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Abstract

We study the behavior of subgradient projections algorithms for
the quasiconvex feasibility problem of finding a point x∗ ∈ Rn that
satisfies the inequalities f1(x∗) ≤ 0, f2(x∗) ≤ 0, . . . , fm(x∗) ≤ 0, where
all functions are continuous and quasiconvex. We consider the consis-
tent case when the solution set is nonempty. Since the Fenchel-Moreau
subdifferential might be empty we look at different notions of the sub-
differential and determine their suitability for our problem. We also
determine conditions on the functions, that are needed for conver-
gence of our algorithms. The quasiconvex functions on the left-hand
side of the inequalities need not be differentiable but have to satisfy a
Lipschitz or a Hölder condition.

1 Introduction

In this paper we study the behavior of iterative subgradient projections algo-
rithms for solving systems of inequalities with continuous quasiconvex func-
tions on the left-hand side. This problem, called the quasiconvex feasibility
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problem (QFP), is defined as follows. Let Rn be the n-dimensional Euclidean
space, and let f1(x), f2(x), · · · , fm(x) be continuous quasiconvex functions
defined on Rn. The quasiconvex feasibility problem is to find a point x∗,
such that f1(x∗) ≤ 0, f2(x∗) ≤ 0, · · · , fm(x∗) ≤ 0. We consider the consistent
case, i.e., the case when a solution exists. The notion quasiconvex feasibility
problem was introduced by Goffin, Luo and Ye in [18], where they used cut-
ting planes algorithms and only the differentiable case was considered there.
The convex feasibility problem (CFP), which is a special case of the quasi-

convex feasibility problem, was well-studied in the last decades. This funda-
mental problem has many applications in and outside mathematics in fields
such as: optimization theory (see, e.g., Polyak [33], Eremin [15], Censor and
Lent [4] and Chinneck [11]), approximation theory (see, e.g., von Neumann
[39], Halperin [20] and Deutsch [14]), image reconstruction from projections
and computerized tomography (see, e.g., Herman [21], [22], Censor [6] — [10])
and other areas.
The algorithmic approach to solving the CFP was comprehensively inves-

tigated, see, e.g., Bauschke and Borwein [2], Censor [5], for general overviews
of algorithms and, e.g., Crombez [12] and [13] for some recent results. In
this study we investigate the possibilities of modifying and adapting some
of these algorithmic schemes so that they become applicable to the QFP. In
particular, we look at the cyclic subgradient projections (CSP) (Censor and
Lent [4]), parallel subgradient projections (PSP) (dos Santos [35], [36]) and
Eremin’s algorithmic scheme [16]. The common idea of all these algorithms
is to employ projections of different types, with respect to the individual
level-sets of the functions, to generate a sequence of points that converges
to a solution. When the functions on the left-hand side of the inequalities
are quasiconvex the situation is much more complicated because such func-
tions lack separation properties that convex functions have. Straightforward
generalizations of the aforementioned algorithms are not possible because
the subdifferential of Fenchel-Moreau might be empty at some points, thus,
inapplicable to quasiconvex functions.
Using different notions for subdifferentials, we develop algorithms for the

QFP for functions that are not necessarily differentiable, but have to satisfy a
Lipschitz or a Hölder condition. In Section 2 we present preliminary material
and discuss several notions of subdifferentials. In Section 3 we present and
study our algorithms for solving quasiconvex feasibility problems and clarify
the relation between them and existing methods for subgradient minimiza-
tion. In Section 4 we present additional algorithms for the QFP, based on a

2



class of algorithms of Eremin.

2 Background and Preliminaries

We use the books of Rockafellar [34], Hiriart-Urruty and Lemaréchal [23],
as our desk-references for convex analysis. We work in the n-dimensional
Euclidean space Rn where hx, yi and kxk are the Euclidean inner product
and norm, respectively. A function f : X → R ∪ {+∞} is a proper function
if dom(f) := {x ∈ Rn | f(x) < +∞} is nonempty. For any a ∈ R the level
( respectively, strict level) set of f, corresponding to a, is the set

levf(a) = {x ∈ Rn | f(x) ≤ a}, (1)

respectively,

lev<f (a) = {x ∈ Rn | f(x) < a}. (2)

Given a set C ⊆ Rn, we denote by intC, riC, clC and bdC its interior,
relative interior, closure and boundary, respectively.

