithm. Namely, when comparing the intensity patterns

obtained from Cimmino’s algorithm with those obtained from the simulated annealing al-

gorithm, employed by the CORVUS system, which does not have an intrinsic control over

the range of intensities unless used with external filtering(Webb 1989) — the difference in

smoothness of the intensity distribution is significant, as shown in Figures 7 - 10. The

smoothness of the pattern is of significant clinical value because fewer segments are used

for delivery and the total number of monitor units used is reduced. These effects increase

the delivery efficiency and reduce the leakage radiation as compared with what would have

been with a high number of monitor units. Incorporating dose-volume constraints with

Cimmino’s algorithm, neccessitated modifications to the modeling as well as to the iteration

process which involves non-linear terms. However, we observe similar smooth patterns from

the final results as compared with the CIM algorithm. The gradient algorithm is found to

also share some of the smoothness features.

Besides arriving at smooth intensity distributions for beamlet-based inverse planning

problems, the simultaneous property of Cimmino’s algorithm makes it possible to utilize the

available computing resources through parallel computing. Multithreaded implementation

of the Cimmino algorithm which takes full advantage of its parallel characteristic using

a double-processor computer almost halved the performance time in comparison with its

sequential implementation. The simultaneous property is retained in this implementation

of DVH constraints for inclusion of non-linear inequalities(Michalski et al. 2004).

VII. CONCLUSION
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In implementing and experimentally analyzing Cimmino’s algorithm for beamlet-based

inverse planning problems, we observe an intrinsic property of the algorithm to produce

smooth intensity patterns as applied to beamlet-based IMRT inverse planning which has

not been observed or reported till now. The algorithm not only arrives at solutions that are

close approximations of least-intensity solutions, but also generates intensity distributions

that are mostly smooth. The smooth intensity pattern eases the delivery difficulty and

improves delivery efficiency for both dynamic MLC and MSF—MLC delivery of the IMRT

plans. Fewer segments and monitor units are required. We can reduce the optimization time

many folds utilizing multiple processors due to the simultaneous nature of the algorithm.

Implementation of DVH objectives in the simultaneous projection algorithm didn’t seem to

degrade the level of smoothness from our observation. With the debut of faster and less

expensive computing hardware, real time inverse planning becomes a realty. To summarize,

the combination of inequality constraints for describing the dose upper and lower limits on

organs and the use of Cimmino’s algorithm for the linear feasibility problem arising from

the fully-discretized model of IMRT have the following favorable features and properties:

1. It uses realistic modelling, which does not require equalities to hold for the dose con-

straints.

2. When initialized at zero intensities it generates an approximate LIF solution (which

has least intensity).

3. It converges globally to a feasible solution, if such a solution exists, or to a minimal

value of the proximity function (6) in the inconsistent case.

4. It is an inherently parallel iterative algorithm, thus, implementable on parallel com-

puting equipment regardless of problem structure.

5. It generates smoother intensity distributions.

These properties are shared by the simultaneous projection algorithm that incorporates

DVH dose objectives.
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VIII. APPENDIX

The Fully Discretized Model and the Feasibility Approach

The beamlet-based inverse planning process assumes full discretization of both the pa-

tient’s cross-section and the radiation intensity field surrounding the patient. Using a state-

of-the-art dose calculation engine we construct a matrix of dose information in which the

matrix element aji is the dose to voxel j due to a unit intensity from beamlet i. We con-

ducted our work with the inverse planning package of the commercial treatment planning

system FOCUS (from Computerized Medical Systems (CMS), Inc., St. Louis, MO, USA).

Having been granted access to this system’s source code, we used the system as our dose

calculation engine. The physician’s imposed dose constraints and their respective weights

of importance were also extracted from the FOCUS system. Then the Cimmino algorithm

(which is not part of the FOCUS system), or the variation of the algorithm incorporating

DVH dose objectives, was applied.

