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Abstract

A de�nition of oblique projections onto closed convex sets that

use seminorms induced by diagonal matrices which may have zeros on

the diagonal is introduced. Existence and uniqueness of such projec-

tions are secured via directional aÆnity of the sets with respect to the

diagonal matrices involved. A block-iterative algorithmic scheme for

solving the convex feasibility problem, employing seminorm-induced

oblique projections, is constructed and its convergence for the consis-

tent case is established. The fully simultaneous algorithm converges

also in the inconsistent case to the minimum of a certain proximity

function.

1 Introduction

The motivation for this research comes from the recent work of Censor, Gor-
don and Gordon [14, 15] who used generalized oblique projections for the
solution of large and sparse systems of linear equations arising in the fully
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discretized approach to the problem of image reconstruction from projec-
tions, see, e.g., Herman [22], Censor [11]. In order to achieve signi�cant
acceleration in the algorithm's behavior they had to use generalized oblique
projections (as they called them) which allow zeros on the diagonals of the
weighting matrices for the fully simultaneous projections algorithm that they
used.

Since the work of [14, 15] is limited to linear equations, it is natural to
inquire whether it can be extended, and if so, in what directions and to
what extent? Is it possible to extend the de�nition of the generalized oblique
projections of [14, 15] to cover convex sets which are not linear (i.e., not
hyperplanes or half-spaces)? If there is a way to do so, can one employ
these projections in iterative algorithmic schemes for solving the convex (not
necessarily linear) feasibility problem? Under what conditions would such
algorithms converge? How would a fully simultaneous iterative algorithm
which employs these projections for the convex feasibility problem with gen-
eral (not necessarily linear) convex sets behave in the inconsistent case (i.e.,
when \mi=1Ci = ;)?

In this paper we provide some theoretical answers to these questions. We
introduce (in Section 2) a new de�nition of oblique projections onto convex
sets that use seminorms induced by diagonal matrices which may have ze-
ros on the diagonal. In order to guarantee existence and uniqueness of such
seminorm-induced oblique projections we need to impose a certain relation-
ship between the seminorm inducing matrix G and the convex set C onto
which we project, namely, that the set will be directionally aÆne with re-
spect to G. By this we mean that it must be aÆne in the direction of every
standard basis vector ej of Rn whenever there is a zero in the jth location
on the diagonal of G: With these seminorm-induced oblique projections we
construct a block-iterative algorithmic scheme for the solution of the convex
feasibility problem of �nding a point in the intersection of a �nite family
of closed convex sets fCig

m
i=1. The main feature of the new block-iterative

scheme is the use of diagonal matrices for weighting the di�erent sets which
are acted upon in each block-iteration. Using diagonal weighting matrices,
instead of the traditionally used scalar weights, amounts to allowing the
weights to change not only with the set index i and the iteration index k
but also with the component index j: The block-iterative algorithmic scheme
allows the blocks (i.e., the subfamilies) of sets Ci which are acted upon in
each iterative step to vary in size and composition as iterations proceed. We
study the convergence of the block-iterative algorithmic scheme for the con-

2



sistent case \mi=1Ci 6= 0 in Section 3. In Section 4 we investigate the fully
simultaneous algorithm with seminorm-induced projections without assum-
ing consistency of the convex feasibility problem. The result there is that the
fully simultaneous algorithm generates sequences which converge to the min-
imum of a proximity function which measures the sum of the squares of the
\seminorm-induced distances" to all sets of the convex feasibility problem.

The theory developed here ties up in several ways with existing results
about iterative projection algorithms for the convex feasibility problem, see,
e.g., Bauschke and Borwein [5], Combettes [19] and [16, Chapter 5] for re-
view and tutorial texts in this �eld. See also Reich [28] where a treatment
of simultaneous algorithms involving nearest point and other projections is
presented. Besides generalizing the work of [14, 15], the block-iterative al-
gorithm with seminorm-induced oblique projections generalizes our recent
work in [13]. It is also a generalization of the block-iterative projections
(BIP) method of Aharoni and Censor [1] (see [16, Algorithm 5.6.1]) which
uses orthogonal (least Euclidean distance) projections onto convex sets. It
also generalizes the work of Eggermont, Herman and Lent [20] and the work
of Elfving [21]. For an extensive survey of linear least squares algorithms, in-
cluding projection methods, see Bj�orck [7]. Since classical oblique projections
are a special case of seminorm-induced oblique projections, our work prop-
erly generalizes earlier work on oblique projection iterative algorithms. For
example, oblique projections have been used in the past in several contexts.
Kayalar and Weinert [24] promote oblique projections for local processing in
sensor arrays and credit Murray [26] and Lorch [25] for pioneering work on
oblique projections. Behrens and Scharf [6] use oblique projections for signal
processing applications. Oblique projections onto hyperplanes in a fully si-
multaneous (Cimmino) algorithm have been proposed and used by Arioli et
al. [2]. They showed that using a Cimmino algorithm in which all projections
are oblique with respect to a given symmetric positive de�nite matrix G, for
a system Ax = b, is equivalent to applying a Cimmino algorithm with all
orthogonal projections to the post-conditioned system AG�1=2~x = b, where
~x = G1=2x and G1=2, the symmetric square root of G, is the unique symmetric
positive de�nite matrix obtained from G = G1=2G1=2.