Definition 1 (Normal cone) A normal cone to a set C ⊆ Rn at a
point z ∈ Rn is denoted and defined by

NC(z) := {q ∈ Rn | hq, y − zi ≤ 0, for all y ∈ C}. (3)

Observe that this definition does not require that z ∈ clC, see, e.g.,
Gromicho [19, p. 15].

Definition 2 (Orthogonal projection) Given a set C ⊆ Rn and a point
z ∈ Rn, an orthogonal projection of z onto C, denoted PC(z), is a
point PC(z) ∈ C, such that

kz − PC(z)k = inf{kz − yk | y ∈ C}. (4)

If C is nonempty, closed and convex then the projection exists and is
unique, see, e.g., [23, p. 46]. The following notion of subdifferential plays an
important role in convex analysis and in algorithms for solving the CFP.
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Definition 3 (The Fenchel-Moreau subdifferential) Given a function
f and a point z, the Fenchel-Moreau (FM) subdifferential of f at z
is defined by

∂FMf(z) = {t ∈ Rn | ht, x− zi ≤ f(x)− f(z), for all x ∈ Rn} . (5)

Definition 4 (Quasiconvex function) Let f : C → R, where C is a
nonempty convex set in Rn. The function f is said to be quasiconvex if,
for all x, y ∈ C, the following inequality holds

f(θx+ (1− θ)y) ≤ max {f(x), f(y)} , for all θ ∈ (0, 1). (6)

Quasiconvexity has a geometrical interpretation, indeed f is quasiconvex
if and only if its level-sets levf(a) are convex for all a ∈ R which, in turn, is
true if and only if its strict level-sets lev<f (a) are convex for all a ∈ R. Convex
functions have convex level sets (see, e.g., [34, Theorem 4.6]), and, therefore,
are quasiconvex, but the converse is not true (e.g., the function log x on
(0,+∞)). Applications of quasiconvex functions which are not convex can be
found in approximation theory (fractional programming), see, e.g., Bajona-
Xandri and Martinez-Legaz [1], Boncompte and Martinez-Legaz [3], Stancu-
Minasian [38], location theory, see, e.g., Gromicho [19], microeconomic theory
(utility functions), see, e.g., Mas-Colell, Whinston and Green [29].
Using (2) and Definition 1 we introduce the notation for the cone

Nlev<f (z) := {q ∈ R
n | hq, y − zi ≤ 0, for all y ∈ lev<f (f(z))} (7)

where f : Rn → R is a quasiconvex function. This cone is never empty
because it contains the origin and it follows directly from a separation ar-
gument [34, Theorem 11.3] that Nlev<f (z) never reduces to the origin alone.
Techniques for computing elements of the normal cone to a level-set can be
found, e.g., in the recent book by Gromicho [19].

Definition 5 (Hölder condition) A function f : Rn → R is said to satisfy
the Hölder condition with degree β at a point z on a set C ⊆ Rn
if there exists a number L <∞ and a β ∈ (0, 1] such that

|f(y)− f(z)| ≤ L ky − zkβ , for all y ∈ C. (8)

A Hölder condition can be verified by estimating the growth behavior of
a function. Note that if a function satisfies a Hölder condition then it is
uniformly continuous and, therefore, continuous. The Hölder condition with
degree 1 is called the Lipschitz condition.

4



2.1 Various subdifferentials and their connections

For generalization of gradient methods to nondifferentiable quasiconvex func-
tions we need to use a broader notion than the FM-subdifferential because
the FM-subdifferential is usually empty even for a differentiable nonconvex
function on Rn, e.g., the real-valued single variable function y = x3 at x = 0.
For functions that are not convex, concave or saddle and are not differen-
tiable several notions of subdifferentials have been proposed in the literature.
In the last thirty years there have been several attempts to define an appro-
priate notion of subdifferential for quasiconvex functions. The oldest one is
the Greenberg-Pierskalla (GP) subdifferential [17].

Definition 6 (Greenberg-Pierskalla subdifferential) Given a function
f and a point z, the GP-subdifferential of f at z, is defined by

∂GPf(z) = {t ∈ Rn | ht, x− zi ≥ 0 =⇒ f(x) ≥ f(z)}. (9)

Independently from Greenberg and Pierskalla, this same notion has been
introduced by Zabotin, Korablev and Khabibullin [40] under the name gen-
eralized support. The GP-subdifferential is often called quasi-subdifferential.
A variation of the GP-subdifferential is the star-subdifferential.

