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Abstract

We review the common fixed point problem for the class of directed
operators. This class is important because many commonly used non-
linear operators in convex optimization belong to it. We present our
recent definition of sparseness of a family of operators and discuss a
string-averaging algorithmic scheme that favorably handles the com-
mon fixed points problem when the family of operators is sparse. We
also review some recent results on the multiple operators split com-
mon fixed point problem which requires to find a common fixed point
of a family of operators in one space whose image under a linear trans-
formation is a common fixed point of another family of operators in
the image space.

1 Introduction

In this paper we review some recent iterative projection methods for the
common fixed point problem for the class of directed operators. This class
is important because many commonly used nonlinear operators in convex
optimization belong to it. We present our recent definition of sparseness
of a family of operators and discuss a string-averaging algorithmic scheme
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that favorably handles the common fixed point problem when the family of
operators is sparse. For the convex feasibility problem a new subgradient
projections algorithmic scheme is obtained. We also review some recent
results on the multiple split common fixed point problem which requires to
find a common fixed point of a family of operators in one space whose image
under a linear transformation is a common fixed point of another family of
operators in the image space. The presentation is admittedly biased towards
our own work but contains also pointers to other works in the literature.
Projection algorithms employ projections onto convex sets in various

ways. This class of algorithms has witnessed great progress in recent years
and its member algorithms have been applied with success to fully discretized
models of problems in image reconstruction and image processing, see, e.g.,
Stark and Yang [66], Censor and Zenios [33]. Our aim in this paper is to
introduce the reader to certain algorithmic structures and specific algorithms
inspired by projection methods and used for solving the sparse common fixed
point problem and the split common fixed point problem.
Given a finite family of operators {Ti}mi=1 acting on the Euclidean space

Rn with fixed points sets FixTi 6= ∅, i = 1, 2, . . . ,m, the common fixed point
problem is to find a point

x∗ ∈ ∩mi=1 FixTi, (1)

In this paper we focus on the common fixed point problem for sparse directed
operators. We use the term directed operators for operators in the T -class
of operators as defined and investigated by Bauschke and Combettes in [6]
and by Combettes in [41]. The first topic that we review here is the be-
havior of iterative algorithmic schemes when we have sparse operators and,
for that purpose, we give a definition of sparseness of a family of operators.
The algorithms that are in use to find a common fixed point can be, from
their structural view point, sequential, when only one operator at a time is
used in each iteration, or simultaneous (parallel), when all operators in the
given family are used in each iteration. There are algorithmic schemes which
encompass sequential and simultaneous properties. These are the, so called,
string-averaging [24] and block-iterative projections (BIP) [1] schemes, see
also [33]. It turns out that the sequential and the simultaneous algorithms
are special cases of both the string-averaging and of the BIP algorithmic
schemes.
In [30] we proposed and studied a string-averaging algorithmic scheme

that enables component-wise weighting. Its origins lie in [26] where a simul-
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taneous projection algorithm, called component averaging (CAV), for systems
of linear equations that uses component-wise weighting was proposed. Such
weighting enables, as shown and demonstrated experimentally on problems
of image reconstruction from projections in [26], significant and valuable ac-
celeration of the early algorithmic iterations due to the high sparsity of the
system matrix appearing there. A block-iterative version of CAV, named
BICAV, was introduced later in [27]. Full mathematical analyses of these
methods, as well as their companion algorithms for linear inequalities, were
presented by Censor and Elfving [23] and by Jiang and Wang [57]
The second topic that we review concerns the multiple operators split

common fixed point problem. The multiple-sets split feasibility problem re-
quires to find a point closest to a family of closed convex sets in one space
such that its image under a linear transformation will be closest to another
family of closed convex sets in the image space. It serves as a model for
inverse problems where constraints are imposed on the solutions in the do-
main of a linear operator as well as in the operator’s range. It generalizes
the convex feasibility problem and the two-sets split feasibility problem. For-
mally, given nonempty closed convex sets Ci ⊆ Rn, i = 1, 2, . . . , t, in the n-
dimensional Euclidean space Rn, and nonempty closed convex sets Qj ⊆ Rm,
j = 1, 2, . . . , r, and an m× n real matrix A, the multiple-sets split feasibility
problem (MSSFP) is

find a vector x∗ ∈ C := ∩ti=1Ci such that Ax∗ ∈ Q := ∩ri=1Qj. (2)

Such MSSFPs, formulated in [25], arise in the field of intensity-modulated
radiation therapy (IMRT) when one attempts to describe physical dose con-
straints and equivalent uniform dose (EUD) constraints within a single model,
see [21]. This generalizes, of course, the convex feasibility problem.
The convex feasibility problem (CFP) is to find a point x∗ in the intersec-

tion C ofm closed convex subsets C1, C2, . . . , Cm ⊆ Rn. Each Ci is expressed
as

Ci = {x ∈ Rn | fi(x) ≤ 0} , (3)

where fi : Rn → R is a convex function, so the CFP requires a solution of
the system of convex inequalities

fi(x) ≤ 0, i = 1, 2, . . . ,m. (4)

The convex feasibility problem is a special case of the common fixed point
problem, where the directed operators are the subgradient projectors relative
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to fi (see, Example 4 and Lemma 5 below). It is a fundamental problem in
many areas of mathematics and the physical sciences, see, e.g., Combettes
[36, 40] and references therein. It has been used to model significant real-
world problems in image reconstruction from projections, see, e.g., Herman
[54], in radiation therapy treatment planning, see Censor, Altschuler and
Powlis [20] and Censor [19], and in crystallography, see Marks, Sinkler and
Landree [60], to name but a few, and has been used under additional names
such as set theoretic estimation or the feasible set approach. A common ap-
proach to such problems is to use projection algorithms, see, e.g., Bauschke
and Borwein [4], which employ orthogonal projections (nearest point map-
pings) onto the individual sets Ci.