Our work is related to the \Block-Iterative Multiprojection Successive
Generalized Projection" (BIMSGP) method developed by Byrne in [9]. Specif-
ically, a special case of our algorithmic scheme (Algorithm 10 below) in which
the diagonal weight matrices are not allowed to change with the iteration in-
dex and for which only �xed blocks of constraints are permissible is derivable
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from [9, Algorithm 4.2]. We return to this point at the end of Section 3.
The fully simultaneous projection algorithm with orthogonal projections

was �rst proposed by Cimmino [17] for linear systems of equations and then
by Auslender [3] for general convex sets, see the review paper of Bauschke
and Borwein [5]. For general convex sets and orthogonal projections Iusem
and De Pierro [23] proved local convergence in the inconsistent case, while
Combettes [18] showed global convergence in the inconsistent case by em-
ploying a product space formulation, which extends the one of Pierra [27],
and can handle the inconsistent case. Our work in Section 4 below generalizes
these previous algorithmic schemes to the case of seminorm-induced oblique
projections. Our convergence analysis in Section 4 might also be deduced,
with some additional e�orts, from results in [10] but we prefer to prove it here
along the self-contained lines of the proof developed in [14], thereby making
it independent of the theory of Bregman functions and other technical tools
used in [10].

2 Seminorm-induced oblique projections

Let G = diag(g1; g2; : : : ; gn) be a diagonal n � n matrix with gj � 0; for all
j = 1; 2; : : : ; n; and G 6= 0, i.e., at least one element of G is di�erent from
zero. Denote the index set of positive diagonal elements of G by J = J(G) =
fj j gj > 0; 1 � j � ng and its cardinality by j J j. We look at the restriction
RjJj of Rn to only those components that belong to J: For convenience and
notational simplicity assume, without loss of generality, that the zero entries
on the diagonal of G (if any) all come last. If z = (zj) 2 Rn we denote its
restriction to RjJj by z[J]: For any nonempty closed convex set C � Rn; the
restriction of C to RjJj is the set

C[J ] := fz[J] 2 RjJj j z 2 Cg: (1)

Further, denote by G[J] the j J j � j J j matrix obtained from G by deleting
all zeros from its diagonal. The function x G is de�ned, for every x 2 Rn;
by

x 2
G := hx;Gxi; (2)

where h�; �i is the standard inner product in Rn: If J = f1; 2; : : : ; ng then
x G = kxkG is the (classical) Hilbert space ellipsoidal norm. Observe that

4



x G is a vector seminorm (see, e.g., Taylor [29]) because it may be equal to
zero for an x 6= 0 if G has at least one gj = 0: For this reason, a projection
onto a convex set with respect to a seminorm needs to be carefully de�ned.
Our next de�nitions and proposition accommodate this possibility.

De�nition 1 (Seminorm-induced oblique projection). Let C � Rn be
a closed convex set and let G 6= 0 be an n � n nonnegative diagonal matrix.
For any y 2 Rn; the seminorm-induced oblique projection of y onto

C with respect to G, denoted by PG
C (y); is de�ned as a point which has

the following properties: (i) PG
C (y) 2 C; and (ii) PG

C (y) = y� where

y�j =

�
zj; if j 2 J;
yj; if j =2 J;

(3)

and

z[J ] = (zj)j2J = argminfk x� y[J] k
2
G[J]

j x 2 C[J]g: (4)

The presence of zeros on the diagonal of G whenever j 2 J implies that

(argminf x� y
2

G
j x 2 Cg)

[J]
= z[J]: (5)

A seminorm-induced oblique projection reduces to an ellipsoidal oblique pro-
jection of y onto C if all diagonal elements of G are positive. This is a special
case of a Bregman projection of y onto C according to the Bregman function
f(x) = kxk2G = hx;Gxi; consult, e.g., Censor and Zenios [16, Chapter 2] for
background material and further references on Bregman functions, distances
and projections originating from Bregman [8].