Definition 7 (Star-subdifferential) Given a function f and a point z, the
star-subdifferential of f at z, is defined by

∂?f(z) :=

½
{t ∈ Rn\{0} | ht, x− zi > 0 =⇒ f(x) ≥ f(z)}, z /∈ Γ,
Rn, z ∈ Γ,

(10)

where Γ is the set of minimizers of f .

Obviously, ∂GPf(z)\{0} ⊆ ∂?f(z). If f is quasiconvex on Rn and finite
at z, then ∂?f(z) 6= ∅ , see, e.g., the review paper of Penot [30, Proposition
22]. If f is continuous, then ∂?f(z) = ∂GPf(z), [30, Proposition 8]. Note
that (10) is equivalent to

∂?f(z) = {t ∈ Rn\{0} | f(x) < f(z) =⇒ ht, x− zi ≤ 0}. (11)

Therefore, if f is a quasiconvex, continuous function on Rn and z is not a
minimizer of f , then

∂GPf(z) = ∂?f(z) = Nlev<f (z)\{0} 6= ∅. (12)
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Denoting by S(0, 1) := {z ∈ Rn | kzk = 1} the unit sphere, (12) guarantees
that

S(0, 1) ∩ ∂?f(z) 6= ∅. (13)

Plastria introduced and explored, in [31], properties of his lower subdifferen-
tial.

Definition 8 (Plastria’s lower subdifferential) Given a function f and
a point z, the Plastria (P) lower subdifferential of f at z (denoted
in [31] as ∂−f), is defined by

∂Pf(z) = {t ∈ Rn | f(x) < f(z) =⇒ hx− z, ti ≤ f(x)− f(z)}. (14)

A function f is called lower subdifferentiable (lsd) on K ⊆ Rn if it ad-
mits at least one P-lower subgradient at each point. It is clear that every
convex function is lsd, since ∂FMf(z) ⊆ ∂fP (z), but not conversely, as the

real-valued single variable function f(x) = |x|1/2 shows. Moreover, Plas-
tria shows in [31] that every Lipschitzian quasiconvex function on Rn has
∂Pf(z) 6= ∅, for every z ∈ Rn.

Theorem 9 [31] For any function f and point z ∈ Rn, ∂Pf(z) is a closed
convex set, and 0 ∈ ∂Pf(z) if and only if z is a global minimizer of f, in
which case ∂Pf(z) = Rn.

Lower subdifferentiability was investigated by Plastria and Martinez-
Legaz, see, for example, [31], [32], [27], [28]. For applications of lower subd-
ifferentiability in the field of fractional programming, see, e.g., [1], [3].

2.2 Konnov’s result

In his recent work [26] Konnov considers a normalized subgradient method for
minimization of quasiconvex functions which employs the stepsize rule based
on a priori knowledge of the optimal value of the cost function. Konnov’s
algorithm is a modification of the well-known algorithm developed by Polyak
[33] for convex functions. Suppose that the function f is continuous and
quasiconvex. Assume that it attains its global minimum f∗ on Rn and let
D∗ = argmin{f(x) | x ∈ Rn}. Then D∗ is nonempty, closed and convex.
We further assume that f satisfies the Hölder condition with constant L and
degree β at a point x∗ ∈ D∗. Konnov proved a somewhat extended version
of the following proposition.
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Proposition 10 [26, Proposition 2.1] Suppose that the function f satis-
fies the Hölder condition with degree β > 0 at a point x∗ ∈ D∗ on the set
cl lev<f (f(z)) for some point z ∈ Rn\D∗. Then we have

f(z)− f∗ ≤ L ht, z − x∗iβ , for all t ∈ S(0, 1) ∩Nlev<f (z). (15)

3 Algorithms for the quasiconvex feasibility
problem

Consider a family of sets

Di = {x ∈ Rn | fi(x) ≤ 0} for i = 1, 2, . . . ,m, (16)

where all fi are continuous and quasiconvex and let

D = ∩mi=1Di (17)

represent a quasiconvex feasibility problem. Our algorithms deal with qua-
siconvex functions satisfying a Hölder condition. Later on we use also the
following property.