1.1 Projection methods: Advantages and earlier work

The reason why feasibility problems of various kinds are looked at from
the viewpoint of projection methods can be appreciated by the following
brief comments regarding projection methods in general. Projections onto
sets are used in a wide variety of methods in optimization theory but not
every method that uses projections really belongs to the class of projection
methods. Projection methods are iterative algorithms that use projections
onto sets while relying on the general principle that when a family of (usually
closed and convex) sets is present then projections onto the given individual
sets are easier to perform then projections onto other sets (intersections,
image sets under some transformation, etc.) that are derived from the given
individual sets.
A projection algorithm reaches its goal, related to the whole family of sets,

by performing projections onto the individual sets. Projection algorithms
employ projections onto convex sets in various ways. They may use different
kinds of projections and, sometimes, even use different projections within the
same algorithm. They serve to solve a variety of problems which are either
of the feasibility or the optimization types. They have different algorithmic
structures, of which some are particularly suitable for parallel computing, and
they demonstrate nice convergence properties and/or good initial behavior
patterns.
Apart from theoretical interest, the main advantage of projection meth-

ods, which makes them successful in real-world applications, is computa-
tional. They commonly have the ability to handle huge-size problems of di-
mensions beyond which other, more sophisticated currently available, meth-
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ods cease to be efficient. This is so because the building bricks of a projection
algorithm are the projections onto the given individual sets (assumed and ac-
tually easy to perform) and the algorithmic structure is either sequential or
simultaneous (or in-between). Sequential algorithmic structures cater for
the row-action approach (see Censor [18]) while simultaneous algorithmic
structures favor parallel computing platforms, see, e.g., Censor, Gordon and
Gordon [26]. The field of projection methods is vast and we can only mention
here a few recent works that can give the reader some good starting points.
Such a list includes, among many others, the paper of Lakshminarayanan
and Lent [58] on the SIRT method, the works of Crombez [43, 46], the con-
nection with variational inequalities, see, e.g., Noor [62], Yamada’s [68] which
is motivated by real-world problems of signal processing, and the many con-
tributions of Bauschke and Combettes, see, e.g., Bauschke, Combettes and
Kruk [7] and references therein. Consult Bauschke and Borwein [4] and Cen-
sor and Zenios [33, Chapter 5] for a tutorial review and a book chapter,
respectively. Systems of linear equations, linear inequalities, or convex in-
equalities are all encompassed by the convex feasibility problem which has
broad applicability in many areas of mathematics and the physical and engi-
neering sciences. These include, among others, optimization theory (see, e.g.,
Eremin [51], Censor and Lent [28] and Chinneck [34]), approximation theory
(see, e.g., Deutsch [47] and references therein) and image reconstruction from
projections in computerized tomography (see, e.g., Herman [54, 55], Censor
[18]).

2 Directed operators

We recall the definitions and results on directed operators and their prop-
erties as they appear in Bauschke and Combettes [6, Proposition 2.4] and
Combettes [41], which are also sources for further references on the subject.
Let hx, yi and kxk be the Euclidean inner product and norm, respectively,
in Rn.
Given x, y ∈ Rn we denote the half-space

H(x, y) := {u ∈ Rn | hu− y, x− yi ≤ 0} . (5)

Definition 1 An operator T : Rn → Rn is called directed if

FixT ⊆ H(x, T (x)), for all x ∈ Rn, (6)

5



or, equivalently,

if z ∈ FixT then hT (x)− x, T (x)− zi ≤ 0, for all x ∈ Rn. (7)

The class of directed operators is the T -class of operators of Bauschke
and Combettes [6] who defined directed operators (although without using
this name) and showed (see [6, Proposition 2.4]) (i) that the set of all fixed
points of a directed operator T with nonempty FixT is closed and convex
because

FixT =
T

x ∈ Rn
H (x, T (x)) , (8)

and (ii) that the following holds

If T ∈ T then I + λ(T − I) ∈ T , for all λ ∈ [0, 1], (9)

where I is the identity operator. The localization of fixed points is discussed
in [53, pages 43-44]. In particular, it is shown there that a firmly nonexpan-
sive operator, namely, an operator N : Rn → Rn that fulfils

kN(x)−N(y)k2 ≤ hN(x)−N(y), x− yi , for all x, y ∈ Rn, (10)

satisfies (8) and is, therefore, a directed operator. The class of directed oper-
ators, includes additionally, according to [?, Proposition 2.3], among others,
the resolvents of a maximal monotone operators, the orthogonal projections
and the subgradient projectors (see Example 4 below). Note that every di-
rected operator belongs to the class of operators F0, defined by Crombez [45,
p. 161],

F0 := {T : Rn → Rn | kTx− qk ≤ kx− qk for all q ∈ FixT and x ∈ Rn} ,
(11)

whose elements are called elsewhere quasi-nonexpansive or paracontracting
operators.

