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Abstract. We formulate a block-iterative algorithmic scheme for the solution of systems of
linear inequalities and/or equations and analyze its convergence. This study provides as special
cases proofs of convergence of (i) the recently proposed component averaging (CAV) method of
Censor, Gordon, and Gordon [Parallel Comput., 27 (2001), pp. 777–808], (ii) the recently proposed
block-iterative CAV (BICAV) method of the same authors [IEEE Trans. Medical Imaging, 20 (2001),
pp. 1050–1060], and (iii) the simultaneous algebraic reconstruction technique (SART) of Andersen
and Kak [Ultrasonic Imaging, 6 (1984), pp. 81–94] and generalizes them to linear inequalities. The
first two algorithms are projection algorithms which use certain generalized oblique projections and
diagonal weighting matrices which reflect the sparsity of the underlying matrix of the linear system.
The previously reported experimental acceleration of the initial behavior of CAV and BICAV is thus
complemented here by a mathematical study of the convergence of the algorithms.
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1. Introduction. Recently Censor, Gordon, and Gordon proposed and studied
new iterative schemes for linear equations: In [7] the CAV (component averaging)
method was presented as a simultaneous projection algorithm and in [8] BICAV was
proposed as a block-iterative companion to CAV. In these methods the sparsity of
the matrix is explicitly used when constructing the iteration formula. Using this
new scaling we observed considerable improvement compared to traditionally scaled
iteration methods. In [7] a proof of convergence was given for unity relaxation only,
whereas no proofs at all were given for the block-iterative case [8].

The purpose of this paper is to describe a generalization to linear inequalities
(with linear equations as a special case) of the Censor, Gordon, and Gordon schemes
and study its convergence. It is shown that for the consistent case the block-iterative
scheme (of which the fully simultaneous method is a special case) converges. For the
inconsistent case we consider only linear equations and show that the simultaneous
scheme converges to a weighted least squares solution. The treatment of the consistent
case is based on our paper [6], in which an accelerated version of the fully simultaneous
method with orthogonal projections for linear inequalities was proposed and studied.
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Recent relevant work of Byrne [5] and Jiang and Wang [19] is referred to at the
end of Examples 7.1 and 7.2, respectively.

2. The CAV algorithm: Motivation and review. To motivate this work,
let us consider linear equations and denote the hyperplanes

Hi :=
{
x ∈ R

n | 〈ai, x〉 = bi
}

(2.1)

for i = 1, 2, . . . ,m, where 〈·, ·〉 is the inner product and ai = (aij)
n
j=1 ∈ R

n, ai �= 0, and
bi ∈ R are given vectors and given real numbers, respectively. Then the orthogonal
(nearest Euclidean distance) projection Pi(z) of any z ∈ R

n onto Hi is

Pi(z) = z +
bi − 〈ai, z〉

‖ai‖2
2

ai ,(2.2)

where ‖ · ‖2 is the Euclidean norm.
In Cimmino’s simultaneous projections method [11] (see also, e.g., Censor and

Zenios [9, Algorithm 5.6.1] with relaxation parameters and with equal weights wi =
1/m), the next iterate xk+1 is the average of the projections of xk on the hyperplanes
Hi, as follows.

Algorithm 2.1 (Cimmino).
Initialization: x0 ∈ R

n is arbitrary.
Iterative Step: Given xk, compute

xk+1 = xk +
λk

m

m∑
i=1

(
Pi(x

k) − xk
)
,(2.3)

where {λk}k≥0 are relaxation parameters.
Expanding the iterative step (2.3) according to (2.2) produces, for every compo-

nent j = 1, 2, . . . , n,

xk+1
j = xk

j +
λk

m

m∑
i=1

bi − 〈ai, xk〉
‖ai‖2

2

aij .(2.4)

When the m×n system matrix A = (aij) is sparse, only a relatively small number

of the elements {a1
j , a

2
j , . . . , a

m
j } in the jth column of A are nonzero, but in (2.4) the

sum of their contributions is divided by the relatively large m. This observation led
Censor, Gordon, and Gordon [7] to consider replacement of the factor 1/m in (2.4) by
a factor that depends only on the nonzero elements in the set {a1

j , a
2
j , . . . , a

m
j }. For

each j = 1, 2, . . . , n, denote by sj the number of nonzero elements of column j of the
matrix A, and replace (2.4) by

xk+1
j = xk

j +
λk

sj

m∑
i=1

bi − 〈ai, xk〉
‖ai‖2

2

aij .(2.5)

Certainly, if A is sparse, then the sj values will be much smaller than m. But this
posed a theoretical difficulty. The iterative step (2.4) is a special case of

xk+1 = xk + λk

m∑
i=1

wi
bi − 〈ai, xk〉

‖ai‖2
2

ai ,(2.6)
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where the fixed weights {wi}mi=1 must be positive for all i and
∑m

i=1 wi = 1. The
attempt to use 1/sj as weights in (2.5) does not fit into the scheme (2.6), unless one
can prove convergence of the iterates of a fully simultaneous iterative scheme with
component-dependent (i.e., j-dependent) weights of the form

xk+1
j = xk

j + λk

m∑
i=1

wij
bi − 〈ai, xk〉

‖ai‖2
2

aij(2.7)

for all j = 1, 2, . . . , n.
To derive a proof of convergence for (2.7), Censor, Gordon, and Gordon modified

it further by replacing the orthogonal projections onto the hyperplanes Hi by certain
oblique projections induced by appropriately defined weight matrices, as will be ex-
plained next. Consider a hyperplane H := {x ∈ R

n | 〈a, x〉 = b}, with a = (aj) ∈ R
n,

b ∈ R, and a �= 0. Let G be an n × n symmetric positive definite matrix and let
‖x‖2

G := 〈x,Gx〉 be the associated ellipsoidal norm; see, e.g., Bertsekas and Tsitsiklis
[4, Proposition A.28]. Given a point z ∈ R

n, the oblique projection of z onto H with
respect to G is the unique point PG

H (z) ∈ H for which

PG
H (z) = arg min {‖x− z‖G | x ∈ H} .(2.8)

Solving this minimization problem leads to

PG
H (z) = z +

b− 〈a, z〉
‖a‖2

G−1

G−1a ,(2.9)

where G−1 is the inverse of G. For G = I, the identity matrix, (2.9) yields the
orthogonal projection of z onto H, as given by (2.2); see, e.g., Ben-Israel and Greville
[3, section 2.6].

In order to consider oblique projections onto H with respect to a diagonal matrix
G = diag(g1, g2, . . . , gn) for which some diagonal elements might be zero, the following
definition is used.