Definition 11 Given a set Q ⊆ Rn, a sequence {xk}∞k=0 is Fejér-monotone
with respect to Q if for every x ∈ Q,°°xk+1 − x°° ≤ °°xk − x°° , for all k ≥ 0. (18)

Some of the methods studied below use a specific control sequence. A
control sequence {i(k)}∞k=0 is a sequence of indices according to which indi-
vidual sets Di may be chosen for the execution of an iterative step of the
algorithm.

Definition 12 (Control sequences)

1. Almost cyclic control. A control sequence {i(k)}∞k=0 is almost cyclic
on {1, 2, . . . ,m} if 1 ≤ i(k) ≤ m, for all k ≥ 0, and there exists an
integer σ ≥ m (called the almost cyclicality constant) such that,
for all k ≥ 0, {1, 2, . . . ,m} ⊆ {i(k + 1), i(k + 2), . . . , i(k + σ)}. An
almost cyclic control with σ = m is called cyclic.
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2. Most violated constraint control. This control sequence {i(k)}∞k=0
is obtained by determining which constraint is most violated by the it-
erate xk. If Di = {x ∈ Rn | fi(x) ≤ 0}, are the sets in the feasibility
problem then i(k) is the most violated constraint control index
if fi(k)(xk) > 0 and

fi(k)(x
k) = max{fi(xk) | i = 1, 2, . . . ,m}. (19)

Next we present an iterative algorithm with the most violated constraint
control for solving the QFP. We denote by g+(x) the positive part g+(x) :=
max {0, g(x)}.

Algorithm 13
Initialization: x0 ∈ Rn is arbitrary.
Iterative step: Given the current iterate xk, calculate the next iterate

xk+1 by

xk+1 = xk − λk

Ã
f+i(k)(x

k)

Li(k)

!1/βi(k)
tk, (20)

where tk ∈ S(0, 1) ∩ ∂?fi(k)(x
k) and βi(k) and Li(k) are the Hölder constant

and degree, respectively, of fi(k).
Relaxation parameters: {λk}∞k=0 are confined to the interval ε1 ≤ λk ≤

2− ε2, for all k ≥ 0, with some arbitrarily small ε1, ε2 > 0.
Control: Most violated constraint control.

The convergence of this algorithm can be secured by our following theo-
rem.

Theorem 14 Let the following assumptions hold: (i) the functions fi(x) are
quasiconvex on Rn, (ii) the problem (17) is consistent, i.e., D 6= ∅, and (iii)
the functions fi satisfy, for every i, Hölder conditions with constants Li and
degrees βi, for all x ∈ D, respectively, on Rn.
Under these assumptions any sequence {xk}∞k=0, generated by Algorithm

13, converges to a solution of the problem (17).

Proof. Our proof consists of the following three steps:
Step 1:

©
xk
ª∞
k=0

is Fejér-monotone with respect to D.
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Step 2: limk→∞ f+i (x
k) = 0, for every fixed i ∈ {1, 2, . . . ,m}.

Step 3: limk→∞ xk = x∗ ∈ D.
We now proceed with the proof of each step.
Step 1: If xk ∈ D for some k ≥ 0 then the iterates remain at this point

and the problem is solved. Therefore, lets assume that xk /∈ D for all k. Take
some x ∈ D. From (20) and using the fact that

°°tk°° = 1 we have
°°xk+1 − x°°2 = kxk − λk

µ
f+i(k)(x

k)

Li(k)

¶1/βi(k)
tk − x k2

=
°°xk − x°°2 − 2λkµf+i(k)(xk)

Li(k)

¶1/βi(k) 
tk, xk − x

®
+ λ2k

µ
f+i(k)(x

k)

Li(k)

¶2/βi(k)
. (21)

From assumption (iii) of the theorem follows¯̄
fi(k)(x

k)− fi(k)(x)
¯̄
≤ Li(k)

°°xk − x°°βi(k) . (22)

Then, xk /∈ D and x ∈ D imply that f+i(k)(x
k) = fi(k)(x

k) and fi(k)(x) ≤

f+i(k)(x) = 0, thus, we obtain f+i(k)(x
k) ≤ Li(k)

°°xk − x°°βi(k), i.e., f+i(k) also
satisfies a Hölder condition at the point x with constant Li(k) and degree
βi(k) on the level-set which is defined by f(xk). Since x is a minimizer of f+i(k)
we use (13) to deduce that there exists a tk

tk ∈ S(0, 1) ∩ ∂?fi(k)(x
k), (23)

and (15) to get

f+i(k)(x
k) ≤ Li(k)


tk, xk − x

®βi(k) . (24)