On the other hand, a general seminorm-induced oblique projection onto a
set C � Rn can be identi�ed with an appropriately de�ned ellipsoidal oblique
projection onto a ceratin cylindrical set generated from C, as we show next.
Let G be a diagonal n � n nonnegative nonzero matrix with index set of
positive diagonal elements J and j J j< n: De�ne the n�n diagonal positive
matrix Ĝ by

ĝj =

�
gj; if j 2 J;
1; if j =2 J;

(6)

and consider the cylindrical set C[J ] � RnnjJj:
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Proposition 2 Given C; G, J, Ĝ as above and a point y 2 Rn; the following
holds,

y� = PG
C (y) = P Ĝ

C[J]�RnnjJj(y): (7)

Proof. Denote the complement of J in f1; 2; : : : ; ng by �J so that any
u 2 Rn can be represented as u = (u

[J]
; u

[ �J]
): Then,

P Ĝ
C[J]�RnnjJj(y)

= argminfku� yk2
Ĝ
j u 2 C[J] � RnnjJjg

= argminfku
[J]
� y

[J]
k2G[J]

+ ku
[ �J]
� y

[ �J]
k2I j u[J]

2 C[J]; u[ �J]
2 RnnjJ jg; (8)

where I is the (n� j J j)� (n� j J j) unit matrix. This concludes the proof
in view of (3) and (4).

In order to secure existence and uniqueness of seminorm-induced oblique
projections we need to impose a \cylindricity" relationship between the semi-
norm inducing matrix G and the convex set C onto which we project, as we
do in the next de�nitions.

De�nition 3 (Directional aÆnity of sets). A nonempty closed convex
set C � Rn is said to be affine in the direction d 2 Rn if: (i) together
with any two distinct points of the set whose di�erence vector is a scalar
multiple of d the line through these points belongs to the set, and (ii) there is
at least one pair of points in the set which ful�lls (i).

De�nition 4 (Directional aÆnity with respect to G). Let C � Rn

be a nonempty closed convex set and let G be a nonnegative diagonal n � n
matrix G = diag(g1; g2; : : : ; gn) with gj � 0; for all j = 1; 2; : : : ; n; and G 6= 0.
If C is aÆne in the direction of every standard basis direction vector ej of
Rn for which j =2 J then we say that C is directionally affine with

respect to G:

Proposition 5 Let C � Rn be a nonempty closed convex set and let G =
diag(g1; g2; : : : ; gn) be a nonnegative diagonal n � n matrix with gj � 0; for
all j = 1; 2; : : : ; n; and G 6= 0. If C is directionally aÆne with respect to G
then for any y 2 Rn there is a unique seminorm-induced oblique projection
PG
C (y) of y onto C with respect to G.
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Proof. By standard results on (classical) oblique projections onto closed
convex sets (use, e.g., Censor and Zenios [16, Lemma 2.1.2] since jj � jj2G[J]

is

a Bregman function), it follows that there exists a unique z[J ] 2 C[J] that
solves (4). The directional aÆnity of C with respect to G allows us to de�ne
y�j = yj; as we did in (3).

The next examples demonstrate these notions.

Example 6 Let the convex set be represented as C = fx 2 Rn j h(x) � 0g;
where h : Rn ! R is a convex function, and assume that @h=@xj � 0 for all
j =2 J: Then h(x) does not depend on the values that the jth component of x
is taking as long as j =2 J and Proposition 5 together with (3) then guarantee
that PG

C (y) 2 C:

Example 7 Let the convex set be a hyperplane H = fx 2 Rn j ha; xi = bg
with a = (aj) 2 Rn and b 2 R given and assume that in the matrix G it is
true that gj = 0 if and only if aj = 0: Then there is a closed-form formula
for the seminorm-induced oblique projection PG

H (y) of a point y 2 Rn onto H
with respect to G, given by Censor, Gordon and Gordon in [14], which has
the following form

(PG
H (y))j :=

8>>><
>>>:

yj +
b� ha; yi

nX
l=1
gl 6=0

a2l
gl

�
aj
gj ; if gj 6= 0 ;

yj ; if gj = 0 :

(9)

It is not diÆcult to verify that PG
H (y) 2 H and that it is the appropriate

expression for the seminorm-induced oblique projection. This example is in
fact a special case of the previous example. It has been analyzed and used in
practice in [14] and [15].

Postulating a relationship between the seminorm inducing matrix G and
the convex set onto which we project, namely, that the set must be a direc-
tionally aÆne set limits the scope of our theory of seminorm-induced oblique
projections onto (general) convex sets. We do not know if it is possible to
relax or lift this condition. In the linear case of Example 7 this condition was
termed Sparsity Pattern Orientation (SPO) by Censor, Gordon and Gordon
[14, De�nition 3.1], and was taken advantage of for creating a new acceler-
ated fully simultaneous projection method called the component averaging
(CAV) method.
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The next proposition generalizes a classical result. We prove it here along
the same lines as the proof of a similar result for Bregman generalized dis-
tances (see Bregman [8]) given in [16, Theorem 2.4.1].