Definition 2.1 (see [7]). Let G = diag(g1, g2, . . . , gn) with gj ≥ 0 for all j =
1, 2, . . . , n, let H = {x ∈ R

n | 〈a, x〉 = b} be a hyperplane with a = (aj) ∈ R
n

and b ∈ R, and assume that gj = 0 if and only if aj = 0. The generalized oblique
projection of a point z ∈ R

n onto H with respect to G is defined, for all j = 1, 2, . . . , n,
by

(PG
H (z))j :=

⎧⎪⎨
⎪⎩

zj +
b− 〈a, z〉∑n

l=1
gl �=0

a2
l

gl

· ajgj if gj �= 0 ,

zj if gj = 0 .

(2.10)

It is not difficult to verify that this PG
H (z) belongs to H, that it solves (2.8) if

‖x−z‖G is replaced there by 〈x−z,G(x−z)〉, and that it is uniquely defined, although
other solutions of (2.8) may exist due to the possibly zero-valued gj ’s. This PG

H (z)
reduces to (2.9) if gj �= 0 for all j = 1, 2, . . . , n.

Consider next a set {Gi}mi=1 of real diagonal n×n matrices Gi = diag(gi1, gi2, . . . ,
gin) with gij ≥ 0 for all i = 1, 2, . . . ,m and j = 1, 2, . . . , n and such that

∑m
i=1 Gi = I.

Referring to the sparsity pattern of A, one needs the following definition.
Definition 2.2 (see [7]). A family {Gi}mi=1 of real diagonal n× n matrices with

all diagonal elements gij ≥ 0 and such that
∑m

i=1 Gi = I is called sparsity pattern
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oriented (SPO) with respect to an m×n matrix A if, for every i = 1, 2, . . . ,m, gij = 0
if and only if aij = 0.

The CAV algorithm of [7] combined three features: (i) Each orthogonal projection
onto Hi in (2.3) was replaced by a generalized oblique projection with respect to Gi.
(ii) The scalar weights {wi} in (2.6) were replaced by the diagonal weighting matrices
{Gi}. (iii) The actual weights were set inversely proportional to the number of nonzero
elements in each column, as motivated by the discussion preceding (2.5). The iterative
step resulting from the first two features has the form

xk+1 = xk + λk

m∑
i=1

Gi

(
PGi

Hi
(xk) − xk

)
,(2.11)

or, equivalently, substituting from (2.10) for each PGi

Hi
, one gets the following.

Algorithm 2.2 (diagonal weighting (DWE); see [7]).
Initialization: x0 ∈ R

n is arbitrary.
Iterative Step: Given xk, compute xk+1 by using, for j = 1, 2, . . . , n, the formula

xk+1
j = xk

j + λk

m∑
i=1

gij �=0

bi − 〈ai, xk〉∑n
l=1
gil �=0

(ai
l)

2

gil

· aij ,(2.12)

where {Gi}mi=1 is a given family of diagonal SPO (with respect to A) weighting matrices
as in Definition 2.2, and {λk}k≥0 are relaxation parameters.

Finally, the diagonal matrices {Gi}mi=1 are constructed in order to achieve the
acceleration discussed above. Define

gij :=

⎧⎪⎨
⎪⎩

1
sj if aij �= 0 ,

0 if aij = 0 .

(2.13)

With this particular SPO family of Gi’s one obtains the CAV algorithm.
Algorithm 2.3 (component averaging (CAV); see [7]).

Initialization: x0 ∈ R
n is arbitrary.

Iterative Step: Given xk, compute xk+1 by using, for j = 1, 2, . . . , n, the formula

xk+1
j = xk

j + λk

m∑
i=1

bi − 〈ai, xk〉∑n
l=1 sl

(
ail
)2 · aij ,(2.14)

where {λk}k≥0 are relaxation parameters and {sl}nl=1 are as defined above.
It was shown in [7] that Algorithm 2.2, with λk = 1 for all k ≥ 0, generates

sequences {xk}k≥0 which always converge regardless of the initial point x0 and in-
dependently from the consistency or inconsistency of the underlying system Ax = b.
Moreover, it always converges to a minimizer of a certain proximity function.

3. The block-iterative component averaging algorithm (BICAV). The
basic idea of the block-iterative CAV (BICAV) algorithm is to break up the system
Ax = b into “blocks” of equations and treat each block according to the CAV method-
ology, passing cyclically over all the blocks. Throughout the following, T will be the
number of blocks and, for t = 1, 2, . . . , T, let the block of indices Bt ⊆ {1, 2, . . . ,m}
be an ordered subset of the form Bt = {it1, it2, . . . , itm(t)}, where m(t) is the number of
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elements in Bt. There is nothing preventing different blocks from containing common
indices; we require, however, the following.

Assumption 3.1. Every element of {1, 2, . . . ,m} appears in at least one of the
sets Bt, t = 1, 2, . . . , T.

For t = 1, 2, . . . , T , let At denote the matrix formed by taking all the rows {ai}
of A whose indices belong to the block of indices Bt, i.e.,

At :=

⎡
⎢⎢⎢⎢⎢⎣

ai
t
1

ai
t
2

...

a
itm(t)

⎤
⎥⎥⎥⎥⎥⎦ , t = 1, 2, . . . , T.(3.1)

The iterative step of the BICAV algorithm, developed and experimentally tested by
Censor, Gordon, and Gordon in [8], uses, for every block index t = 1, 2, . . . , T, general-
ized oblique projections with respect to a family {Gt

i}i∈Bt of diagonal matrices which
are SPO with respect to At. The same family is also used to perform the diagonal
weighting. The resulting iterative step has the form

xk+1 = xk + λk

∑
i∈Bt(k)

G
t(k)
i

(
P

G
t(k)
i

Hi
(xk) − xk

)
,(3.2)

where {t(k)}k≥0 is a control sequence according to which the t(k)th block is chosen
by the algorithm to be acted upon at the kth iteration, and thus, 1 ≤ t(k) ≤ T for all
k ≥ 0. The real numbers {λk}k≥0 are user-chosen relaxation parameters. Substituting

from (2.10) for each P
G

t(k)
i

Hi
, one obtains the following.