Next, we review how full discretization of the beamlet-based inverse problem in radiation

therapy treatment planning (RTTP) leads to a linear feasibility problem and present the si-

multaneous Cimmino (CIM) method (Censor and Zenios 1997). Assume that the 3D volume

of interest includes Q pre-identified target regions, denoted by {Tq | for q = 1, 2, · · · , Q},
for radiation treatment and that the lower bounds for the required dose to be deposited in

target region Tq is tq. The volume of interest also includes S pre-identified critical organs,

denoted by {Bs | for s = 1, 2, · · · , S}, that should be spared by observing upper bounds of
permissible dose bs in organ Bs. The reminder of the volume constitutes the complimentary

tissue, denoted by C, which is allowed to absorb not more then c dose units. This volume

of interest is discretized into a Cartesian grid of n voxels which are numbered in an agreed

manner by j = 1, 2, · · · , n. Depending on whether a voxel is inside a target (tumor) or inside
a critical organ the total dose absorbed in it must lie above or below the lower or upper

prescribed dose bounds, respectively.

The RTTP problem is further discretized by assuming that the radiation, delivered from
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outside sources, propagates along lines and that the whole volume of interest is uniformly

covered by a mesh of m lines, along which radiation travels (beamlets), densely enough

to reach every voxel in the volume of interest. The beamlets are arranged in a certain

geometry and indexed by i = 1, 2, · · · ,m. The intensities xi of the rays are arranged in an
m-dimensional vector x = (xi)

m
i=1 ∈ Rm, in them-dimensional Euclidean space Rm, and they

are the unknowns of the problem. These intensities are traditionally called “weights” in this

field but we reserve the latter for the term “weights of importance” of the constraints. We

extract the quantities aji which are the dose absorbed (uniformly) in voxel j due to radiation

of unit intensity along the i-th ray from the FOCUS commercial treatment planning system.

The basic linear feasibility problem (LFP, for short) associated with recovering the beam-

let intensities vector x = (xi)
m
i=1 is the following.

mX
i=1

ajixi ≤ bs, for all j ∈ Bs, s = 1, 2, · · · , S, (21)

tq ≤
mX
i=1

ajixi, for all j ∈ Tq, q = 1, 2, · · · , Q, (22)

mX
i=1

ajixi ≤ c, for all j ∈ C, (23)

xi ≥ 0, for all i = 1, 2, · · · ,m. (24)

The LFP can easily be rearranged into the general form

mX
i=1

ajixi ≤ dj, for all j = 1, 2, · · · , n, (25)

which can also be rewritten as

haj, xi ≤ dj, for all j = 1, 2, · · · , n, (26)

where aj = (aji )
m
i=1 is an m-dimensional vector and haj, xi =

Pm
i=1 a

j
ixi is the inner product

in Rm. The nonnegativity constraints (24) can be either subsumed in the system (26) or

kept separately and handled separately by any iterative algorithm applied to the LFP.
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In order to incorporate the dose-volume histogram constraints, we use an additional set

of inequalities, the detail of which is described in a recent publication (Michalski et al. 2004).

A brief summary of the modeling is included. For each structure s containing Ns voxels we

have a set of constraints T s. For t ∈ T s, we are allowing αt percent volume getting an over

dose of βt percent of the upper limit bt (similar set of inequalities can be constructed for

lower limits):

haj , xi ≤ (1 + βt)bt, for all j = 1, 2, · · · , Ns, (27)

gt(x) =
X
j∈s
hj(x)− αtNsbtβt ≤ 0 (28)

hj(x) =


0 if haj, xi ≤ bt

haj, xi− btβt + bt if bt ≤ haj, xi ≤ (1 + βt)bt

haj, xi− bt if haj, xi > (1 + βt)bt

(29)

Non-linear terms are introduced in the inequalities to accommodate the dose-volume

constraints.
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FIGURES

FIG. 1. The seven beam angles used in the IMRT inverse planning are: 0, 55, 90, 145, 215,

270, 305 degrees (Varian convention).

