
On the String Averaging Method for
Sparse Common Fixed Points

Problems

Yair Censor and Alexander Segal
({yair,asegal}@math.haifa.ac.il)

Department of Mathematics, University of Haifa
Mt. Carmel, Haifa 31905, Israel

January 16, 2008. Revised: October 14, 2008.

Abstract

We study the common �xed point problem for the class of di-
rected operators. This class is important because many commonly
used nonlinear operators in convex optimization belong to it. We
propose a de�nition of sparseness of a family of operators and investi-
gate a string-averaging algorithmic scheme that favorably handles the
common �xed points problem when the family of operators is sparse.
The convex feasibility problem is treated as a special case and a new
subgradient projections algorithmic scheme is obtained.

1 Introduction

Given a �nite family of operators fTigmi=1 acting on the Euclidean space Rn
with FixTi 6= ;; i = 1; 2; : : : ;m; the common �xed point problem is to �nd a
point

x� 2 \mi=1 FixTi; (1)

where FixTi is the �xed points set of Ti: In this paper we study the common
�xed point problem for sparse directed operators. We use the term directed
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operators for operators in the =-class of operators as de�ned and investigated
by Bauschke and Combettes in [3] and by Combettes in [18]. Additionally,
we focus on sparse operators and, for that purpose, we give a de�nition of
sparseness of a family of operators.
The signi�cance of working with this class stems from the fact that many

commonly used types of nonlinear operators arising in convex optimization
are directed operators (see, e.g., [3]) and, when developing algorithms for the
problem (1) for such operators, we take advantage of their sparsity, whenever
it exists.
The algorithms that are in use to �nd a common �xed point can be, from

their structural view point, sequential, when only one operator at a time is
used in each iteration, or simultaneous (parallel), when all operators in the
given family are used in each iteration. There are algorithmic schemes which
encompass sequential and simultaneous properties. These are the, so called,
string-averaging [9] and block-iterative projections (BIP) [1], schemes, see
also [15]. It turns out that the sequential and the simultaneous algorithms
are special cases of the string-averaging and of the BIP algorithmic schemes.
Our objective here is to propose and study a string-averaging algorithmic

scheme that enables component-wise weighting. Our work is a theoretical de-
velopment aimed at gauging how far can the notions of sparsity, component-
weighting and algorithmic string-averaging be expanded to cover the common
�xed point problem for directed operators. The origins lie in [11] where a
simultaneous projection algorithm, called component averaging (CAV), for
systems of linear equations, that uses component-wise weighting was pro-
posed. Such weighting enables, as shown and demonstrated experimentally
on problems of image reconstruction from projections in [11], signi�cant and
valuable acceleration of the early algorithmic iterations due to the high spar-
sity of the system matrix appearing there. A block-iterative version of CAV,
named BICAV, was introduced later in [12]. Full mathematical analyses of
these methods, as well as their companion algorithms for linear inequalities,
were presented by Censor and Elfving [10] and by Jiang and Wang [25]. In
Section 2 we present preliminary material on directed operators and discuss
some of their particular cases. In Section 3 we develop and study our string-
averaging algorithmic scheme. In Section 4 we consider, as a special case,
the convex feasibility problem and apply our algorithm from Section 3 using
subgradient projectors.
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1.1 Earlier work

The string-averaging algorithmic scheme has attracted attention recently and
further work on it has been reported since its presentation in [9]. In [14] we in-
vestigated the behavior of string-averaging algorithms for inconsistent convex
feasibility problems. In Bauschke, Matou�ková and Reich [4] string-averaging
was studied in Hilbert space. In Crombez [19, 20] the string-averaging al-
gorithmic paradigm is used to �nd common �xed points of certain paracon-
tractive operators in Hilbert space. In Bilbao-Castro, Carazo, García and
Fernández [6], an implementation of the string-averaging method to elec-
tron microscopy is reported. Butnariu, Davidi, Herman and Kazantsev [7]
call a certain class of string-averaging methods the Amalgamated Projection
Method and show its stable behavior under summable perturbations. The
iterative procedure studied in Butnariu, Reich and Zaslavski [8, Sections 6
and 7] is also a particular case of the string-averaging method. In Rhee [27]
the string-averaging scheme is applied to a problem in approximation theory.
The notion of sparseness is very well understood and used for matrices

and, from there, the road to sparseness of the Jacobian (or generalized Jaco-
bian) matrix as an indicator of sparseness of nonlinear operators is short, see,
e.g., Betts and Frank [5]. Our de�nition of sparseness of operators does not
require di¤erentiability (or subdi¤erentiability) and generalizes those previ-
ous notions.