Algorithm 3.1 (block-iterative diagonal weighting (BIDWE); see [8]).
Initialization: x0 ∈ R

n is arbitrary.
Iterative Step: Given xk, compute xk+1 by using, for j = 1, 2, . . . , n, the formula

xk+1
j = xk

j + λk

∑
i∈Bt(k)

g
t(k)
ij

�=0

bi − 〈ai, xk〉∑n
l=1

g
t(k)
il

�=0

(ai
l)

2

g
t(k)
il

· aij ,(3.3)

where, for each t = 1, 2, . . . , T, {Gt
i}i∈Bt is a given family of diagonal SPO (with

respect to At) weighting matrices, as in Definition 2.2, the control sequence is cyclic,
i.e., t(k) = k mod T + 1 for all k ≥ 0, {λk}k≥0 are relaxation parameters, and
Gt

i = diag(gti1, g
t
i2, . . . , g

t
in).

Finally, in order to achieve the acceleration, the diagonal matrices {Gt
i}i∈Bt are

constructed as in the original CAV algorithm [7], but with respect to each At. Let stj
be the number of nonzero elements aij �= 0 in the jth column of At and define

gtij :=

⎧⎪⎨
⎪⎩

1
stj

if aij �= 0,

0 if aij = 0.

(3.4)

It is easy to verify that, for each t = 1, 2, . . . , T,
∑

i∈Bt
Gt

i = I holds for these matrices.
With these particular SPO families of Gt

i’s one obtains the block-iterative algorithm.
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Algorithm 3.2 (block-iterative component averaging (BICAV); see [8]).
Initialization: x0 ∈ R

n is arbitrary.
Iterative Step: Given xk, compute xk+1 by using, for j = 1, 2, . . . , n, the formula

xk+1
j = xk

j + λk

∑
i∈Bt(k)

bi − 〈ai, xk〉∑n
l=1 s

t(k)
l (ail)

2
· aij ,(3.5)

where {λk}k≥0 are relaxation parameters, {stl}nl=1 are as defined above, and the control
sequence is cyclic, i.e., t(k) = k mod T + 1 for all k ≥ 0.

For the case T = 1 and B1 = {1, 2, . . . ,m}, Algorithm 3.2 becomes fully simulta-
neous, i.e., it is the CAV algorithm of [7]. For T = m and Bt = {t}, t = 1, 2, . . . ,m,
BICAV simply becomes the well-known ART (algebraic reconstruction technique)
(see, e.g., Herman [17]), also known as Kaczmarz’s algorithm [20] (see also, e.g., [9,
Algorithm 5.4.3]).

4. The algorithmic schemes that cover the CAV and BICAV algo-
rithms. We consider the system of linear inequalities

Ax ≤ b,(4.1)

where A is a real m× n matrix. We partition A into row blocks, precisely as done at
the beginning of section 3. The right-hand-side vector b is partitioned similarly with
bt denoting those elements of b whose indices belong to the block of indices Bt,

bt :=

⎡
⎢⎢⎢⎢⎢⎣

bit1
bit2
...

bitm(t)

⎤
⎥⎥⎥⎥⎥⎦ , t = 1, 2, . . . , T.(4.2)

The classical partitioning with fixed nonoverlapping blocks of equal sizes results by
taking m(t) = l, t = 1, 2, . . . , T , with l × T = m. For each i = 1, 2, . . . ,m, the closed
half-space

Li := { x ∈ R
n | 〈ai, x〉 ≤ bi }(4.3)

has (2.1) as its bounding hyperplane. Define L := ∩m
i=1Li and note that L is a closed

convex set in R
n. The task of finding a member of L, i.e., a solution of (4.1), is called

the linear feasibility problem, which is a special case of the convex feasibility problem;
see, e.g., Bauschke and Borwein [2] or [9, Chapter 5].

It is well known and easy to verify that the orthogonal projection PLi(z) of a
point z ∈ R

n onto Li is

PLi(z) = z + ci(z)a
i, where ci(z) = min

{
0,

bi − 〈ai, z〉
||ai||22

}
.(4.4)

Note that if z /∈ Li, then ci(z) < 0; otherwise ci(z) = 0. Further define

It(z) := { i | it1 ≤ i ≤ itm(t) and ci(z) < 0 }(4.5)
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as the set of indices of the half-spaces in the tth block which are violated by z. We
also introduce diagonal matrices {Dt}Tt=1, corresponding to the blocks {At}Ti=1,

(Dt(z))jj =

{
1 if j ∈ It(z),
0 otherwise.

(4.6)

Let {Mt}Tt=1 be some given positive definite and symmetric matrices with nonnegative
elements. Define

Mt(z) = Dt(z)MtDt(z), t = 1, 2, . . . , T.(4.7)

If {xk}k≥0 is a sequence of vectors, then we use the following abbreviations: ci(x
k) ≡

cki , It(x
k) ≡ Ikt , Dt(x

k) ≡ Dk
t , and Mt(x

k) ≡ Mk
t . We propose now the block-iterative

algorithmic scheme which will work as an algorithmic structure that covers the CAV
and BICAV algorithms and extends them from methods for solving linear equations
to methods for solving the linear feasibility problem (i.e., both linear equations and
linear inequalities). We use T to denote matrix transposition, but no ambiguity with
the index T can arise.

Algorithm 4.1 (block-iterations for linear inequalities).
Initialization: x0 ∈ R

n is arbitrary.
Iterative Step: Given xk, compute

xk+1 = xk + λkA
T
t(k)M

k
t(k)(b

t(k) −At(k)x
k),(4.8)

where {λk}k≥0 are relaxation parameters, and {t(k)}k≥0 is the control sequence gov-
erning which block is taken up at the kth iteration.

For the choice T = 1 there is only one block, and we get the fully simultaneous
version of Algorithm 4.1. In fact this method is then identical to Algorithm 2 of
Censor and Elfving [6]. In addition to the cyclic control sequence, defined and used
in Algorithms 3.1 and 3.2 above, we consider here two additional control sequences.
These additional controls are problem-dependent. Denote by d(x, Li) the Euclidean
distance between a point x ∈ R

n and the set Li and define

Φ(x) := {sup d(x, Li) | 1 ≤ i ≤ m}.(4.9)

Definition 4.1. (i) We say that a sequence {t(k)}k≥0 such that 1 ≤ t(k) ≤ T
for all k ≥ 0 is an approximately remotest block control sequence (with respect to the
sequence {xk}k≥0, the family of sets {Li}mi=1, and the blocks {Bt}Tt=1) if, for every
k ≥ 0, there exists an i ∈ Bt(k) such that

lim
k→∞

d(xk, Li) = 0 implies that lim
k→∞

Φ(xk) = 0.(4.10)

(ii) We say that a sequence {t(k)}k≥0 such that 1 ≤ t(k) ≤ T for all k ≥ 0 is a
remotest block control sequence (with respect to the sequence {xk}k≥0, the family of
sets {Li}mi=1, and the blocks {Bt}Tt=1) if, for every k ≥ 0, there exists an i ∈ Bt(k)

such that

lim
k→∞

d(xk, Li) = Φ(xk).(4.11)

Every remotest block control is an approximately remotest block control. If all
blocks consist of a single index, then these two definitions coincide with the definitions
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of the approximately remotest set control and the remotest set control, respectively, of
Gubin, Polyak, and Raik [16, section 1] (see also [9, section 5.1]). We will prove the
next result in what follows.