FIG. 2. The relative locations of the target volumes PTV66, PTV60, PTV54 and critical

structures: cord and parotid.

FIG. 3. DVH comparison between beamlet-based IMRT plans: COR-SA,COR-DH, algorithms

CIM and CIM-DVH.

FIG. 4. Isodose distribution comparison between CORVUS system (upper), in-house algorithms

CIM (lower) for transversal cross-section. The two isodose displays are for 75.6 Gy and 65 Gy

respectively.

FIG. 5. Isodose distribution comparison between CORVUS system (upper), in-house algorithms

CIM (lower) coronal cross-section. The two isodose displays are for 75.6 Gy and 65 Gy respectively.

FIG. 6. Isodose distribution comparison between CORVUS system (upper), in-house algorithms

CIM (lower) for sagital plane. The two isodose displays are for 75.6 Gy and 65 Gy respectively.

FIG. 7. Intensities from left to right for: COR-SA, COR-DH, algorithms CIM and CIM-DVH

shown with outline of PTV for gantry angle 0 degree.

FIG. 8. Intensities from left to right for: COR-SA, COR-DH, algorithms CIM and CIM-DVH

shown with outline of PTV for gantry angle 55 degree.

FIG. 9. Intensities from left to right for: COR-SA, COR-DH, algorithms CIM and CIM-DVH

shown with outline of PTV for gantry angle 90 degree.

FIG. 10. Intensities from left to right for: COR-SA, COR-DH, algorithms CIM and CIM-DVH

shown with outline of PTV for gantry angle 145 degree.

29



FIG. 11. DVH results for the oropharygeal case from COR-SA and CIM for PTV66, PTV60,

PTV54, cord and parotid.

FIG. 12. DVH results for the oropharygeal case from COR-DH and CIM-DVH for PTV66,

PTV60, PTV54, cord and parotid.
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Figure 1: The seven beam angles used in the IMRT inverse planning are: 0, 55,
90, 145, 215, 270, 305 degrees (Varian convention).
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Figure 2: The relative locations of the target volumes PTV66, PTV60, PTV54
and critical structures: cord and parotid.
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Figure 3: DVH comparison between beamlet-based IMRT plans: COR-SA,COR-
DH, algorithms CIM and CIM-DVH.
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Figure 4: Isodose distribution comparison between CORVUS system (upper),
in-house algorithms CIM (lower) for transversal cross-section. The two isodose
displays are for 75.6 Gy and 65 Gy respectively.
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Figure 5: Isodose distribution comparison between CORVUS system (upper),
in-house algorithms CIM (lower) coronal cross-section. The two isodose displays
are for 75.6 Gy and 65 Gy respectively.
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Figure 6: Isodose distribution comparison between CORVUS system (upper),
in-house algorithms CIM (lower) for sagital plane. The two isodose displays are
for 75.6 Gy and 65 Gy respectively.
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Figure 7: Intensities from left to right for: COR-SA, COR-DH, algorithms CIM
and CIM-DVH shown with outline of PTV for gantry angle 0 degree.

Figure 8: Intensities from left to right for: COR-SA, COR-DH, algorithms CIM
and CIM-DVH shown with outline of PTV for gantry angle 55 degree.

8



Figure 9: Intensities from left to right for: COR-SA, COR-DH, algorithms CIM
and CIM-DVH shown with outline of PTV for gantry angle 90 degree.

Figure 10: Intensities from left to right for: COR-SA, COR-DH, algorithms CIM
and CIM-DVH shown with outline of PTV for gantry angle 145 degree.

9



Figure 11: DVH results for the oropharygeal case from COR-SA and CIM for
PTV66, PTV60, PTV54, cord and parotid.
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Figure 12: DVH results for the oropharygeal case from COR-DH and CIM-DVH
for PTV66, PTV60, PTV54, cord and parotid.
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