2 Directed operators

We recall the de�nitions and results on directed operators and their prop-
erties as they appear in Bauschke and Combettes [3, Proposition 2.4] and
Combettes [18], which are also sources for further references on the subject.
Let hx; yi and kxk be the Euclidean inner product and norm, respectively,
in Rn.
Given x; y 2 Rn we denote the half-space

H(x; y) := fu 2 Rn j hu� y; x� yi � 0g : (2)

De�nition 1 An operator T : Rn ! Rn is called directed if

FixT � H(x; T (x)); for all x 2 Rn; (3)
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or, equivalently,

if z 2 FixT then hT (x)� x; T (x)� zi � 0; for all x 2 Rn: (4)

The class of directed operators is denoted by =: Bauschke and Combettes
[3] de�ned the directed operators (although without using this name) and
showed (see [3, Proposition 2.4]) (i) that the set of all �xed points of a
directed operator T with nonempty FixT is closed and convex because

FixT =
T

x 2 Rn
H (x; T (x)) ; (5)

and (ii) that the following holds

If T 2 = then I + �(T � I) 2 =; for all � 2 [0; 1]; (6)

where I is the identity operator. The localization of �xed points is discussed
in [23, pages 43-44]. In particular, it is shown there that a �rmly nonexpan-
sive operator, namely, an operator N : Rn ! Rn that ful�lls

kN(x)�N(y)k2 � hN(x)�N(y); x� yi ; for all x; y 2 Rn; (7)

satis�es (5) and is, therefore, a directed operator. The class of directed oper-
ators, includes additionally, according to [3, Proposition 2.3], among others,
the resolvents of a maximal monotone operators, the orthogonal projections
and the subgradient projectors (see Example 7 below). Note that every di-
rected operator belongs to the class of operators F0; de�ned by Crombez [21,
p. 161], whose elements are called elsewhere quasi-nonexpansive or paracon-
tracting operators.
The following de�nition of a closed operator will be required.

De�nition 2 An operator T : Rn ! Rn is said to be closed at y 2 Rn if for
every x 2 Rn and every sequence

�
xk
	1
k=0

in Rn; such that, limk!1 x
k = x

and limk!1 T (x
k) = y; we have T (x) = y:

For instance, the orthogonal projection onto a closed convex set is every-
where a closed operator, due to its continuity.

Remark 3 [18] If T : Rn ! Rn is nonexpansive, then T � I is closed on
Rn:
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Consider a �nite family Ti : Rn ! Rn; i = 1; 2; : : : ;m; of operators. In
sequential algorithms for solving the common �xed point problem the order
by which the operators are chosen for the iterations is determined by a control
sequence of indices fi(k)g1k=0 ; see, e.g., [15, De�nition 5.1.1].

De�nition 4 (i) Cyclic control. A control sequence is cyclic if i(k) =
kmodm+ 1; where m is the number of operators in the common �xed point
problem.
(ii)Almost cyclic control. fi(k)g1k=0 is almost cyclic on f1; 2; : : : ;mg;

if 1 � i(k) � m for all k � 0; and there exists an integer c � m (called the
almost cyclicality constant), such that, for all k � 0, f1; 2; : : : ;mg �
fi(k + 1); i(k + 2); : : : ; i(k + c)g:

The notions �cyclic�and �almost cyclic�are sometimes also called �pe-
riodic�and �quasi-periodic�, respectively, see, e.g., [22].
Given a �nite family Ti : Rn ! Rn; i = 1; 2; : : : ;m; of directed operators

with a nonempty intersection of their �xed points sets, such that Ti � I are
closed at 0; for every i 2 f1; 2; : : : ;mg: The following algorithm for �nding a
common �xed point of such a family is a special case of [18, Algorithm 6.1].
We will use it in the sequel.