Theorem 4.1. Assume that L �= ∅ and that the relaxation parameters are re-
stricted to

0 < ε ≤ λk ≤ (2 − ε)/ρ(AT
t(k)M

k
t(k)At(k)) for all k ≥ 0,(4.12)

where ε is an arbitrarily small but fixed constant and {Mt}Tt=1 are given symmetric and
positive definite matrices with nonnegative elements. If {t(k)}k≥0 is a cyclic control
or an approximately remotest block control, then any sequence {xk}k≥0, generated by
Algorithm 4.1, converges to a solution of the system (4.1).

We also formulate the corresponding block-iterative algorithmic scheme for linear
equalities

Ax = b.(4.13)

Algorithm 4.2 (block-iterations for linear equalities).
Initialization: x0 ∈ R

n is arbitrary.
Iterative Step: Given xk, compute

xk+1 = xk + λkA
T
t(k)Mt(k)(b

t(k) −At(k)x
k),(4.14)

where {λk}k≥0 are relaxation parameters, and {t(k)}k≥0 is the control sequence gov-
erning which block is taken up at the kth iteration.

For this algorithm the following theorem will be proven in the next section.
Theorem 4.2. Assume that H := ∩m

i=1Hi �= ∅ and that the relaxation parameters
are restricted to

0 < ε ≤ λk ≤ (2 − ε)/ρ(AT
t(k)Mt(k)At(k)) for all k ≥ 0,(4.15)

where ε is an arbitrarily small but fixed constant and {Mt}Tt=1 are given symmetric and
positive definite matrices with nonnegative elements. If {t(k)}k≥0 is a cyclic control
or an approximately remotest block control, then any sequence {xk}k≥0, generated by
Algorithm 4.2, converges to a solution of the system (4.13). If, in addition, x0 ∈
R(AT ) (the range of AT ), then {xk}k≥0 converges to the solution of (4.13), which
has minimal Euclidean norm.

5. Proofs of the convergence theorems. In proving Theorem 4.1 we use a
convergence theory developed by Gubin, Polyak, and Raik [16]; see Bauschke and
Borwein [2, Theorem 2.16 and Remark 2.17], which also contains a review and gener-
alizations.

Definition 5.1. A sequence {xk}k≥0 is called Fejér-monotone with respect to
the set L if, for every x ∈ L,

||xk+1 − x||2 ≤ ||xk − x||2 for all k ≥ 0.(5.1)

It is easy to verify that every Fejér-monotone sequence is bounded. The conver-
gence theory of Gubin, Polyak, and Raik applies to convex closed sets in general. For
the sets Li, defined here, their theorem is the following.
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Theorem 5.1. Let L = ∩m
i=1Li �= ∅. If, for a sequence {xk}k≥0, the following

conditions hold, then limk→∞ xk = x∗ ∈ L:
(i) {xk}k≥0 is Fejér-monotone with respect to L, and
(ii) limk→∞ Φ(xk) = 0.
Theorem 4.1 will be proved by establishing the conditions of Theorem 5.1. First

we establish, in the next proposition, condition (i) of Theorem 5.1.
Proposition 5.2. Under the assumptions of Theorem 4.1, any sequence {xk}k≥0,

generated by Algorithm 4.1, is Fejér-monotone with respect to L, provided that xk /∈ L
for all k ≥ 0.

Proof. We use the notation

rt(k),k := bt(k) −At(k)x
k and dt(k),k = Mk

t(k)r
t(k),k.(5.2)

Let x ∈ L (i.e., b−Ax ≥ 0), and define ek := xk − x. Then, by (4.8),

ek+1 = ek + λkA
T
t(k)d

t(k),k.(5.3)

It follows that

||ek+1||22 = ||ek||22 + λ2
k||AT

t(k)d
t(k),k||22 + 2λk〈AT

t(k)d
t(k),k, ek〉.(5.4)

From x ∈ L
i
t(k)
j

we obtain (recall that b
t(k)
j is the jth component of the block bt(k) of

the vector b)

r
t(k),k
j = b

t(k)
j − 〈ait(k)

j , xk〉 ≥ −〈ait(k)
j , ek〉, j = 1, 2, . . . ,m(t(k)).(5.5)

Hence we have for the last summand on the right-hand side of (5.4) that

〈AT
t(k)d

t(k),k, ek〉 = −
m(t(k))∑
j=1

d
t(k),k
j 〈−ai

t(k)
j , ek〉

≤ −
m(t(k))∑
j=1

d
t(k),k
j r

t(k),k
j = −〈dt(k),k, rt(k),k〉,(5.6)

provided that

d
t(k),k
j ≤ 0 for j = 1, 2, . . . ,m(t(k)) and for all k ≥ 0.(5.7)

To see that (5.7) holds, observe that

d
t(k),k
j =

(
Mk

t(k)r
t(k),k

)
j

=
(
Dk

t(k)Mt(k)D
k
t(k)r

t(k),k
)
j

=
(
Dk

t(k)

)
jj

∑
s∈Ik

t(k)

m
i
t(k)
j
s rt(k),k

s ,

(5.8)

where {mi
t(k)
j
s } are the entries of the i

t(k)
j th row of Mt(k), which are nonnegative by

assumption, and observe that r
t(k),k
s < 0 whenever s ∈ Ikt(k).