Definition 2 An operator T : Rn → Rn is said to be closed at y ∈ Rn if for
every x ∈ Rn and every sequence

©
xk
ª∞
k=0

in Rn, such that, limk→∞ xk = x
and limk→∞ T (xk) = y, we have T (x) = y.

For instance, the orthogonal projection onto a closed convex set is every-
where a closed operator, due to its continuity.
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Remark 3 [41] If T : Rn → Rn is nonexpansive, then T − I is closed on
Rn.

The next example and lemma recall the notion of the subgradient projec-
tor.

Example 4 Let f : Rn → R be a convex function such that the level-set
F := {x ∈ Rn | f(x) ≤ 0} is nonempty. The operator

ΠF (y) :=

⎧⎨⎩ y − f(y)kqk2 q, if f(y) > 0,

y, if f(y) ≤ 0,
(12)

where q is a selection from the subdifferential set ∂f(y) of f at y, is called a
subgradient projector relative to f. See, e.g., [6, Proposition 2.3(iv)].

Lemma 5 Let f : Rn → R be a convex function, let y ∈ Rn and assume
that the level-set F 6= ∅. For any q ∈ ∂f(y), define the closed convex set

L = Lf(y, q) := {x ∈ Rn | f(y) + hq, x− yi ≤ 0}. (13)

Then the following hold:
(i) F ⊆ L. If q 6= 0 then L is a half-space, otherwise L = Rn.
(ii) Denoting by PL(y) the orthogonal projection of y onto L,

PL(y) = ΠF (y). (14)

(iii) PL − I is closed at 0.

Consider a finite family Ti : Rn → Rn, i = 1, 2, . . . ,m, of operators. In
sequential algorithms for solving the common fixed point problem the order
by which the operators are chosen for the iterations is determined by a control
sequence of indices {i(k)}∞k=0 , see, e.g., [33, Definition 5.1.1].

Definition 6 (i) Cyclic control. A control sequence is cyclic if i(k) =
kmodm+ 1, where m is the number of operators in the common fixed point
problem.
(ii)Almost cyclic control. {i(k)}∞k=0 is almost cyclic on {1, 2, . . . ,m},

if 1 ≤ i(k) ≤ m for all k ≥ 0, and there exists an integer c ≥ m (called the
almost cyclicality constant), such that, for all k ≥ 0, {1, 2, . . . ,m} ⊆
{i(k + 1), i(k + 2), . . . , i(k + c)}.
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The notions “cyclic” and “almost cyclic” are sometimes also called “pe-
riodic” and “quasi-periodic”, respectively, see, e.g., [48].
Given a finite family Ti : Rn → Rn, i = 1, 2, . . . ,m, of directed operators

with a nonempty intersection of their fixed points sets, such that Ti − I are
closed at 0, for every i ∈ {1, 2, . . . ,m}. The following algorithm for finding a
common fixed point of such a family is a special case of [41, Algorithm 6.1].
We will use it in the sequel.

Algorithm 7 Almost Cyclic Sequential Algorithm (ACSA) for solv-
ing common fixed point problem
Initialization: x0 ∈ Rn is an arbitrary starting point.
Iterative Step: Given xk, compute xk+1 by

xk+1 = xk + λk(Ti(k)
¡
xk
¢
− xk). (15)

Control: {i(k)}∞k=0 is almost cyclic on {1, 2, . . . ,m}.
Relaxation parameters: {λk}∞k=0 are confined to the interval [ε, 2− ε],

for some fixed user-chosen ε > 0.

3 The string-averaging algorithmic scheme

We review here different modifications of the string-averaging paradigm,
adapted to handle the convex feasibility problem and the common fixed point
problem. The string-averaging algorithmic scheme has attracted attention
recently and further work on it has been reported since its presentation in
[24]. In that paper the string-averaging algorithmic scheme for the solution
of convex feasibility problem was proposed and a scheme employing Breg-
man projections was analyzed with the aid of an extended product space
formalism.
To define string-averaging let the string Sp, for p = 1, 2, . . . , t, be a finite,

nonempty ordered subset of elements taken from {1, 2, . . . ,m} of the form

Sp :=
n
ip1, i

p
2, . . . , i

p
γ(p)

o
. (16)

The length γ(p) of the string Sp is the number of its elements. We do not
require that the strings {Sp}tp=1 should be disjoint. Suppose that there is a set
Q ⊆ Rn such that there are operators V1, V2, . . . , Vm mapping Q into Q and
an operator V which maps Qt into Q. Then the string-averaging prototypical
scheme is as follow.
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Algorithm 8 The string averaging prototypical algorithmic scheme
[24]
Initialization: x0 ∈ Q is an arbitrary starting point.
Iterative Step: Given the current iterate xk,
(i) calculate, for all p = 1, 2, . . . , t,