Algorithm 5 Almost Cyclic Sequential Algorithm (ACSA) for solv-
ing common �xed point problem
Initialization: x0 2 Rn is an arbitrary starting point.
Iterative Step: Given xk; compute xk+1 by

xk+1 = xk + �k(Ti(k)
�
xk
�
� xk): (8)

Control: fi(k)g1k=0 is almost cyclic on f1; 2; : : : ;mg.
Relaxation parameters: f�kg1k=0 are con�ned to the interval [0; 2].

The convergence theorem for Algorithm 5 for a �nite family of directed
operators is as follows.

Theorem 6 Let fTigmi=1 be a �nite family of directed operators Ti : Rn !
Rn, which satis�es
(i) 
 := \mi=1 FixTi is nonempty, and
(ii) Ti � I are closed at 0; for every i 2 f1; 2; : : : ;mg:
Then any sequence

�
xk
	1
k=0

; generated by Algorithm 5, converges to a
point in 
:
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Proof. This follows as a special case of [18, Theorem 6.6 (i)].
In the next de�nition and lemma we recall the notion of the subgradient

projector and show that this operator satis�es condition (ii) of Theorem 6.

De�nition 7 See, e.g., [3, Proposition 2.3(iv)]. Let f : Rn ! R be a convex
function such that the level-set F := fx 2 Rn j f(x) � 0g is nonempty. The
operator

�F (y) :=

8<: y � f(y)
kqk2

q, if f(y) > 0;

y; if f(y) � 0;
(9)

where q is a selection from the subdi¤erential set @f(y) of f at y; is called a
subgradient projector relative to f:

Lemma 8 Let f : Rn ! R be a convex function, let y 2 Rn and assume
that the level-set F 6= ;. For any q 2 @f(y); de�ne the closed convex set

L = Lf (y; q) := fx 2 Rn j f(y) + hq; x� yi � 0g: (10)

Then the following hold:
(i) F � L: If q 6= 0 then L is a half-space, otherwise L = Rn.
(ii) Denoting by PL(y) the orthogonal projection of y onto L;

PL(y) = �F (y): (11)

(iii) PL � I is closed at 0.

Proof. For (i) and (ii) see, e.g., [2, Lemma 7.3]. (iii) Denote 	 = PL�I:
Take any x 2 Rn and any sequence

�
xk
	1
k=0

in Rn; such that, limk!1 x
k = x

and limk!1	(x
k) = 0: Since f is convex, its subdi¤erential is uniformly

bounded on bounded sets, see, e.g., [2, Corollary 7.9]. Using this and the
continuity of f we obtain, from (9), that f(x) = 0; and, therefore, 	(x) = 0:

3 The new string averaging algorithmic scheme

We study here a particular modi�cation of the string averaging paradigm,
adapted to handle the common �xed point problem for sparse directed oper-
ators.
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3.1 The string averaging prototypical scheme

The string averaging prototypical scheme is de�ned as follows. Let the string
Sp; for p = 1; 2; : : : ; t; be a �nite, nonempty ordered subset of elements taken
from f1; 2; : : : ;mg of the form

Sp :=
n
ip1; i

p
2; : : : ; i

p

(p)

o
: (12)

The length 
(p) of the string Sp is the number of its elements. We do not
require that the strings fSpgtp=1 should be disjoint. Suppose that there is a
set Q � Rn such that there are operators V1; V2; : : : ; Vm mapping Q into Q
and an operator V which maps Qt = Q�Q�� � ��Q into Q: Then the string
averaging prototypical scheme is as follow.