Proposition 8 Let Q � Rn be a nonempty closed convex set, and let G 6= 0
be a nonnegative diagonal matrix such that Q is diagonally aÆne with respect
to G: If z 2 Q is any given point then, for any y 2 Rn; the following inequality
holds:

PG
Q (y)� y

2

G
� z � y

2

G
� z � PG

Q (y)
2

G
: (10)

Proof. By expanding the function

E(u) := u� y
2

G
� u� PG

Q (y)
2

G
(11)

according to (2), we �nd that E(u) = hu; �i+ � for some � 2 Rn and � 2 R
which are independent of u, thus E(u) is convex. Denoting u� = �z + (1�
�)PG

Q (y); for any 0 � � � 1, we know that u� 2 Q, by Proposition 5. Due
to the convexity of E(u), we then obtain (observe that due to the linearity
of E(u) the inequalities in the next two formulae are actually equalities)

E(u�) � �
�
z � y

2

G
� z � PG

Q (y)
2

G

�
+ (1� �) PG

Q (y)� y
2

G
: (12)

For � > 0, this gives

z � y
2

G
� z � PG

Q (y)
2

G
� PG

Q (y)� y
2

G

�
1

�

�
u� � y

2

G
� PG

Q (y)� y
2

G

�
�

1

�
u� � PG

Q (y)
2

G
: (13)

The �rst term on the right-hand-side of (13) is nonnegative because of the
minimization property (5) of PG

Q (y) and the second term tends to zero as
� ! 0+. Therefore, for small enough positive values of �, the right-hand-
side of (13) is nonnegative.

3 The Block-Iterative Algorithmic Scheme

Let Ci � Rn; i = 1; 2; : : : ; m; be closed and convex sets such that C :=
\mi=1Ci 6= ;: For each k = 0; 1; 2; : : : ; we de�ne a vector fGk

i g
m
i=1 each of

whose m components is an n� n diagonal matrix

Gk
i = diag(gki1; g

k
i2; : : : ; g

k
in) (14)
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with gkij � 0 for all i = 1; 2; : : : ; m; all j = 1; 2; : : : ; n; and all k � 0. Denote
by B(k) the index set

B(k) := fi j 1 � i � m; Gk
i 6= 0g: (15)

De�nition 9 (A fair sequence of vectors of diagonal matrices).
Let ffGk

i g
m
i=1gk�0 be an in�nite sequence of vectors of nonnegative diagonal

n� n matrices.
(i) If there exists an � > 0 such that, for every i 2 B(k); the diagonal

elements gkij are either gkij = 0 or gkij � � > 0; for all j = 1; 2; : : : ; n, and for
all k � 0; and

(ii) if
Pm

i=1G
k
i = I; for all k � 0; where I denotes the unit matrix,

then ffGk
i g

m
i=1gk�0 is called a fair sequence of vectors of diagonal ma-

trices.

With regard to this de�nition it should be noted that condition (i) is
stronger then the condition used by Aharoni and Censor [1] regarding the
weights they used in their block-iterative projections (BIP) method. Their
scalar weights in BIP can be obtained from the system ffGk

i g
m
i=1gk�0; in

De�nition 9 by letting Gk
i = wk

i I where wk = (wk
i )

m
i=1 is their vector of

weights used in the kth iteration. The (weaker) condition that they use is
that \for all i = 1; 2; : : : ; m; the series

P1
k=0w

k
i = +1". The purpose of

either condition (i) in De�nition 9 or the condition of [1] is to guarantee that
none of sets Ci is \gradually ignored" by ever diminishing weights. We do not
know whether our convergence result, presented below, can be strengthened
by using a condition similar to that of [1].

The algorithm that we propose and study here for solving the convex
feasibility problem of �nding a point x� 2 C = \mi=1Ci is formulated as
follows.

Algorithm 10
Initialization: x0 2 Rn is arbitrary.
Iterative Step: Given xk calculate

xk+1 = xk + �k

 
mX
i=1

�
Gk
i P

Gk
i

Ci
(xk)

�
� xk

!
; (16)

where f�kgk�0 are relaxation parameters, ffGk
i g

m
i=1gk�0 is a sequence of vec-

tors of diagonal matrices, and P
Gk
i

Ci
(xk) is the seminorm-induced oblique pro-

jection of xk onto Ci with respect to Gk
i :
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This algorithmic scheme includes as a special case the sequential seminorm-
induced oblique projections algorithm that is obtained from (16) by choosing
at the kth iteration, for i = 1; 2; : : : ; m;

Gk
i =

�
Gk
i(k) 6= 0; if i = i(k);

0; if i 6= i(k);
(17)

where fi(k)gk�0 is a control sequence which governs the sequential progress,
such as, for example, a cyclic control in which i(k) = k(modm) + 1: If all
Gk
i are nonzero matrices at every iterative step then a fully simultaneous

algorithm with seminorm-induced oblique projections is obtained from our
algorithmic scheme. In addition to the consistent case result for such a
fully simultaneous algorithm we present in Section 4 also an inconsistent
case analysis. In between these two extremes the algorithmic scheme allows
variable blocks of constraints to be acted upon as iterations proceed. At
the kth iteration only those sets Ci for which Gk

i 6= 0 will be included in
the block. The blocks may vary in size (i.e., number of sets included) and
in composition (which sets are included) as long as the conditions of the
convergence theorem, given below, are met.