Mp(x
k) := Vip

γ(p)
. . . Vip2Vi

p
1
(xk), (17)

(ii) and then calculate,

xk+1 = V (M1(x
k),M2(x

k), . . . ,Mt(x
k)). (18)

For every p = 1, 2, . . . , t, this algorithmic scheme applies to xk successively
the operators whose indices belong to the p-th string. This can be done in
parallel for all strings and then the operator V maps all end-points onto the
next iterate xk+1. This is indeed an algorithm provided that the operators
{Vi}mi=1 and V all have algorithmic implementations. In this framework we
get a sequential algorithm by the choice t = 1 and S1 = {1, 2, . . . ,m} and a
simultaneous algorithm by the choice t = m and Sp = {p} , p = 1, 2, . . . , t.
We may demonstrate the underlying idea of the string-averaging proto-

typical algorithmic scheme with the aid of Figure 1. For simplicity, we take
the convex sets to be hyperplanes, denoted by H1, H2, H3, H4, H5, and H6,
and assume all operators Vi to be orthogonal projections onto the hyper-
planes. The operator V is taken as a convex combination

V (x1, x2, . . . , xt) =
tX
p=1

ωpx
p, (19)

with ωp > 0, for all p = 1, 2, . . . , t, and
Pt

p=1 ωp = 1.
Figure 1(a) depicts the purely sequential algorithmic structure. This is

the so-called POCS (Projections Onto Convex Sets) algorithm which coin-
cides, for the case of hyperplanes, with the Kaczmarz algorithm, see, e.g.,
Algorithms 5.2.1 and 5.4.3, respectively, in [33]. The fully simultaneous algo-
rithmic structure appears in Figure 1(b). With orthogonal reflections instead
of orthogonal projections it was first proposed, by Cimmino [35], for solving
linear equations, see also Benzi [9]. Here the current iterate xk is projected
on all sets simultaneously and the next iterate xk+1 is a convex combination
of the projected points. In Figure 1(c) we show how averaging of successive
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projections (as opposed to averaging of parallel projections in Figure 1(b))
works. In this case t = m and Sp = (1, 2, . . . , p), for p = 1, 2, . . . , t. This
scheme, appearing in Bauschke and Borwein [4], inspired our formulation of
the general string-averaging prototypical algorithmic scheme whose action is
demonstrated in Figure 1(d). In this example it averages, via convex combi-
nations, the end-points obtained from strings of sequential projections and
in this figure the strings are S1 = (1, 3, 5, 6), S2 = (2), S3 = (6, 4). Such
schemes offer a variety of options for steering the iterates towards a solution
of the convex feasibility problem. It is an inherently parallel scheme in that
its mathematical formulation is parallel (like the fully simultaneous method
mentioned above). We use this term to contrast such algorithms with others
which are sequential in their mathematical formulation but can, sometimes,
be implemented in a parallel fashion based on appropriate model decompo-
sition (i.e., depending on the structure of the underlying problem). Being
inherently parallel, this algorithmic scheme enables flexibility in the actual
manner of implementation on a parallel machine.

(a)

H
1

H
2

H
3

H
4

H
5

H
6

x(k)

x(k+1)

(b)

H
1

H
2

H
3

H
4

H
5

H
6

x(k)

x(k+1)

(c)

H
1

H
2

H
3

H
4

H
5

H
6

x(k)

x(k+1)

(d)

H
1

H
2

H
3

H
4

H
5

H
6

x(k)

x(k+1)

Figure 1. (a) Sequential projections. (b) Fully simultaneous projections.
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(c) Averaging of sequential projections. (d) String-averaging. (Reproduced
from Censor, Elfving and Herman [24]).

At the extremes of the “spectrum” of possible specific algorithms, deriv-
able from the string averaging prototypical algorithmic scheme, are the gener-
ically sequential method, which uses one set at a time, and the fully simul-
taneous algorithm, which employs all sets at each iteration. For results on
the behavior of the fully simultaneous algorithm with orthogonal projections
in the inconsistent case see, e.g., Combettes [39] or Iusem and De Pierro
[56]. The “block-iterative projections” (BIP) scheme of Aharoni and Cen-
sor [1] also has the sequential and the fully simultaneous methods as its
extremes in terms of block structures (see also Butnariu and Censor [16],
Bauschke and Borwein [4], Bauschke, Borwein and Lewis [5], Elfving [50],
Eggermont, Herman and Lent [49] and, recently, Aleyner ans Reich [2]).
The question whether there are any other relationships between the BIP
and the string-averaging prototypical algorithmic schemes is of theoretical
interest and is still open. However, the string-averaging prototypical algo-
rithmic structure gives users a tool to design many new inherently parallel
computational schemes.
The behavior of the string-averaging algorithmic scheme, with orthogonal

projections, in the inconsistent case when the intersection Q = ∩mi=1Qi is
empty was studied by Censor and Tom in [32]. They defined the projection
along the string Sp operator as the composition of orthogonal projections
onto sets indexed by Sp, that is,

Vp := Pip
γ(t)
· · ·Pip2Pip1 , for p = 1, 2, . . . , t, (20)

and, given a positive weight vector ω ∈ Rt, they used as the algorithmic
operator V the following

V =
tX
p=1

ωpVp. (21)

Using this V the following string-averaging algorithm is obtained.