Turning now to the second summand in the right-hand side of (5.4), we decompose
the semidefinite matrix Mk

t(k) as Mk
t(k) = WTW and use the well-known inequality

〈Qy, y〉 ≤ ρ(Q)〈y, y〉,(5.9)
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which holds for any symmetric and positive semidefinite matrix Q (where ρ(Q) denotes
the spectral radius of the matrix Q; see, e.g., Demmel [12, equation (5.2)]), to obtain

||AT
t(k)d

t(k),k||22 = 〈AT
t(k)M

k
t(k)r

t(k),k, AT
t(k)M

k
t(k)r

t(k),k〉
= 〈Mk

t(k)At(k)A
T
t(k)M

k
t(k)r

t(k),k, rt(k),k〉
= 〈(WAt(k)A

T
t(k)W

T )Wrt(k),k,Wrt(k),k〉
≤ ρ(WAt(k)A

T
t(k)W

T )〈Wrt(k),k,Wrt(k),k〉
= ρ(AT

t(k)M
k
t(k)At(k))〈dt(k),k, rt(k),k〉.(5.10)

Substituting (5.10) and (5.6) into (5.4), we get

||ek+1||22 ≤ ||ek||22 + λk(λkρ(A
T
t(k)M

k
t(k)At(k)) − 2)〈dt(k),k, rt(k),k〉,(5.11)

where 〈dt(k),k, rt(k),k〉 = 〈Wrt(k),k,Wrt(k),k〉 ≥ 0. Now using (4.12), the desired con-
clusion ||ek+1|| ≤ ||ek|| follows.

Note that if Ikt(k) = ∅ (i.e., At(k)x
k ≤ bt(k)), then Dk

t(k) = 0, and hence dt(k),k = 0

so that the second summand in the right-hand side of (5.11) disappears. The next
proposition establishes condition (ii) of Theorem 5.1.

Proposition 5.3. Under the assumptions of Theorem 4.1, any sequence {xk}k≥0,
generated by Algorithm 4.1, has the property

lim
k→∞

Φ(xk) = 0.(5.12)

Proof. Fejér-monotonicity, guaranteed by Proposition 5.2, implies that the se-
quence {||ek||2}k≥0 is monotonically decreasing, and thus converging. It follows then
from (5.11) that

lim
k→∞

〈dt(k),k, rt(k),k〉 = 0.(5.13)

But

〈dt(k),k, rt(k),k〉 = 〈Mk
t(k)r

t(k),k, rt(k),k〉 = 〈Mt(k)D
k
t(k)r

t(k),k, Dk
t(k)r

t(k),k〉,(5.14)

and thus

lim
k→∞

Dk
t(k)r

t(k),k = 0.(5.15)

Using (4.4), (
Dk

t(k)r
t(k),k

)
j

= ck
i
t(k)
j

||ait(k)
j ||22, j = 1, 2, . . . ,m(t(k)),(5.16)

leads to

d(xk, L
i
t(k)
j

) = ||PL
i
t(k)
j

(xk) − xk||2

= ||ck
i
t(k)
j

ai
t(k)
j ||2 =

∣∣∣∣(Dk
t(k)r

t(k),k
)
j

∣∣∣∣ /||ait(k)
j ||2(5.17)
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for all j = 1, 2, . . . ,m(t(k)). This shows, by (5.15), that

lim
k→∞

d(xk, Li) = 0 for all i ∈ Bt(k).(5.18)

If {t(k)}k≥0 is an approximately remotest block control, then the required result
follows directly from (5.18) and Definition 4.1(i) and Assumption 3.1. For a cyclic
control we argue as follows. From (4.8) and (4.7) we get

||xk+1 − xk||2 = λk||AT
t(k)D

k
t(k)Mt(k)D

k
t(k)r

t(k),k||2
≤ λk||AT

t(k)D
k
t(k)M

1/2
t(k)||2 · ||M1/2

t(k)||2||Dk
t(k)r

t(k),k||2.(5.19)

Therefore, using (4.12) and the fact that, for any matrix Q, it is true that ρ(QTQ) =
||QT ||22 (see, e.g., Demmel [12, Fact 9, p. 23]), we obtain

||xk+1 − xk||2 ≤ θ1θ
−1
2 ||Dk

t(k)r
t(k),k||2,(5.20)

where

θ1 := 2 max{||M1/2
i ||2 | 1 ≤ i ≤ T} and θ2 := max{||AT

i D
k
i M

1/2
i ||2 | 1 ≤ i ≤ T}.

(5.21)

The max in the expression of θ2 exists and is independent of k because of the way
these matrices were defined. If θ2 = 0, then, by (4.8), xk+1 = xk. If, on the other
hand, θ2 �= 0, then θ2 is bounded away from zero and, thus, (5.15) and (5.20) yield

lim
k→∞

||xk+1 − xk||2 = 0.(5.22)

Let ε > 0 be such that for all k ≥ K, we have ||xk+1 − xk||2 ≤ ε/T. To reach the
required conclusion (5.12) we look at d(xk, Li) = ||PLi(x

k) − xk||2 and observe that
if i ∈ Bt(k), then (5.18) shows that ||PLi(x

k) − xk||2 ≤ ε for all k ≥ K. Otherwise,
if i �∈ Bt(k), the cyclicality of {t(k)}k≥0 guarantees that there exists a τ such that
1 ≤ τ < T and i ∈ Bt(k+τ). Then,

d(xk, Li) = ||xk − PLi
(xk)||2 ≤ ||xk − PLi

(xk+τ )||2
≤ ||xk − xk+τ ||2 + ||xk+τ − PLi(x

k+τ )||2
≤ ||xk − xk+1||2 + · · · + ||xk+τ−1 − xk+τ ||2 + ||xk+τ − PLi(x

k+τ )||2
≤ (T − 1)(ε/T ) + ε = ε(5.23)

for all k ≥ K. Therefore, Φ(xk) ≤ ε for all k ≥ K, and, using Assumption 3.1, the
result follows.

So, we see that the last two propositions, combined with Theorem 4.1, imply the
truth of Theorem 4.1.

Proof of Theorem 4.2. Theorem 4.2 follows from Theorem 4.1. To simplify the
discussion we deal only with the case that the weight matrices {Mt} are positive
diagonal matrices. This assumption actually holds in all three examples given in
section 7. The general case can be proved along lines similar to the following argument.
Any equation 〈ai, x〉 = bi can be written as a pair of inequalities 〈ai, x〉 ≤ bi and
〈−ai, x〉 ≤ −bi. Now for a given linear system Ax = b, where A ∈ Rm×n, and given
diagonal weight matrices {Mt} we construct the inequalities Ãx ≤ b̃ as follows:

ã2i−1 = ai, ã2i = −ai, b̃2i−1 = bi, b̃2i = −bi, i = 1, 2, . . . ,m.(5.24)
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Denoting the (i, j)th element of a matrix A by (A)i,j , we also set(
M̃t

)
2i−1,2i−1

=
(
M̃t

)
2i,2i

= (Mt)i,i for all i = 1, 2, . . . ,m.(5.25)

Recall that M̃k
t = Dt(x

k)M̃tDt(x
k), where the matrix Dt(z) is defined in (4.6). Then,

for any xk, one can verify that

ÃT
t(k)M̃

k
t(k)(b̃

t(k) − Ãt(k)x
k) = AT

t(k)Mt(k)(b
t(k) −At(k)x

k)(5.26)

so that the two iteration formulas (4.8) and (4.14) generate the same sequence of
iterates, provided they are initialized with the same vector. It is also true, for any xk,
that

ρ(ÃT
t(k)M̃

k
t(k)Ãt(k)) = ρ(AT

t(k)Mt(k)At(k));(5.27)

hence Theorem 4.2 follows.