We consider �rst the case of unity relaxation, i.e., �k = 1; for all k � 0;
and de�ne the operators

Tk(z) :=
mX
i=1

Gk
iP

Gk
i

Ci
(z) (18)

so that (16) is now

xk+1 = Tk(x
k); k � 0: (19)

Our goal is to prove the following convergence result.

Theorem 11 If the following assumptions hold:
(i) Ci � Rn; i = 1; 2; : : : ; m; are nonempty closed convex sets,
(ii) the convex feasibility problem is consistent, i.e., C = \mi=1Ci 6= ;;
(iii) ffGk

i g
m
i=1gk�0 is a fair sequence of vectors of diagonal matrices,

(iv) every index i = 1; 2; : : : ; m; appears in in�nitely many sets B(k),
(v) for every i = 1; 2; : : : ; m; the set Ci is directionally aÆne with respect

to Gk
i for all k � 0;
then any sequence fxkgk�0; generated by Algorithm 10, with �k = 1 for

all k � 0; converges to a point x� 2 C:
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We de�ne, for all k � 0; the functions

gk(x) :=
mX
i=1

P
Gk
i

Ci
(xk)� x

2

Gk
i

(20)

for which the following auxiliary result holds.

Proposition 12 Under the assumptions of Theorem 11, if fxkgk�0 is any
sequence, generated by Algorithm 10, with �k = 1, for all k � 0, then we
have for any x 2 Rn and for every k � 0,

gk(x) = gk(x
k+1) + jjx� xk+1jj22: (21)

Proof. The proof follows the same lines as the proof of Lemma 4.1 in
Censor, Gordon and Gordon [14]. By (2), (19) and (20) we have

gk(x)� gk(x
k+1) =

X
i2B(k)

�
P
Gk
i

Ci
(xk)� x

2

Gk
i

� P
Gk
i

Ci
(xk)� Tk(x

k)
2

Gk
i

�

=
X
i2B(k)

�
x

2

Gk
i

� Tk(x
k)

2

Gk
i

+ 2hGk
iP

Gk
i

Ci
(xk); Tk(x

k)� xi

�
:

(22)

Using (18) and the fact that, due to
Pm

i=1G
k
i =

P
i2B(k)G

k
i = I; we have for

any y 2 Rn;

X
i2B(k)

y
2

Gk
i

= jjyjj22; (23)

the result follows.

De�nition 13 A sequence fxkgk�0 is called Fej�er-monotone with respect
to a nonempty set 
 � Rn if, for any x 2 
,

x� xk+1




2
�


x� xk




2
; for all k � 0 : (24)

See, e.g., [16, De�nition 5.3.1]. It is easy to verify that any Fej�er-monotone
sequence is bounded. We have now all tools in place to prove the convergence
theorem.
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Proof. (of Theorem 11). From (21) we have, for every k � 0;

jjx� xkjj22 � jjx� xk+1jj22 = gk(x
k+1)� gk(x) + jjx� xkjj22: (25)

Using (20) and (23), the right-hand-side of (25) may be rewritten for some
x = x̂ 2 C as,

gk(x
k+1)� gk(x̂) + jjx̂� xkjj22 =

X
i2B(k)

P
Gk
i

Ci
(xk)� xk+1 2

Gk
i

+
X
i2B(k)

�
x̂� xk

2

Gk
i

� x̂� P
Gk
i

Ci
(xk)

2

Gk
i

�
:

(26)

The �rst sum on the right-hand-side of (26) is nonnegative and each term in
the second sum of (26) is nonnegative by application of Proposition 8 with
G = Gk

i ; Q = Ci; z = x̂; and y = xk: Thus, we obtain from (25) that, for
every x̂ 2 C;

jjx̂� xk+1jj22 � jjx̂� xkjj22; for all k � 0; (27)

i.e., Fej�er-monotonicity of fxkgk�0 with respect to C which implies its bound-
edness and, by monotonicity and nonnegativity, that the limit

lim
k!1

jjx̂� xkjj22 = � (28)

exists. Therefore, the left-hand-side of (25) tends to zero, as k ! 1; which
implies, by (26) that

lim
k!1

0
@ X

i2B(k)

P
Gk
i

Ci
(xk)� xk+1

2

Gk
i

1
A = 0 (29)

and that, for any x̂ 2 C,

lim
k!1

0
@ X

i2B(k)

�
x̂� xk

2

Gk
i

� x̂� P
Gk
i

Ci
(xk)