Therefore, from (21) and (24), we have

°°xk+1 − x°°2 ≤ °°xk − x°°2 − 2λkµf+i(k)(xk)
Li(k)

¶2/βi(k)
+ λ2k

µ
f+i(k)(x

k)

Li(k)

¶2/βi(k)

≤
°°xk − x°°2 − λk(2− λk)

µ
f+i(k)(x

k)

Li(k)

¶2/βi(k)
. (25)
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The fact that ε1 ≤ λk ≤ 2− ε2, for all k > 0, yields

°°xk+1 − x°°2 ≤ °°xk − x°°2 − ε1ε2

µ
f+i(k)(x

k)

Li(k)

¶2/βi(k)
, (26)

from which Fejér-monotonicity follows.
Step 2: For x ∈ D the sequence

©°°xk − x°°ª∞
k=0

is monotonically decreas-
ing and bounded below, therefore, there exist the limit limk→∞

°°xk − x°° = d.
This implies, via (26), that

lim
k→∞

µ
f+i(k)(x

k)

Li(k)

¶2/βi(k)
= 0, (27)

thus,

lim
k→∞

f+i(k)(x
k) = 0. (28)

Then the most violated constraint control implies that

lim
k→∞

f+i (x
k) = 0, for every fixed i ∈ {1, 2, . . . ,m}. (29)

Step 3: Fejér-monotonicity of
©
xk
ª∞
k=0

with respect to D, proven in
Step 1, implies boundedness. Therefore,

©
xk
ª∞
k=0

must have a convergent
subsequence,

lim
s→∞

xks = ex. (30)

From (29) and the continuity of f+i we know that ex ∈ D. In Step 2 we
showed that limk→∞

°°xk − ex°° = d, but now lims→∞
°°xks − ex°° = 0, thus,

limk→∞
°°xk − ex°° = 0 and the proof is complete.

An appropriate modification allows us to formulate and prove convergence
for an almost cyclically controlled version of Algorithm 13.

Algorithm 15
Initialization:
Iterative step:
Relaxation parameters:

⎫⎬⎭ Same as in Algorithm 13.

Control: The sequence {i(k)}∞k=0 is almost cyclic on {1, 2, . . . ,m}.
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Theorem 16 Under the assumptions of Theorem 14, any sequence {xk}∞k=0,
generated by Algorithm 15, converges to a solution of the problem (17).

Proof. The proof consists of the following five steps:
Step 1:

©
xk
ª∞
k=0

is Fejér-monotone with respect to D.
Step 2: limk→∞ f

+
i(k)(x

k) = 0.
Step 3: limk→∞

°°xk+1 − xk°° = 0.
Step 4: limk→∞ f

+
i (x

k) = 0, for every fixed i ∈ {1, 2, . . . ,m}.
Step 5: limk→∞ x

k = x∗ ∈ D.
We now proceed with the proof of each step.
Step1: The proof of this step is identical with the proof of Step1 in

Theorem 14.
Step 2: For x ∈ D the sequence

©°°xk − x°°ª∞
k=0

monotonically decreases
and is bounded from below, thus, there exists the limit limk→∞ kxk−xk = d.
This implies, via (26), that

lim
k→∞

µ
f+i(k)(x

k)

Li(k)

¶2/βi(k)
= 0, (31)

and

lim
k→∞

f+i(k)(x
k) = 0. (32)

Step 3: By substitution fromAlgorithm 15 and from the fact that
°°tk°° =

1, for all k ≥ 0, we get

°°xk+1 − xk°°2 = λ2k

µ
f+i(k)(x

k)

Li(k)

¶2/βi(k)
, (33)

and the right-hand side of this equation tends to zero as k → ∞, see (32).
Note that this implies, by the triangle inequality, also that

lim
k→∞

°°xk+j − xk°° = 0 (34)

for every integer j.
Step 4: Let i ∈ {1, 2, . . . ,m} be a fixed index. Then, for any l,¯̄

f+i (x
k)
¯̄
≤
¯̄
f+i (x

k)− f+i (xl)
¯̄
+
¯̄
f+i (x

l)
¯̄
. (35)
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Choose now l to be the integer larger than but closest to k such that i = i(l)
(its existence is guaranteed by the almost cyclic control). Let us denote