6. The inconsistent case. When there is just one block, i.e., t = T = 1, the
resulting methods are fully simultaneous. We consider here the inconsistent case
behavior only for linear equations. Let M1 = M, c = ATMb, and Γ = ATMA. Then
the iteration (4.14) can be written as

xk+1 = xk + λk(c− Γxk).(6.1)

This is the nonstationary Richardson iteration method; cf. Young [24, p. 361]. We
observe that c ∈ R(Γ) (the range of Γ) and, if we assume that x̂ satisfies c = Γx̂, then
x̂ = arg min ||Ax− b||M (with ||x||2M = 〈x,Mx〉). Let uk = x̂−xk and note that, with
vk = c− Γxk, it is true that vk = Γuk. It follows that

uk =

k−1∏
j=0

(I − λjΓ)u0.(6.2)

Assume first that Γ is a positive definite matrix. Then any sequence {xk}k≥0 gener-
ated by Algorithm 4.2, as given by (6.1), is convergent for any x0 if and only if

lim
k→∞

k−1∏
j=0

(I − λjΓ) = 0.(6.3)

Since ||∏k−1
j=0 (I − λjΓ)||2 ≤ ∏k−1

j=0 ρ(I − λjΓ), it follows that any sequence {xk}k≥0,
generated by Algorithm 4.2, as given by (6.1), converges to a weighted least squares
solution if 0 < ε ≤ λk ≤ (2 − ε)/ρ(Γ). In case Γ is only positive semidefinite we have
a similar result. All of these observations lead to the following theorem.

Theorem 6.1. Assume that M is a positive definite matrix. If 0 < ε ≤ λk ≤
(2−ε)/ρ(ATMA) for all k ≥ 0, where ε is an arbitrarily small but fixed constant, then
any sequence {xk}k≥0, generated by Algorithm 4.2, as given by (6.1), converges to a
weighted least squares solution x̂ = arg min ||Ax− b||M . If, in addition, x0 ∈ R(AT ),
then {xk}k≥0 converges to the unique solution of minimal Euclidean norm among all
weighted least squares solutions.

The proof of Theorem 6.1 can essentially be found in, e.g., Eggermont, Herman,
and Lent [13, p. 44]; see also Elfving [14, p. 4].

We do not give a proof of convergence for the case of linear inequalities. We note,
however, that a variant of Algorithm 4.1 for T = 1 (Cimmino’s method; see Example
7.3 below) was shown to converge locally for the inconsistent case by Iusem and De
Pierro [18] and to converge globally in that case by Combettes [10].
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7. Applications. In this section we will consider only diagonal matrices Mt =
diag{µt

j | j = 1, 2, . . . ,m(t)} with positive diagonal elements. For such diagonal ma-
trices let

Wt := AT
t MtAt for all t = 1, 2, . . . , T and W k

t(k) := AT
t(k)M

k
t(k)At(k) for all k ≥ 0,

(7.1)

and note the expansions

W k
t(k) =

∑
j∈Ik

t(k)

µ
t(k)
j ai

t(k)
j

(
ai

t(k)
j

)T
, Wt(k) =

m(t(k))∑
j=1

µ
t(k)
j ai

t(k)
j

(
ai

t(k)
j

)T
.(7.2)

Hence the iterative step of Algorithm 4.1 takes the form

xk+1 = xk + λk

∑
j∈Ik

t(k)

µ
t(k)
j

(
b
t(k)
j − 〈ait(k)

j , xk〉
)
ai

t(k)
j ,(7.3)

and the iterative step of Algorithm 4.2 becomes

xk+1 = xk + λk

m(t(k))∑
j=1

µ
t(k)
j

(
b
t(k)
j − 〈ait(k)

j , xk〉
)
ai

t(k)
j .(7.4)

Also note that, by (7.2), for all k ≥ 0,

ρ
(
W k

t(k)

) ≤ ρ
(
Wt(k)

)
.(7.5)

In the following examples we show that several algorithms, including the BICAV
and simultaneous algebraic reconstruction technique (SART) algorithms, are in fact
special cases of the algorithmic schemes studied in the previous sections.

Example 7.1. The BICAV (Algorithm 3.2) and CAV (Algorithm 2.3) are both
algorithms for equalities and of the form (7.4) with

µ
t(k)
j =

1

||ait(k)
j ||2St(k)

=
1∑n

ν=1 s
t(k)
ν

(
a
i
t(k)
j
ν

)2
, j = 1, 2, . . . ,m(t(k)).(7.6)

Here {t(k)}k≥0 is the control sequence, s
t(k)
ν is the number of nonzero elements in the

νth column of the block At(k), and St(k) := diag{st(k)
ν | ν = 1, 2, . . . , n}. We first study

the upper bound on the relaxation parameters for CAV, i.e., allowing one block only
so that t = T = 1 and m(1) = m; cf. (3.1). The following result (Lemma 7.1) is due
to Dr. Arnold Lent [22] (see the acknowledgments at the end of this paper).

Lemma 7.1. Let t = T = 1 and m(1) = m, let M := diag{µj | j = 1, 2, . . . ,m}
with µj = µ1

j obtained from (7.6) for t = t(k) = 1, and let A1 = A, s1
ν = sν , S1 = S,

and W := ATMA. Then ρ(W ) ≤ 1.
Proof. Let aij be the element in the ith row and jth column of A and write, by

(7.6),

(µi)
−1 =

n∑
j=1

sj
(
aij
)2

, i = 1, 2, . . . ,m.(7.7)



DIAGONALLY SCALED OBLIQUE PROJECTIONS 53

Let (λ, v) be an eigenpair (i.e., eigenvalue and eigenvector) of W so that ATMAv =
λv or AATMAv = λM−1MAv, or, with w := MAv, AATw = λM−1w. Hence
||ATw||22 = λwTM−1w or, in component form, switching the order of summations
and using (7.7),

||ATw||22 =

n∑
j=1

(
m∑
i=1

aijwi

)2

= λ

m∑
i=1

w2
i

⎛
⎝ n∑

j=1

sj
(
aij
)2⎞⎠ = λ

n∑
j=1

sj

(
m∑
i=1

w2
i

(
aij
)2)

.