Algorithm 9
Initialization: x0 ∈ Rn is an arbitrary starting point.
Iterative Step: Given xk, use (20) and (21) to compute xk+1

xk+1 = V (xk). (22)
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Theorem 10 [32] Let Q1, Q2, . . . , Qm, be nonempty closed convex subsets of
Rn. If for at least one x0 ∈ Rn the sequence

©
xk
ª
k≥0, generated by the string-

averaging algorithm (Algorithm 9 with V as in (21)), is bounded then any
sequence

©
xk
ª
k≥0, generated by the string averaging algorithm (Algorithm 9

with V as in (21)), converges for any x0 ∈ Rn.

The convergence of this string-averaging method in the inconsistent case
was proved using translation of the algorithm into a fully sequential algorithm
in the product space.
In Bauschke, Matoušková and Reich [8] string-averaging was studied in

Hilbert space. In Crombez [42] the string-averaging algorithmic paradigm is
used to find common fixed points of strict paracontractive operators in the
m−dimensional Euclidean space. Given a finite set of strict paracontrac-
tive continuous operators having a nonempty set of common fixed points,
finite strings of sequential iterations of them are formed, leading to a cor-
responding set of general paracontractions having the same common set of
fixed points. By suitably averaging this set of operators, a fully parallel
and a block-iterative algorithm can be obtained, both with a variable re-
laxation parameter. In Crombez [44] string-averaging is used to produce a
asynchronous parallel algorithm that leads to a common fixed point of di-
rected operators in Hilbert space. The assumption in this paper is that there
exists a common fixed point that is an interior point. Averaging strings
of different length of sequential iterations leads to an asynchronous paral-
lel method which reaches a common fixed point in a finite number of steps.
In Bilbao-Castro, Carazo, García and Fernández [12], an implementation of
the string-averaging method to electron microscopy is reported. Butnariu,
Davidi, Herman and Kazantsev [17] call a certain class of string-averaging
methods the Amalgamated Projection Method and show that the algorithms
in this class converge to solutions of the consistent convex feasibility problem,
and that their convergence is stable under summable perturbations. A vari-
ant of this approach was proposed to approximate the minimum of a convex
functional subject to convex constraints. The iterative procedure studied in
Butnariu, Reich and Zaslavski [11, Sections 6 and 7] is also a particular case
of the string-averaging method. In Rhee [63] the string-averaging scheme is
applied to a problem in approximation theory.

12



3.1 String-averaging for the sparse common fixed point
problem

The notion of sparseness is well understood and used for matrices and, from
there, the road to sparseness of the Jacobian (or generalized Jacobian) ma-
trix as an indicator of sparseness of nonlinear operators is short, see, e.g.,
Betts and Frank [10]. Our definition of sparseness of operators does not re-
quire differentiability (or subdifferentiability) and generalizes those previous
notions.
In our algorithmic scheme, designed to efficiently handle sparsity, we as-

sume that a finite family of directed operators (see Definition 1) {Ti}mi=1
is given with ∩mi=1 FixTi 6= ∅ such that Ti − I are closed at 0, for every
i ∈ {1, 2, . . . ,m}. After applying the operators {Ti}mi=1 along strings, the end-
points are averaged not by taking a plain convex combination but by doing
a, so called, component-averaging step. The component averaging princi-
ple, introduced for linear systems in [26], [27], is a useful tool for handling
sparseness in the linear case.
To define sparseness of the set of operators {Ti}mi=1 we need to speak

about zeros of the vectors x− Ti(x).

Definition 11 Let T : Rn → Rn be a directed operator. If (x− T (x))j = 0,
for all x /∈ FixT then j is called a void of T and we write j = voidT.

For every i ∈ {1, 2, . . . ,m} define the following sets

Zi := {(i, j) | 1 ≤ j ≤ n, j = voidTi} , (23)

i.e., Zi contains all the pairs (i, j), such that (x−Ti(x))j = 0, for all x /∈ FixTi.

Definition 12 The family of directed operators {Ti}mi=1 will be called sparse
if the set Z := ∪mi=1Zi is nonempty and contains many elements.

Remark 13 The word “many” in Definition 12 is meant to say that the more
pairs (i, j) are contained in Z the higher is the sparseness of the family. It is
of some interest to note that sparseness of matrices was considered as early
as in 1971. Wilkinson [67, p. 191] refers to it by saying: “We shall refer to
a matrix as dense if the percentage of zero elements or its distribution is such
as to make it uneconomic to take advantage of their presence”. Obviously,
denseness is meant here as an opposite of sparseness.
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Denote by Ij, 1 ≤ j ≤ n, the set of indices of strings that contain an
index of an operator Ti for which (i, j) /∈ Zi, i.e.,

Ij := {p | 1 ≤ p ≤ t, (i, j) /∈ Zi for some i ∈ Sp} (24)

and let sj = |Ij| (the cardinality of Ij). Equivalently,

Ij = {p | 1 ≤ p ≤ t, j 6= voidTi for some i ∈ Sp} . (25)

Definition 14 [52, Definition 1] The component-wise string-averaging
operator relative to the family of strings S := {S1, S2, . . . , St} is a
mapping CAS : Rn×t → Rn, defined as follows. For x1, x2, . . . , xt ∈ Rn,¡

CAS(x
1, x2, . . . , xt)

¢
j
:= (1/sj)

X
p∈Ij

xpj , for all 1 ≤ j ≤ n, (26)

where xpj is the j-th component of x
p, for 1 ≤ p ≤ t.