2

Gk
i

�1A = 0: (30)

These limits imply the next two limits. By nonnegativity of the seminorms,
(29) implies that, for all i = 1; 2; : : : ; m;

lim
k!1

P
Gk
i

Ci
(xk)� xk+1 2

Gk
i

= 0; (31)
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and the nonnegativity of the summands in (30), noted earlier, implies that,
for all i = 1; 2; : : : ; m; and any x̂ 2 C;

lim
k!1

�
x̂� xk

2

Gk
i

� x̂� P
Gk
i

Ci
(xk)

2

Gk
i

�
= 0: (32)

Since fxkgk�0 is bounded and hence has a cluster point, the following two
observations imply the required convergence result: (i) if there exists a cluster
point x� of fxkgk�0 in C then fxkgk�0 has only one cluster point, and (ii)
every cluster point of fxkgk�0 must be in C:

To prove (i) let x� 2 C be a cluster point and assume that x�� is another
cluster point, i.e.,

lim
k!1; k2K1

xk = x� and lim
k!1; k2K2

xk = x��; (33)

with K1 � N0; K2 � N0 and N0 = f0; 1; 2; : : : g: Since x� 2 C, (28) applies
with x̂ replaced by x�; and (33) shows that

lim
k!1

jjx� � xkjj22 = 0: (34)

Then, taking the limit of

0 � jjx� � x��jj2 � jjx� � xkjj2 + jjx�� � xkjj2; (35)

for k ! 1; k 2 K2; and using (33) and (34), for the second and �rst
summands on the right-hand side of (35), respectively, implies that x� = x��:

Next we prove (ii). Let liml!1 xkl = x� and assume that x� =2 C: De�ning

Iin := fi j 1 � i � m; x� 2 Cig (36)

and

Iout := fi j 1 � i � m; x� =2 Cig; (37)

this means that Iout 6= ;: Since, by assumption, every index i; 1 � i � m;
appears in in�nitely many index sets B(k), we may assume, without loss of
generality (passing to a subsequence if necessary), that for every l = 1; 2; : : : ;

B(kl) [ B(kl + 1) [ � � � [B(kl+1 � 1) = f1; 2; : : : ; mg: (38)
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For every l; l = 1; 2; : : : ; let �l be the smallest element in the set

fkl; kl + 1; : : : ; kl+1 � 1g (39)

such that

B(�l) \ Iout 6= ; (40)

(such an element exists by (38) and since Iout 6= ;). We want to show that
the subsequence fx�lgl�0 also converges to x�: By de�nition, kl � �l for all
l = 1; 2; : : : : If kl < �l then

B(s) � Iin; for s = kl; kl + 1; : : : ; �l � 1; (41)

and, since x� 2 \i2IinCi; we have, from an appropriate variant of (27),

0 � jjx� � x�l jj22 � � � � � jjx� � xkl+1jj22 � jjx� � xkljj22: (42)

Letting l !1 in (42), we obtain liml!1 x�l = x�. From (40) it follows that
there exists an index t 2 Iout such that t 2 B(�l) for in�nitely many indices
l: Removing from the sequence f�lgl�0 all elements �l for which t =2 B(�l),
we end up with a new in�nite sequence f�lgl�0; such that

t 2 B(�l) \ Iout; for all l = 1; 2; : : : : (43)

Write (32) for that t, and use for it Proposition 8 with G = Gk
t ; Q = Ct;

z = x̂ and y = xk to obtain

lim
k!1

P
Gk
t

Ct
(xk)� xk

2

Gk
t

= 0: (44)

Let us pick a Gk
t 6= 0 (there must be in�nitely many such nonzero matrices

for any t) and denote wt;k = P
Gk
t

Ct
(xk)� xk and write

wt;k
2

Gk
t

= hwt;k; Gk
tw

t;ki =
nX
j=1

gktj(w
t;k
j )2: (45)

Let J = J(Gk
t ): By (2), De�nitions 1 and 9, and by (44) we obtain

lim
k!1

jjwt;kjj22 = 0 (46)

14



because when gktj = 0 then, by De�nition 1, wt;k
j = 0 so that, using De�nition

9,

nX
j=1

gktj(w
t;k
j )2 � �

X
j2J

(wt;k
j )2 = �jjwt;kjj22: (47)

Therefore, passing to the subsequence,

lim
l!1

P
G
�l
t

Ct
(x�l) = x�; (48)

which implies x� 2 Ct; contradicting (43).
Once convergence of Algorithm 10 has been proved for unity relaxation,

�k = 1; for all k � 0; it is possible to introduce underrelaxation parameters
in the following manner.