Algorithm 9 The string averaging prototypical algorithmic scheme
[9]
Initialization: x0 2 Q is an arbitrary starting point.
Iterative Step: Given the current iterate xk;
(i) calculate, for all p = 1; 2; : : : ; t;

Mp(x
k) := Vip


(p)
: : : Vip2Vi

p
1
(xk); (13)

(ii) and then calculate,

xk+1 = V (M1(x
k);M2(x

k); : : : ;Mt(x
k)): (14)

For every p = 1; 2; : : : ; t; this algorithmic scheme applies to xk successively
the operators whose indices belong to the p-th string. This can be done in
parallel for all strings and then the operator V maps all end-points onto the
next iterate xk+1: This is indeed an algorithm provided that the operators
fVigmi=1 and V all have algorithmic implementations. In this framework we
get a sequential algorithm by the choice t = 1 and S1 = f1; 2; : : : ;mg and a
simultaneous algorithm by the choice t = m and Sp = fpg ; p = 1; 2; : : : ; t:
In our new algorithmic scheme we assume that a �nite family of directed

operators (see De�nition 1) fTigmi=1 is given with \mi=1 FixTi 6= ;: After apply-
ing the operators fTigmi=1 along strings, the end-points will be averaged not
by taking a plain convex combination but by doing a, so called, component-
averaging step. The component averaging principle, introduced for linear
systems in [11], [12], is a useful tool for handling sparseness in the linear
case.

7



3.2 Sparseness of operators and the new algorithm

To de�ne sparseness of the set of operators fTigmi=1 we need to speak about
zeros of the vectors x� Ti(x):

De�nition 10 Let T : Rn ! Rn be a directed operator. If (x� T (x))j = 0;
for all x =2 FixT then j is called a void of T and we write j = voidT:

For every i 2 f1; 2; : : : ;mg de�ne the following sets

Zi := f(i; j) j 1 � j � n; j = voidTig ; (15)

i.e., Zi contains all the pairs (i; j); such that (x�Ti(x))j = 0; for all x =2 FixTi:

De�nition 11 The family of directed operators fTigmi=1 will be called sparse
if the set Z := [mi=1Zi is nonempty and contains many elements.

Remark 12 The word �many� in De�nition 11 is not well-de�ned. The
more pairs (i; j) are contained in Z the higher is the sparseness of the family.
It is of some interest to note that sparseness of matrices was considered
as early as in 1971. Wilkinson [28, p. 191] refers to it by saying: �We
shall refer to a matrix as dense if the percentage of zero elements or its
distribution is such as to make it uneconomic to take advantage of their
presence�. Obviously, denseness is meant here as an opposite of sparseness.

Denote by Ij; 1 � j � n; the set of indices of strings that contain an
index of an operator Ti for which (i; j) =2 Zi, i.e.,

Ij := fp j 1 � p � t; (i; j) =2 Zi for some i 2 Spg (16)

and let sj = jIjj (the cardinality of Ij). Equivalently,

Ij = fp j 1 � p � t; j 6= voidTi for some i 2 Spg : (17)

De�nition 13 [24, De�nition 1] The component-wise string averaging
operator relative to the family of strings S := fS1; S2; : : : ; Stg is a
mapping CAS : Rn�t ! Rn; de�ned as follows. For x1; x2; : : : ; xt 2 Rn;�

CAS(x
1; x2; : : : ; xt)

�
j
:= (1=sj)

X
p2Ij

xpj ; for all 1 � j � n; (18)

where xpj is the j-th component of x
p, for 1 � p � t:
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Our new scheme performs sequential steps within each of the strings of
the family S and merges the resulting end-points by the component-wise
string averaging operator (18) as follows.

Algorithm 14
Initialization: x0 2 Rn is an arbitrary starting point and de�ne an

integer constant N , such that N � m.
Iterative step: Given xk, compute xk+1 as follows:
(i) For every 1 � p � t (possibly in parallel): Execute a �nite number,

not exceeding N; of iterative steps of the form (8), on the operators fTigi2Sp
of the p-th string and denote the resulting end-points by fxpgtp=1:
(ii) Apply

xk+1 = CAS(x
1; x2; : : : ; xt): (19)