Our new scheme performs sequential steps within each of the strings of
the family S and merges the resulting end-points by the component-wise
string-averaging operator (26) as follows.

Algorithm 15
Initialization: x0 ∈ Rn is an arbitrary starting point and define an

integer constant N , such that N ≥ m.
Iterative step: Given xk, compute xk+1 as follows:
(i) For every 1 ≤ p ≤ t (possibly in parallel): Execute a finite number,

not exceeding N, of iterative steps of the form (15), on the operators {Ti}i∈Sp
of the p-th string and denote the resulting end-points by {xp}tp=1.
(ii) Apply

xk+1 = CAS(x
1, x2, . . . , xt). (27)

Theorem 16 Let {Ti}mi=1 be a family of directed operators with ∩mi=1 FixTi 6=
∅ such that Ti − I are closed at 0, for every i ∈ {1, 2, . . . ,m}. Any sequence©
xk
ª∞
k=0
, generated by the Algorithm 15, converges to a solution of (1).

In a recent paper by Gordon and Gordon [52] a new parallel “Component-
Averaged Row Projections (CARP)” method for the solution of large sparse
linear systems was introduced. It proceeds by dividing the equations into

14



nonempty, not necessarily disjoint, sets (strings), performing Kaczmarz (row-
action) projections within the strings, and merging the results by component-
averaging operations to form the next iterate. As shown in [52], using or-
thogonal projections onto convex sets, this method and its convergence proof
also apply to the consistent nonlinear CFP.
In contrast, when applied to a CFP, Algorithm 15 gives rise to a method

which is structurally similar to CARP but uses subgradient projections in-
stead of orthogonal projections. This is, of course, a development that might
be very useful for CFPs with nonlinear convex sets for which each orthogonal
projection mandates an inner-loop of distance minimization.
Sparseness of the nonlinear system (4) can be defined in compliance with

Definitions 11 and 12 by speaking about zeros of the subgradients of the
functions fi and to do so we use the next definition.

Definition 17 Let fi : Rn → R, i = 1, 2, . . . ,m, be convex functions. For
any x ∈ Rn, the m × n matrix Q(x) = (qij)mi=1,nj=1 is called a generalized
Jacobian of the family of functions {fi}mi=1 at the point x if qij ≡
qij, for all i and all j, for some q

i = (qij)
n
j=1 such that q

i ∈ ∂fi(x).

This definition coincides in our case with Clarke’s generalized Jacobian,
see [37] and [38]. A generalized Jacobian Q(x) of the functions in (4) is
not unique because of the possibility to fill it up with different subgradients
from each subdifferential set. In case all fi are differentiable the generalized
Jacobian reduces to the usual Jacobian.
Define for every i ∈ {1, 2, . . . ,m} the following sets

Zi := {(i, j) | 1 ≤ j ≤ n, fi(x) is independent of xj for all x ∈ Rn} . (28)

A mapping F : Rn → Rm given by F (x) = {fi(x)}mi=1 will be called sparse if
some of its component functions fi do not depend on some of their variables
xj which means that Z = ∪mi=1Zi 6= ∅. The more pairs (i, j) are contained in
Z the higher is the sparseness of the mapping F.
Recall the cyclic subgradient projections (CSP) method for the CFP

(studied in [28]) which is a special version of the ACSA algorithm (Algo-
rithm 7).

Algorithm 18 Cyclic Subgradient Projections (CSP)
Initialization: x0 ∈ Rn is arbitrary.
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Iterative step:

xk+1 :=

⎧⎨⎩ xk − λk
fi(k)(x

k)°°qk°°2 qk, if fi(k)(xk) > 0,
xk, if fi(k)(xk) ≤ 0,

(29)

where qk ∈ ∂fi(k)(x
k) is a subgradient of fi(k) at the point xk.

Relaxation parameters: {λk}∞k=0 are confined to the interval [ε, 2− ε],
for some fixed user-chosen ε > 0.
Control: Almost cyclic on {1, 2, . . . ,m}.

According to our scheme the algorithm for solving the CFP performs CSP
steps within the strings and merges the results by the CAS(x1, x2, . . . , xt)
component-averaging operation.

Algorithm 19
Initialization: x0 ∈ Rn is arbitrary and define an integer constant N ,

such that N ≥ m.
Iterative step: Given xk, compute xk+1 via:
(i) For every 1 ≤ p ≤ t (possibly in parallel): Execute a finite number,

not exceeding N, of CSP steps on the inequalities of the p-th string Sp and
denote the resulting point by {xp}tp=1.
(ii) Apply

xk+1 = CAS(x
1, x2, . . . , xn). (30)

4 The split common fixed point problem for
directed operators

In this section we review the multiple split common fixed point problem
(MSCFPP) which requires to find a common fixed point of a family of op-
erators in one space such that its image under a linear transformation is a
common fixed point of another family of operators in the image space.