Theorem 14 Under the assumptions of Theorem 11, any sequence fxkgk�0;
generated by Algorithm 10 with relaxation parameters

0 < � � �k � 1; for all k � 0; (49)

for some arbitrarily small but �xed �; converges to a point x� 2 C:

Proof. The idea of this proof was developed during discussions with
Charles Byrne. De�ne the m + 1 diagonal n� n matrices

�ki := �kG
k
i ; for all i = 1; 2; : : : ; m; and all k � 0; (50)

�km+1 := I �
mX
i=1

�ki ; for all k � 0; (51)

and let Cm+1 = Rn: Then (16) takes the form

xk+1 =
m+1X
i=1

�ki P
�ki
Ci
(xk) (52)

because, for any z 2 Rn;

P
Gk
i

Ci
(z) = P

�ki
Ci
(z); (53)
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since x �G = � x 2
G: Also, the convex feasibility problem obviously remains

unchanged, and ff�ki g
m+1
i=1 gk�0 is a fair sequence according to De�nition 9.

Thus, Theorem 11 applies and the result follows.
Our Algorithm 10 could be derived from Byrne's [9, Algorithm 4.2] for

only the special case of �xed blocks and a constant sequence of vectors of
diagonal matrices, i.e., for

Gk
i = Gi; for i = 1; 2; : : : ; m; for all k � 0: (54)

It is, therefore, natural to ask whether the BIMSGP method of [9] can be
extended to accommodate diagonal weighting matrices which vary with the
iteration index k but we do not address this question here. The BIMSGP
method is a multiprojection scheme and, as such, it also contains, as a special
case, the forerunner [12] of multiprojection methods.

4 Analysis of the Fully Simultaneous Algo-

rithm in the Inconsistent Case

The fully simultaneous algorithm with seminorm-induced oblique projections
for the convex feasibility problem is obtained from Algorithm 10 by imposing
the condition that all diagonal matrices of (14) are nonzero matrices which
do not change as iterations proceed. So, we assume throughout this section
that, for all k � 0;

Gk
i = Gi 6= 0; for i = 1; 2; : : : ; m: (55)

A separate treatment is applied in this section which allows us to prove
that, in this case, Algorithm 10 generates sequences fxkgk�0 which always
converge, regardless of the initial point x0 2 Rn and independently from
the consistency C 6= ; or inconsistency C = ; of the underlying system
C := \mi=1Ci. Moreover, it will always converge to a minimizer of a certain
proximity function assuming that this function has minimizers. Our analysis
follows the same pattern of proof of the CAV algorithm given in [14]. We
treat �rst the case �k = 1 for all k � 0, and then expand the result to
underrelaxation.

We de�ne a proximity function

F (x) :=
mX
i=1

PGi

Ci
(x)� x

2

Gi

(56)
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and an operator

T (z) :=
mX
i=1

GiP
Gi

Ci
(z): (57)

The �rst step towards establishing convergence is the next proposition.

Proposition 15 Under assumptions (i), (iii){(v) of Theorem 11, for every
sequence fxkgk�0; generated by Algorithm 10, with �k = 1 for all k � 0; and
assuming (55), the sequence fF (xk)gk�0 with F de�ned by (56), is decreasing
and limk!1 kxk+1 � xkk2 = 0.

Proof. From (56) and Proposition 12 with (55) we obtain

F
�
xk
�
=

mX
i=1

PGi

Ci

�
xk
�
� T

�
xk
� 2

Gi

+


T �xk�� xk



2
2
: (58)

T (z) of (57) is similar to (18) only with the dependence on k removed, thus,
using (16) with �k = 1 for all k � 0, along with (55) we have that xk+1 =
T (xk). Since, by (5), PGi

Ci
(xk+1) minimizes x � xk+1 2

Gi
over all x 2 Ci, we

can continue (58) to obtain, for all k � 0,

F
�
xk
�
�

mX
i=1

PGi

Ci

�
xk+1

�
� xk+1 2

Gi

+


xk+1 � xk



2
2

= F
�
xk+1

�
+


xk+1 � xk



2
2
� F

�
xk+1

�
: (59)

The monotonicity and nonnegativity of fF (xk)gk�0 guarantee that the limit

limk!1 F (xk) exists, and thus, (59) implies limk!1



xk+1 � xk



2
= 0:

We denote the set of minimizers of the proximity function F by

� := f x̂ 2 Rn j F (x̂) � F (x); for all x 2 Rng: (60)

The next proposition establishes the Fej�er-monotonicity with respect to � of
the iterates.