(7.8)

From Cauchy’s inequality we have

(
m∑
i=1

aijwi

)2

≤ sj

m∑
i=1

w2
i

(
aij
)2

,(7.9)

and by summing both sides of (7.9) over j and comparing with (7.8), one finds that
λ ≤ 1.

Remark 7.1. The critical estimate is (7.9). Let a,w, and e be three vectors of
equal length. Denote by z = a ∗ w componentwise multiplication, i.e., zj = ajwj for
all j. Further, let ej = 0 if zj = 0, and let ej = 1 otherwise. Then

〈a,w〉2 = 〈e, z〉2 ≤ ||e||22 · ||z||22 ≤ s||z||22,(7.10)

where s is the number of nonzero elements in the vector a.
By applying Lemma 7.1 to each block At, t = 1, 2, . . . , T, we obtain the following.

Corollary 7.1. Let Mt(k) = diag{µt(k)
j | j = 1, 2, . . . ,m(t(k))}, k ≥ 0, with

µ
t(k)
j obtained from (7.6), and let Wt(k) = AT

t(k)Mt(k)At(k). Then ρ(Wt(k)) ≤ 1 for all
k ≥ 0.

The next theorems establish the convergence of the BICAV algorithm in the
consistent case for linear equations and linear inequalities, respectively, with relaxation
parameters within the interval [ε, 2 − ε].

Theorem 7.1 (BICAV for linear equalities). Let 0 < ε ≤ λk ≤ 2−ε for all k ≥ 0,
where ε is an arbitrarily small but fixed constant. If the system (4.13) is consistent,
then any sequence {xk}k≥0, generated by Algorithm 3.2 (BICAV), converges to a
solution of the system (4.13). If, in addition, x0 ∈ R(AT ), then {xk}k≥0 converges to
the solution of (4.13), which has minimal Euclidean norm.

Proof. The proof follows from Theorem 4.2 and Corollary 7.1.
Theorem 7.2 (BICAV for linear inequalities). Let 0 < ε ≤ λk ≤ 2 − ε for

all k ≥ 0, where ε is an arbitrarily small but fixed constant. If the system (4.1) is
consistent, then any sequence {xk}k≥0, generated by Algorithm 4.1, with Mt(k) =

diag{µt(k)
j | j = 1, 2, . . . ,m(t(k))} and {µt(k)

j } given by (7.6), converges to a solution
of the system (4.1).

Proof. The proof follows from Theorem 4.1, Corollary 7.1, and (7.5).
The next theorem shows that any sequence {xk}k≥0, generated by the fully simul-

taneous Algorithm 2.3 (CAV), converges to a weighted least squares solution of the
system of equations Ax = b, regardless of its consistency, for relaxation parameters
in the interval [ε, 2 − ε]. Only the case of unity relaxation, i.e., λk = 1 for all k ≥ 0,
was proven by Censor, Gordon, and Gordon in [7], where CAV was first proposed and
experimented with.
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Theorem 7.3 (CAV for linear equalities). If 0 < ε ≤ λk ≤ 2 − ε for all k ≥ 0,
where ε is an arbitrarily small but fixed constant, then any sequence {xk}k≥0, generated
by Algorithm 2.3 (CAV for linear equations), converges to a weighted least squares
solution with weight matrix M1 = MCAV = diag{1/||ai||2S | i = 1, 2, . . . ,m} and with
S = diag{sj | j = 1, 2, . . . , n}, where sj is the number of nonzero elements in the
jth column of A. If, in addition, x0 ∈ R(AT ), then {xk}k≥0 converges to the unique
solution of minimal Euclidean norm among all weighted least squares solutions.

Proof. The proof follows from Theorem 6.1 and Lemma 7.1.
Note that Theorems 7.1 and 7.2 assumed cyclic control of the blocks, as formu-

lated in Algorithm 3.2; however, due to the analysis presented here, we may also allow
approximately remotest block control of the blocks (by Theorems 4.2 and 6.1). Re-
cently, and independently of our work, Byrne [5] derived convergence results analogous
to Theorems 7.1 and 7.3, but only for the cyclic control and without explicit consid-
eration of weighting. He also used Lent’s result as expressed above in Lemma 7.1.

Example 7.2. The simultaneous algebraic reconstruction technique (SART) was
proposed by Andersen and Kak [1] for solving the large and very sparse systems of
linear equations arising from a fully discretized model of transmission computerized
tomography problems; see also Kak and Slaney [21, section 7.4]. We show that a
simplified version of SART falls within the convergence analysis presented here. First
recall that the 1-norm of a vector x ∈ R

n is ||x||1 =
∑n

j=1 |xj | and that the induced

matrix norm of an m× n matrix A is ||A||1 = max{∑m
i=1 |aij | | j = 1, 2, . . . , n}. Let

al,tc be the lth column of At. Then the iterative step of the original SART algorithm
for linear equalities [1, equation (32)] (see also [23, equation (4)]) is

xk+1
l = xk

l +
λk

||al,t(k)
c ||1

m(t(k))∑
j=1

b
t(k)
j − 〈ait(k)

j , xk〉
||ait(k)

j ||1
a
i
t(k)
j

l , l = 1, 2, . . . , n.(7.11)

Note that in (7.11) it is tacitly assumed that all blocks At have nonzero columns.
The formula (7.11) is slightly more general than the original algorithm in [1] since
it allows (i) a relaxation parameter λk, (ii) a more flexible row-partitioning (origi-
nally the matrix was partitioned into nonoverlapping row blocks, where each block
corresponds to all equations in one tomographic scan direction), (iii) arbitrary sign of
the matrix elements (originally only nonnegative elements were considered), and (iv)
apart from the cyclic control of blocks also the remotest block control.