3.3 Convergence

For the proof of convergence of Algorithm 14 we need the following con-
struction. From the family fTigmi=1 of directed operators in Rn we construct
another family of directed operators in a higher-dimensional space Rs and a
family of strings for those operators. For the new operators and new strings,
the operators belonging to di¤erent strings do not share any common vari-
ables. Therefore, the parallel processing of the strings in Rn in (i) of Algo-
rithm 14 is equivalent to performing sequential ACSA iterations on the new
directed operators in Rs: Moreover, using ideas of Pierra�s [26] formalization,
we show that the component-wise string averaging step in (ii) of Algorithm
14 is equivalent to an orthogonal projection onto a certain subspace of Rs:
Inspired by the construction in [24], this is done as follows.
We represent each Ij is explicitly as

Ij =
�
pj;1; pj;2; : : : ; pj;sj

	
; (20)

which de�nes each double-indexed p in an obvious way. Let Rs be the s-
dimensional Euclidean space, where s =

Pn
j=1 sj; and denote the components

of each y 2Rs by

y = (y1;1; y1;2; : : : ; y1;s1| {z }
s1 elements

; : : : ; yn;1; yn;2; : : : ; yn;sn| {z }
sn elements

) = fyj;`gn;sjj=1;`=1 : (21)
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De�ne a linear mapping

� : Rn ! Rs; by �(x) = �(x1; x2; : : : ; xn) := y; (22)

where yj;pj;1 = yj;pj;2 = : : : = yj;pj;sj = xj for j = 1; 2; : : : ; n: Let D be the
range of �; i.e.,

D : =

8<:d 2 Rs j d =(d1; d1; : : : ; d1| {z }
s1 times

; : : : ; dn; dn; : : : ; dn| {z })
sn times

9=; ; (23)

which is a subspace of Rs: De�ne 
 new operators where 
 =
Pt

p=1 
(p) in

the following manner: For each p, fipwg

(p)
w=1 are the indices of the operators Ti

that are included in the string Sp; see (12). To each pair (ipw; p) we attach a
new operator Tipw;p : R

s ! Rs; de�ned by

Tipw;p(y) := Up(Tipw(�p(y))); (24)

where the operators in the right-hand side of (24) are de�ned as follows.
�p : R

s ! Rn, 1 � p � t; is de�ned component-wise for each 1 � j � n as

(�p(y))j :=

�
yj;l; if pj;l = p; for some ` 2 f1; 2; : : : ; sjg;
0; otherwise:

(25)

Tipw is the w-th directed operator in the string Sp and Up : R
n ! Rs; 1 � p �

t; is de�ned component-wise for each 1 � j � n and 1 � ` � sj as

(Up(x))j;` =

�
xj; if pj;` = p;
0; otherwise:

(26)

The new operators Tipw;p have �xed point sets FixTipw;p � Rs: Each string

Sp =
n
ip1; i

p
2; : : : ; i

p

(p)

o
in Rn gives rise to a string

Sp =
n
(ip1; p); (i

p
2; p); : : : ; (i

p

(p); p)

o
(27)

of the same length in Rs: Note, that operators Tipw;p that belong to di¤erent
strings in the family of strings fSpgtp=1 do not have a common variable which
is not a void.
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Lemma 15 Every operator Tipw;p; 1 � p � t; 1 � ipw � 
(p) is a directed
operator and Tipw;p � I is closed at 0, where I is the identity operator in Rs:

Proof. If z 2 FixTipw;p then z 2 ImUp; the image set of Up: Moreover,
then also �p(z) = z� 2 FixTipw : For every x 2 Rs we have


Tipw;p(x)� x;Tipw;p(x)� z
�

=


�p(Tipw;p(x))� �p(x);�p(Tipw;p(x))� �p(z)

�
= hTipw(�p(x))� �p(x); Tipw(�p(x))� z

�i � 0; (28)

since the operator Tipw is directed, therefore, (28) implies that Tipw;p is also
directed. Next, we show that Tipw;p � I is closed at 0: Let

�
xk
	1
k=1

be a
sequence in Rs; such that limk!1 x

k = x and limk!1
�
Tipw;p(x

k)� xk
�
= 0:

Since the operator �p is continuous, we obtain

lim
k!1

�p(x
k) = �p(x); (29)

and
lim
k!1

�
Tipw(�p(x

k))� �p(xk)
�
= 0: (30)

The operator Tipw � I is closed at zero and, therefore,

Tipw(�p(x)) = �p(x): (31)