Problem 20 Given operators Ui : RN → RN , i = 1, 2, . . . , p, and Tj :
RM → RM , j = 1, 2, . . . , r, with fixed points sets FixUi, i = 1, 2, . . . , p
and FixTj, j = 1, 2, . . . , r, respectively. The multiple split common fixed
point problem (MSCFPP) is

find a vector x∗ ∈ C := ∩pi=1 FixUi such that Ax∗ ∈ Q := ∩ri=1 FixTj. (31)
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TheMSCFPP generalizes the multiple-sets split feasibility problem (MSSFP)
(2). It serves as a model for inverse problems where constraints are imposed
on the solutions in the domain of a linear operator as well as in the oper-
ator’s range. MSSFP in its turn generalizes the convex feasibility problem
and the two-sets split feasibility problem. Such MSSFPs, formulated in [25],
arise in the field of intensity-modulated radiation therapy (IMRT) when one
attempts to describe physical dose constraints and equivalent uniform dose
(EUD) constraints within a single model, see [21].
The problem with only a single set C in RN and a single set Q in RM

was introduced by Censor and Elfving [22] and was called the split feasibil-
ity problem (SFP). They used their simultaneous multiprojections algorithm
(see also [33, Subsection 5.9.2]) to obtain iterative algorithms to solve the
SFP. Their algorithms, as well as others, see, e.g., Byrne [14], involve ma-
trix inversion at each iterative step. Calculating inverses of matrices is very
time-consuming, particularly if the dimensions are large. Therefore, a new
algorithm for solving the SFP was devised by Byrne [15], called the CQ-
algorithm, with the following iterative step

xk+1 = PC
¡
xk + γAt(PQ − I)Axk

¢
, (32)

where xk and xk+1 are the current and the next iteration vectors, respectively,
γ ∈ (0, 2/L) where L is the largest eigenvalue of the matrix AtA (t stands
for matrix transposition), I is the unit matrix or operator and PC and PQ
denote the orthogonal projections onto C and Q, respectively.
The CQ-algorithm converges to a solution of the SFP, for any starting

vector x0 ∈ RN , whenever the SFP has a solution. When the SFP has no
solutions, the CQ-algorithm converges to a minimizer of kPQ(Ac)−Ack ,
over all c ∈ C, whenever such a minimizer exists. A block-iterative CQ-
algorithm, called the BICQ-method, is also available in [15]. The multiple-
sets split feasibility problem, posed and studied in [25], was handled, for both
the feasible and the infeasible cases, with a proximity function minimization
approach where the proximity function p(x) is

p(x) = (1/2)
tX
i=1

αi kPCi(x)− xk
2 + (1/2)

rX
j=1

βj
°°PQj(Ax)−Ax°°2 , (33)

The algorithm for solving MSSFP presented there generalizes Byrne’s CQ-
algorithm [15] and involves orthogonal projections ontoCi ⊆ RN , i = 1, 2, . . . , p,
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and Qj ⊆ RM , j = 1, 2, . . . , r, which were assumed to be easily calculated,
and has the following iterative step:

xk+1 = xk+γ

Ã
pX
i=1

αi
¡
PCi(x

k)− xk
¢
+

rX
j=1

βjA
t
¡
PQj(Ax

k)−Axk
¢!
, (34)

where xk and xk+1 are the current and the next iteration vectors, respectively,
αi > 0, i = 1, 2, . . . , p, βj > 0, j = 1, 2, . . . , r, γ ∈ (0, 2/L), L =

Pp
i=1 αi +

λ
Pr

j=1 βj and λ is the spectral radius of the matrix AtA. Masad and Reich
[61] is a recent sequel to [25] where they prove weak and strong convergence
theorems for an algorithm that solves the multiple-set split convex feasibility
problem in Hilbert space.

4.1 A subgradient projection method

In some cases, notably when the convex sets are not linear, computation of
the orthogonal projections calls for the solution of a separate minimization
problem for each projection. In such cases the efficiency of methods that
use orthogonal projections might be seriously reduced. Yang [69] proposed
a relaxed CQ-algorithm where orthogonal projections onto convex sets are
replaced by subgradient projections. The latter are orthogonal projections
onto, well-defined and easily derived, half-spaces that contain the convex
sets, and are, therefore, easily executed. In [29] the following simultaneous
subgradient algorithm for the multiple-sets split feasibility problem was in-
troduced. Assume, without loss of generality, that the sets Ci and Qj are
expressed as

Ci = {x ∈ Rn | ci(x) ≤ 0} and Qj = {y ∈ Rm | qj(y) ≤ 0} , (35)

where ci : Rn → R, and qj : Rm → R are convex functions for all i =
1, 2, . . . , p, and all j = 1, 2, . . . , r, respectively.