We first note that (7.11) can be written in matrix-vector form, using our previous
notation, as

xk+1 = xk + λkDt(k)A
T
t(k)Mt(k)(b

t(k) −At(k)x
k),(7.12)

where

Dt(k) = diag{1/||al,t(k)
c ||1 | l = 1, 2, . . . , n}(7.13)

and

Mt(k) = diag{1/||aitj ||1 | j = 1, 2, . . . ,m(t(k))}.(7.14)

We will not, however, analyze this iteration here. Instead, we consider a simplified
version which fits into the class of methods (4.8) and (4.14), respectively. Let alc be
the lth column of A and put D = diag{1/||alc||1 | l = 1, 2, . . . , n}.
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Replacing Dt(k) by D in (7.12) we get

xk+1 = xk + λkDAT
t(k)Mt(k)(b

t(k) −At(k)x
k).(7.15)

We will call the method which uses the iterative step (7.15) block simplified SART
(BSSART). The method is a scaled version of (7.4). To see this we put

yk = D−1/2xk and Āt(k) = At(k)D
1/2,(7.16)

which converts (7.15) into

yk+1 = yk + λkĀ
T
t(k)Mt(k)(b

t(k) − Āt(k)y
k),(7.17)

which is of the form (7.4) (or equivalently (4.14)). Next observe that with Wt(k) =

D1/2AT
t(k)Mt(k)At(k)D

1/2, we have

ρ(Wt(k)) = ρ(AT
t(k)Mt(k)At(k)D) ≤ ||AT

t(k)Mt(k)||1 · ||At(k)D||1 = 1.(7.18)

It follows from Theorem 4.2 that yk converges to some y∗. Since, by (7.16), every
row of A is postmultiplied by D1/2, we also conclude that AD1/2y∗ = b. Then, using
(7.16),

lim
k→∞

xk = D1/2y∗ = x∗.(7.19)

Hence Ax∗ = b.
Now consider BSSART adapted to inequalities, i.e., the iterative step

xk+1 = xk + λkDAT
t(k)M

k
t(k)(b

t(k) −At(k)x
k).(7.20)

It is clear, using (7.5) and Theorem 4.2, that the above analysis also holds for the
iteration (7.20). Hence the following companion results to Theorems 7.1 and 7.2 hold.

Theorem 7.4 (BSSART for linear equalities). Let 0 < ε ≤ λk ≤ 2 − ε for all
k ≥ 0, where ε is an arbitrarily small but fixed constant. If the system (4.13) is con-
sistent, then any sequence {xk}k≥0, generated by the iterative step (7.15) (BSSART),
converges to a solution of the system (4.13).

Theorem 7.5 (BSSART for linear inequalities). Let 0 < ε ≤ λk ≤ 2 − ε for all
k ≥ 0, where ε is an arbitrarily small but fixed constant. If the system (4.1) is con-
sistent, then any sequence {xk}k≥0, generated by the iterative step (7.20) (BSSART
for inequalities), converges to a solution of the system (4.1).

When T = 1, SART (7.12) and BSSART (7.15) coincide and can be written

xk+1 = xk + λkDATM(b−Axk),(7.21)

with M = diag{1/||aj ||1 | j = 1, 2, . . . ,m}. Using the corresponding transformations
as in (7.16),

yk = D−1/2xk and Ā = AD1/2,(7.22)

we find that

yk+1 = yk + λkĀ
TM(b− Āyk).(7.23)
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It follows from Theorem 6.1, and by using (as above) the fact that ρ(ATMAD) ≤ 1,
that

lim
k→∞

yk = y∗ such that ||Āy∗ − b||M is minimal.(7.24)

But limk→∞ xk = D1/2y∗ = x∗ so that x∗ minimizes ||Ax− b||M . Also, by using

||y∗||2 = ||D−1/2D1/2y∗||2 = ||x∗||D−1 ,(7.25)

it follows that x∗ has minimal D−1-norm. Hence the following result holds.
Theorem 7.6. If 0 < ε ≤ λk ≤ 2− ε for all k ≥ 0, where ε is an arbitrarily small

but fixed constant, then any sequence {xk}k≥0, generated by Algorithm (7.21), con-
verges to a weighted least squares solution with weight matrix M = diag{1/||ai||1 | i =
1, 2, . . . ,m}. If, in addition, x0 ∈ R(DAT ), then the limit point has minimal D−1-
norm.

No proof of convergence was given in [1] or has, to the best of our knowledge,
been published elsewhere since then. Recently, however, and independently of our
work, Jiang and Wang [19] have also derived, under the additional assumption that
the elements of the matrix A are nonnegative, Theorem 7.6.

Example 7.3. Block-Cimmino methods for linear equations and linear inequalities
can also be viewed as special cases of Algorithms 4.1 and 4.2. To see this we define

µ
t(k)
j =

θ
i
t(k)
j

||ait(k)
j ||22

, j = 1, 2, . . . ,m(t(k)),(7.26)

where θ
i
t(k)
j

> 0 and
∑m(t(k))

j=1 θ
i
t(k)
j

= 1. It follows, using (7.2), that ρ(Wt(k)) =

||Wt(k)||2 ≤∑m(t(k))
j=1 θ

i
t(k)
j

= 1 and that

ρ(W k
t(k)) = ||W k

t(k)||2 ≤
∑

j∈Ik
t(k)

θ
i
t(k)
j

≤ 1.(7.27)

Therefore, also in this example, we may conclude convergence just as in Theorems 7.1,
7.2, and 7.3 with M1 = MCIM = diag{θi/||ai||22 | i = 1, 2, . . . ,m} in Theorem 7.3.
The geometric interpretation of this scaling is as follows. By (2.2),

PHi(x) − x = (bi − 〈ai, x〉) ai

||ai||22
,(7.28)

so that

m∑
i=1

θi||PHi(x) − x||22 =

m∑
i=1

θi(bi − 〈ai, x〉)2
||ai||22

= ||b−Ax||2MCIM
.(7.29)

Cimmino’s original algorithm for linear equations [11] is purely simultaneous (T = 1),
i.e., of the form (2.4). An interesting detail is that λk = 2 is used by Cimmino, and for
this a special convergence analysis is furnished. We also remark that for inequalities
the requirement on the relaxation parameters can be relaxed, using (7.27), to

0 < ε ≤ λk ≤ 2 − ε∑
j∈Ik

t(k)
θ
i
t(k)
j

.(7.30)
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In fact, the choice λk = 2/
∑

j∈Ik
t(k)

θ
i
t(k)
j

is also allowed but requires a special analysis,

which appears, for the fully simultaneous case T = 1, assuming consistency, in Censor
and Elfving [6]. See also Bauschke and Borwein [2, Remark 6.48] for a correction. A
similar analysis can be done also for the block-iterative case. Iusem and De Pierro
[18] have shown that this method (with T = 1) also converges (locally) for the incon-
sistent case and generalized it to closed convex sets in R

n. A generalization to global
convergence in infinite dimensional Hilbert spaces was done by Combettes [10].

We finally mention that if all block sizes are equal to 1 (m(t) = 1) and linear
equations are considered, then we get the algebraic reconstruction technique (ART)
of Gordon, Bender, and Herman [15], also known as Kaczmarz’s method. For more
on the history of this method and many of its variants, see, for example, Herman [17]
and Censor and Zenios [9].
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