Γbx := ©x ∈ Rn | kx− bxk ≤ °°x0 − bx°°ª .
The set Γbx is compact, therefore, f+i (x) is uniformly continuous on it. Thus,
(34) implies that limk→∞

¯̄
f+i (x

k)− f+i (xl)
¯̄
= 0. Since i = i(l), (32) implies

limk→∞
¯̄
f+i (x

l)
¯̄
= 0. Thus, (35) gives the required result that

lim
k→∞

f+i (x
k) = 0 for every fixed i ∈ I. (36)

Step 5: Fejér-monotonicity of
©
xk
ª∞
k=0
, proven in Step 1, implies bound-

edness. Therefore,
©
xk
ª∞
k=0

must have a convergent subsequence, i.e.,

lim
s→∞

xks = ex. (37)

From (36) and the continuity of f+i we know that ex ∈ D. In Step 2 we showed
that limk→∞

°°xk − ex°° = d, but now we have the additional information that
lims→∞

°°xks − ex°° = 0; Thus, limk→∞
°°xk − ex°° = 0 and the proof is com-

plete.
Now we present a parallel algorithm for solving the QFP.

Algorithm 17
Initialization: x0 ∈ Rn is arbitrary.
Iterative step: Given the current iterate xk, calculate the next iterate

xk+1 by

xk+1 = xk − λk

mX
i=1

αi

µ
f+i (x

k)

Li

¶1/βi
ti,k, (38)

where ti,k ∈ S(0, 1) ∩ ∂?fi(x
k), and 0 < αi < 1, for all i, and

Pm
i=1 αi = 1.

The βi and Li are the Hölder constants and degrees, respectively, of fi.
Relaxation parameters: {λk}∞k=0 are confined to the interval ε1 ≤ λk ≤

2− ε2, for all k ≥ 0 with some arbitrary small ε1, ε2 > 0.

Theorem 18 Under the assumptions of Theorem 14, any sequence {xk}∞k=0,
generated by Algorithm 17, converges to a solution of the problem (17).

12



Proof. The proof consists of the following three steps:
Step 1:

©
xk
ª∞
k=0

is Fejér-monotone with respect to D.
Step 2: limk→∞ f+i (x

k) = 0 for all i ∈ {1, 2, . . . ,m}.
Step 3: limk→∞ xk = x∗ ∈ D.
We proceed with the proof of each step.
Step 1: Take some x ∈ D. From (38) and using the fact that kti,kk = 1,

we have °°xk+1 − x°°2 = kxk − λk

mX
i=1

αi

µ
f+i (x

k)

Li

¶1/βi
ti,k − xk2

=
°°xk − x°°2 + λ2kk

mX
i=1

αi

µ
f+i (x

k)

Li

¶1/βi
ti,kk2

− 2λk

*
mX
i=1

αi

µ
f+i (x

k)

Li

¶1/βi
ti,k , xk − x

+
. (39)

By an argument similar to the one given in the discussion of (24) in the proof
of Theorem 14 we obtain

f+i (x
k) ≤ Li


ti,k, xk − x

®βi , (40)

hence,

°°xk+1 − x°°2 ≤ °°xk − x°°2 + λ2kk
mX
i=1

αi

µ
f+i (x

k)

Li

¶1/βi
ti,kk2

− 2λk
mX
i=1

αi

µ
f+i (x

k)

Li

¶2/βi
. (41)

Due to the convexity of k·k2 we have

°°xk+1 − x°°2 ≤ °°xk − x°°2 + λ2k

mX
i=1

αi

µ
f+i (x

k)

Li

¶2/βi
− 2λk

mX
i=1

αi

µ
f+i (x

k)

Li

¶2/βi
(42)

≤
°°xk − x°°2 + (λ2k − 2λk) mX

i=1

αi

µ
f+i (x

k)

Li

¶2/βi
. (43)
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From ε1 ≤ λk ≤ 2− ε2, for all k > 0, we get

°°xk+1 − x°°2 ≤ °°xk − x°°2 − ε1ε2

mX
i=1

αi

µ
f+i (x

k)

Li

¶2/βi
, (44)

and the sum in the right-hand side is positive, thus, Fejér-monotonicity fol-
lows.
Step 2: For x ∈ D the sequence