Applying Up to both sides of (31), we obtain

Tipw;p(x) = Up(�p(x)): (32)

From
x = lim

k!1
Tipw;p(x

k) = Up �
�
lim
k!1

Tipw(�p(x
k))
�
; (33)

follows that x 2 ImUp and therefore Up(�p(x)) = x. Then, from (32) one
has that Tipw;p(x) = x from which the closedness of Tipw;p � I follows.
De�ne the set

C = \tp=1;

(p)
w=1 FixTipw;p: (34)

The mapping � : Rn ! D is a one-to-one mapping. Therefore, in the space
Rs; we can reformulate the problem (1) as

Find y 2 C \D: (35)
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This means that

x 2 \mi=1 FixTi if and only if y =�(x) 2 C \D; (36)

and, hence, the m�sets problem (1) is reduced to the 2-sets problem (35),
which involves only a vector subspace and a convex set.
Next we present the alternative formulation of the Algorithm 14 in which

the operations are performed in Rs:

Algorithm 16
Initialization:
(i) x0 2 Rn is arbitrary and de�ne an integer constant N , such that

N � m.
(ii) y0 = �(x0) is the initial vector in Rs:
Iterative step: Given yk, compute yk+1 via:
(i) In Rs; for every 1 � p � t (possibly in parallel): Execute a �nite

number, not exceeding N; of iterative steps of the form (8) on the operators�
Tipw;p

	
(p)
w=1

of the p-th string and denote the resulting end-points by fypgtp=1:
(ii) Apply CAS in Rs as follows. For 1 � j � n; set

yk+1j;1 = : : : = yk+1j;sj
=
1

sj

 
sjX
`=1

y
pj;`
j;`

!
: (37)

(iii) Denote yk+1 := (yk+11;1 ; y
k+1
1;2 ; : : : ; y

k+1
1;s1
; : : : ; yk+1n;1 ; y

k+1
n;2 ; : : : ; y

k+1
n;sn):

The following lemma shows that the averaging operation in the iterative
step (ii) of Algorithm 16 is the orthogonal projection onto the subspace D:

Lemma 17 Let y =(y1;1; y1;2; : : : ; y1;s1 ; : : : ; yn;1; yn;2; : : : ; yn;sn) 2 Rs; then

PD(y) = �(
1

s1

s1X
`1=1

y1;`1 ;
1

s2

s2X
`2=1

y2;`2 ; : : : ;
1

sn

snX
`n=1

yn;`n): (38)

Proof. Using the de�nition of the orthogonal projection we obtain

kPD(y)� yk2 = min
�
k�(d)� yk2 j d 2 Rn

	
= min

(
nX
j=1

sjX
`=1

jdj � yj;`j2 j d 2 Rn
)
: (39)
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The minimum is obtained when the gradient is equal to zero,

@

@dj

 
nX
j=1

sjX
`=1

jdj � yj;`j2
!
= 0; for all j = 1; 2; : : : n: (40)

Then,
sjX
`=1

(dj � yj;`) = 0; for all j = 1; 2; : : : n; (41)

and

dj =
1

sj

sjX
`=1

yj;`; for all j = 1; 2; : : : n; (42)

and the proof is complete.
Now we are ready to prove our main convergence result.

Theorem 18 If \mi=1 FixTi 6= ; then any sequence
�
xk
	1
k=0

; generated by
the Algorithm 14, converges to a solution of (1).

Proof. The consistency assumption on the problem (1) implies that (35)
is also consistent. Moreover, Lemma 28 guarantees that all the operators are
directed and that Tipw;p� I; 1 � w � 
(p), 1 � p � t and PD� I are closed at
0: The Algorithm 16 can be executed in Rs in parallel or sequentially; since
the strings do not contain any common non-void variables. Therefore, from
Theorem 6 follows convergence to a common �xed point of the operators
Tipw;p; 1 � w � 
(p), 1 � p � t; and PD and the proof is complete.