Algorithm 21
Initialization: Let x0 be arbitrary.
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Iterative step: For k ≥ 0 let

xk+1 = xk + γ

Ã
pX
i=1

αi
¡
PCi,k(x

k)− xk
¢

+
rX
j=1

βjA
t
¡
PQj,k(Ax

k)−Axk
¢!
. (36)

Here γ ∈ (0, 2/L), with L =
Pp

i=1 αi + λ
Pr

j=1 βj, where λ is the spectral
radius of AtA, the constants αi > 0, for i = 1, 2, . . . , p, and βj > 0, for
j = 1, 2, . . . , r, are arbitrary, and

Ci,k =
©
x ∈ Rn | ci(xk) +


ξi,k, x− xk

®
≤ 0

ª
, (37)

where ξi,k ∈ ∂ci(x
k) is a subgradient of ci at the point xk, and

Qj,k =
©
x ∈ Rm | qj(xk) +


ηj,k, y −Axk

®
≤ 0

ª
, (38)

where ηj,k ∈ ∂qj(Ax
k).

4.2 A parallel algorithm for the multiple split common
fixed point problem

In [31] Censor and Segal employed a product space formulation to derive and
analyze a simultaneous algorithm for Problem 20 and obtained the following
algorithm.

Algorithm 22
Initialization: Let x0 be arbitrary.
Iterative step: For k ≥ 0 let

xk+1 = xk + γ

Ã
pX
i=1

αi
¡
Ui(x

k)− xk
¢
+

rX
j=1

βjA
t
¡
Tj(Ax

k)−Axk
¢!
. (39)

Here γ ∈ (0, 2/L), with L =
Pp

i=1 αi + λ
Pr

j=1 βj, where λ is the largest
eigenvalue of the matrix AtA.

The following convergence result was obtained.
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Theorem 23 Let Ui : RN → RN , i = 1, 2, . . . , p, and Tj : RN → RN ,
j = 1, 2, . . . , r, be directed operators with fixed points sets Ci, i = 1, 2, . . . , p
and Qj, j = 1, 2, . . . , r, respectively, and let A be an M × N real matrix.
Assume that (Ui − I), i = 1, 2, . . . , p and (Tj − I), j = 1, 2, . . . , r, are closed
at 0. If Γ 6= ∅ then every sequence, generated by Algorithm 22, converges to
x∗ ∈ Γ.

Since the orthogonal projection P is a directed operator and P − I is
closed at 0, the algorithm from [25] with iterative step (34) is a special case
of our Algorithm 22. The Algorithm 21 is also a special case of our Algorithm
22 (see Example 4 and Lemma 5).

4.3 A perturbed projection method

In this subsection we survey another method for the multiple-sets split fea-
sibility problem. This method [29] is based on Santos and Scheimberg [65]
who suggested replacing each nonempty closed convex set of the convex fea-
sibility problem by a convergent sequence of supersets. If such supersets can
be constructed with reasonable efforts and if projecting onto them is simpler
than projecting onto the original convex sets then a perturbed algorithm be-
comes useful. The following notion of convergence of sequences of sets in Rn

is called Mosco-convergence. See, e.g., [4, Lemma 4.2], where further useful
references are given and the convergence of the corresponding sequence of
orthogonal projections onto the sets is discussed. In Salinetti and Wets [64]
one can learn about the relation with set convergence with respect to the
Hausdorff metric. The notion of Mosco-convergence was also used in [59].

Definition 24 Let C and {Ck}∞k=0 be a subset and a sequence of subsets of
Rn, respectively. The sequence {Ck}∞k=0 is said to be Mosco-convergent to C,
denoted by Ck

M→ C, if
(i) for every x ∈ C, there exists a sequence {xk}∞k=0 with xk ∈ Ck for all

k = 0, 1, 2, . . ., such that, limk→∞ xk = x, and
(ii) for every subsequence

©
xkj
ª∞
j=0

with xkj ∈ Ckj for all j = 0, 1, 2, . . .,
such that limj→∞ xkj = x one has x ∈ C.

Using the notation NCCS(Rn) for the family of nonempty closed convex

subsets of Rn, let Ωk and Ω be sets in NCCS(Rn), such that, Ωk
M→ Ω as

k → ∞. Let Ci and Ci,k be sets in NCCS(Rn), for i = 1, 2, . . . , t and Qj
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and Q
j,k
be sets in NCCS(Rm), for j = 1, 2, . . . , r, such that, Ci,k

M→ Ci, and

Q
j,k

M→ Qj as k →∞. Define the operators

N(x) := PΩ

(
x+ s

Ã
tX
i=1

αi(PCi(x)− x)

+
rX
j=1

βjA
T (PQj(Ax)−Ax)

!)
, (40)

Nk(x) := PΩk

(
x+ s

Ã
tX
i=1

αi(PCi,k(x)− x)

+
rX
j=1

βjA
T (PQj,k(Ax)−Ax)

!)
, (41)

and let {εk}∞k=0 be a sequence in (0, 1) satisfying
∞X
k=0

εk(1− εk) = +∞. (42)

Then the following algorithm for the CMSSFP generates, under reasonable
conditions (see, [29]), convergent iteration sequences.

Algorithm 25 The perturbed projection algorithm for CMSSFP
Initialization: Let x0 ∈ Rn be arbitrary.
Iterative step: For k ≥ 0, given the current iterate xk, calculate the

next iterate xk+1 by

xk+1 = (1− εk)x
k + εkNk(x

k), (43)

where Nk and εk are as defined above.
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