Proposition 16 Under the conditions of Proposition 15, if � 6= ; then any
sequence fxkgk�0, generated by Algorithm 10, is Fej�er-monotone with respect
to �.
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Proof. Take any x̂ 2 � and use (59) with x0 = x̂ and x1 = T (x̂), then
we get

F (x̂) � F (T (x̂))+ k T (x̂)� x̂22 k2 : (61)

Since x̂ is a minimizer of F , F (x̂) � F (T (x̂)) and so (61) shows that T (x̂) = x̂.
Using Proposition 8 with y = xk, G = Gi, Q = Ci, z = PGi

Ci
(x̂), we obtain,

for i = 1; 2; : : : ; m, that for any sequence fxkgk�0, generated by Algorithm
10 with �k = 1 for all k � 0; and assuming (55),

PGi

Ci
(x̂)� xk

2

Gi

� PGi

Ci
(xk)� xk

2

Gi

+ PGi

Ci
(x̂)� PGi

Ci
(xk)

2

Gi

: (62)

Summing up all these inequalities, using Proposition 12 with (55) for the
resulting left-hand-side, and using (56), we obtain

mX
i=1

PGi

Ci
(x̂)� T (x̂)

2

Gi

+


T (x̂)� xk



2
2
� F (xk) + �(xk) ; (63)

where

�(v) :=
mX
i=1

PGi

Ci
(x̂)� PGi

Ci
(v)

2

Gi

: (64)

Using (56) again and the fact that T (x̂) = x̂, (63) can be rewritten as

x̂� xk


2
2
� F (xk)� F (x̂) + �(xk) : (65)

Since x̂ minimizes F , we have F (xk)� F (x̂) � 0. Denoting


i(v) := PGi

Ci
(x̂)� PGi

Ci
(v) ; (66)

we have, by (57),

mX
i=1

Gi

i(v) =

mX
i=1

GiP
Gi

Ci
(x̂)�

mX
i=1

GiP
Gi

Ci
(v) = T (x̂)� T (v) = x̂� T (v):

(67)

Then, from (64) and (2), we get

�(v) =
mX
i=1




i(v); Gi


i(v)
�
�

*
mX
i=1

Gi

i(v);

mX
i=1

Gi

i(v)

+
= kx̂� T (v)k22 ;

(68)
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which, along with (65) and xk+1 = T (xk), proves the required result. The
inequality in (68) follows from convexity considerations: Due to

Pm
i=1Gi = I

we have, for every j = 1; 2; : : : ; n, that
Pm

i=1 gij = 1 while gij � 0, for all i
and all j. Convexity of the real-valued function f(x) = x2 then implies that,
for every j = 1; 2; : : : ; n,

mX
i=1

gij
�

ij(v)

�2
�

mX
i=1

�
gij


i
j(v)

�2
: (69)

Summing up all these inequalities over j yields the inequality in (68).
Now we are ready to prove the convergence theorem.

Theorem 17 Under assumptions (i), (iii){(v) of Theorem 11, if the prox-
imity function F has minimizers, i.e., � 6= ;, then any sequence fxkgk�0,
generated by Algorithm 10 with �k = 1 for all k � 0; and assuming (55),
converges to a minimizer of F .

Proof. It follows from the Fej�er-monotonicity, established in Proposition
16, that fxkgk�0 is bounded, thus it has at least one cluster point. We show
now that any cluster point of fxkgk�0 is a minimizer of F . Let x� be a cluster
point of fxkgk�0 and let x̂ 2 �. Using Proposition 8 with y = x�, G = Gi,
Q = Ci, z = PGi

Ci
(x̂), for i = 1; 2; : : : ; m, summing up all inequalities, using

Proposition 12 with (55) and Equations (56) and (64), we obtain

F (x̂) + kx̂� x�k22 � F (x�) + �(x�) : (70)

The fact that limk!1 kxk+1 � xkk2 = 0 (see Proposition 15) guarantees that
T (x�) = x� because x� is a cluster point. Thus (70) and (68) show that
F (x̂) � F (x�): Finally, if x� is a cluster point of fxkgk�0, then x� 2 � and
Proposition 16 guarantees that, for all k � 0,

0 �


x� � xk+1




2
�


x� � xk




2
: (71)

Thus, lim
k!1

kx� � xkk2 exists and since x� is a cluster point, this limit must

be zero, proving that x� is the limit of fxkgk�0.
Now we can introduce underrelaxation parameters as follows.

Theorem 18Under assumptions (i), (iii){(v) of Theorem 11, if the prox-
imity function F has minimizers, i.e., � 6= ;, then any sequence fxkgk�0,
generated by Algorithm 10 with 0 < � � �k � 1 for all k � 0; for some
arbitrarily small but �xed �; and assuming (55), converges to a minimizer of
F .

19



Proof. Similar to the proof of Theorem 14.
The special case when in Theorem 17 all matrices Gi = (1=m)I, i =

1; 2; : : : ; m, then the proximity function F of (56) is the classical least-squares
measure, and the projections PGi

Ci
are the orthogonal projections, was investi-

gated by Iusem and De Pierro [23] and Combettes [18]. The case considered
in [23] and in [18] is also covered by the results of Bauschke and Borwein [4,
Theorem 6.2] where a discussion on when � is nonempty is also o�ered.
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