4 Special case: The convex feasibility prob-
lem

The convex feasibility problem (CFP) is to �nd a point x� in the intersection
C of m closed convex subsets C1; C2; : : : ; Cm � Rn. Each Ci is expressed as

Ci = fx 2 Rn j fi(x) � 0g ; (43)

where fi : Rn ! R is a convex function, so the CFP requires a solution of
the system of convex inequalities

fi(x) � 0; i = 1; 2; : : : ;m: (44)
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The convex feasibility problem is a special case of the common �xed point
problem, where the directed operators are the subgradient projectors relative
to fi (see, Example 7 and Lemma 8 above).
In a recent paper by Gordon and Gordon [24] a new parallel �Component-

Averaged Row Projections (CARP)�method for the solution of large sparse
linear systems was introduced. It proceeds by dividing the equations into
nonempty, not necessarily disjoint, sets (strings), performing Kaczmarz row
projections within the strings, and merging the results by component-averaging
operations to form the next iterate. As shown in [24], using orthogonal pro-
jections onto convex sets, this method and its convergence proof also apply
to the consistent nonlinear CFP.
In contrast, when applied to a CFP, our Algorithm 14 gives rise to a

method which is structurally similar to CARP but uses subgradient pro-
jections instead of orthogonal projections. This is, of course, a development
that might be very useful for CFPs with nonlinear convex sets for which each
orthogonal projection mandates an inner-loop of distance optimization. We
use now our results from Section 3 to present a string-averaging algorithm
with component-wise averaging for a sparse CFP.
Sparseness of the nonlinear system (44) can be de�ned in compliance

with De�nitions 10 and 11 by speaking about zeros of the subgradients of
the functions fi and to do so we use the next de�nition.

De�nition 19 Let fi : Rn ! R; i = 1; 2; : : : ;m; be convex functions. For
any x 2 Rn; the m � n matrix Q(x) = (qij)mi=1;nj=1 is called a generalized
Jacobian of the family of functions ffigmi=1 at the point x if qij �
qij; for all i and all j; for some q

i = (qij)
n
j=1 such that q

i 2 @fi(x).

This de�nition coincides in our case with the Clarke�s generalized Jaco-
bian, see [16] and [17]. A generalized Jacobian Q(x) of the functions in (44)
is not unique because of the possibility to �ll it up with di¤erent subgradients
from each subdi¤erential set. In case all fi are di¤erentiable the generalized
Jacobian reduces to the usual Jacobian.
We de�ne for every i 2 f1; 2; : : : ;mg the following sets

Zi := f(i; j) j 1 � j � n; fi(x) is independent of xj for all x 2 Rng : (45)

A mapping F : Rn ! Rm given by F (x) = ffi(x)gmi=1 will be called sparse if
some of its component functions fi do not depend on some of their variables

14



xj which means that Z = [mi=1Zi 6= ;: The more pairs (i; j) are contained in
Z the higher is the sparseness of the mapping F:
Next we recall the cyclic subgradient projections (CSP) method for the

CFP (studied in [13]) which is a special version of the ACSA algorithm
(Algorithm 5).

Algorithm 20 Cyclic Subgradient Projections (CSP)
Initialization: x0 2 Rn is arbitrary.
Iterative step:

xk+1 :=

8<: xk � �k
fi(k)(x

k)

qk

2 qk, if fi(k)(xk) > 0,

xk, if fi(k)(xk) � 0,
(46)

where qk 2 @fi(k)(xk) is a subgradient of fi(k) at the point xk.
Relaxation parameters: f�kg1k=0 are con�ned to the interval ["; 2� "],

where " > 0.
Control: Almost cyclic on f1; 2; : : : ;mg.

According to our scheme the algorithm for solving the CFP performs CSP
steps within the strings and merges the results by the CAS(x1; x2; : : : ; xt)
component-averaging operation.

Algorithm 21
Initialization: x0 2 Rn is arbitrary and de�ne an integer constant N ,

such that N � m.
Iterative step: Given xk, compute xk+1 via:
(i) For every 1 � p � t (possibly in parallel): Execute a �nite number,

not exceeding N; of CSP steps on the inequalities of the p-th string Sp and
denote the resulting point by fxpgtp=1:
(ii) Apply

xk+1 = CAS(x
1; x2; : : : ; xn): (47)
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