©°°xk − x°°ª∞
k=0

is monotonically decreas-
ing and bounded below, therefore, there exists the limit limk→∞

°°xk − x°° =
d. This implies, via (44), that

lim
k→∞

µ
f+i (x

k)

Li

¶2/βi
= 0, (45)

and

lim
k→∞

f+i (x
k) = 0 for all i ∈ {1, 2, . . . ,m}. (46)

Step 3: Similar to the proof of Step 3 in Theorem 16.
It is interesting to note the relation between our algorithms for the QFP

and existing results. In [24], Kiwiel studies methods for subgradient mini-
mization of quasiconvex functions that employ a variety of subdifferentials.
His subdifferentials include those that we use although the notations are dif-
ferent. How do those results relate to the work presented here? A basic
tool for deriving feasibility algorithms from minimization methods is (see,
e.g., Shor [37, p. 39]) to define Ψ(x) := max{fi(x) | i = 1, 2, . . . ,m} and
apply a subgradient minimization method to the function Ψ+(x). Doing so
with Kiwiel’s subgradient minimization methods of [24] generates subgra-
dient algorithms for the QFP which differ in a fundamental way from the
algorithms that we present here. In our algorithms there appear parame-
ters {λk}∞k=0 , called relaxation parameters, that are confined to the interval
ε1 ≤ λk ≤ 2−ε2, for all k ≥ 0 with some arbitrary small ε1, ε2 > 0. Except for
this restriction to the interval, these parameters are free and commonly user-
chosen. Their practical significance in experimental work with algorithms
for convex feasibility problems cannot be exaggerated, see, e.g., Censor and
Herman [9, Section 6]. In the subgradient minimization algorithms of Kiwiel
in [24], there appear instead of relaxation parameters, other quantities, called
there “standard divergent-series stepsizes” which must fullfil the conditions

14



that λk > 0, for all k ≥ 0, limk→∞ λk = 0 and
P∞

k=0 λk = +∞. Therefore,
such parameters will also appear in any algorithm for the QFP derived from
Kiwiel’s minimization algorithm of [24].

4 Algorithms for solving systems of inequali-
ties with quasiconvex Lipschitz continuous
functions on the left-hand side

In this section we extend the validity of the class of Eremin’s algorithms to
the QFP with quasiconvex Lipschitz continuous functions on the left-hand
side. We present first a number of useful facts about Plastria’s P-lower
subdifferential, which we employ here. Penot showed, in [30, Proposition
12], that if f is Lipschitz continuous on Rn then

∂GPf(z) = ∪λ≥0λ∂Pf(z)
= ∪α∈[0,1]α∂Pf(z). (47)

One says, see Plastria [31], that f is boundedly lower subdifferentiable (blsd)
on a set Θ ⊆ Rn, if at each point of Θ there exists a lower subgradient of f
of norm not exceeding a constant L. The constant L is called a blsd-bound of
f . The following theorem and its proof are useful for our further discussion.

Theorem 19 [31, Theorem 2.3] Every quasiconvex function f on Rn that
satisfies a Lipschitz condition with constant L is blsd on Rn with blsd-bound
L.

This theorem guarantees the nonemptiness of P-lower subdifferentials.
The following theorem relates the P-lower subdifferential of a quasiconvex
function which satisfies a Lipschitz condition to the normal cone of level
sets, and, therefore, serves as our tool for calculating P-lower subgradients.
Its proof is inspired by the proof of [31, Theorem 2.3].

Theorem 20 Let f be a quasiconvex function on Rn that satisfies a Lipschitz
condition with constant L and suppose that z ∈ Rn. Then, for all v ∈
S(0, 1) ∩Nlev<f (z), the vector

ṽ = Lv (48)
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belongs to ∂Pf(z). Additionally, for all u ∈ ∂Pf(z)\{0}, the vector

ũ = L
u

kuk (49)

belongs to ∂Pf(z).

Proof. Let z ∈ Rn. Since f is Lipschitz, it is continuous, and lev<f (z)
is an open convex set not containing z. Then there exists a vector v ∈
S(0, 1) ∩ Nlev<f (z). Set ṽ = Lv. For any y ∈ lev<f (z), let P (y) be the
orthogonal projection of y on the hyperplane

{x ∈ Rn | hx− z, ṽi = 0} (50)

that passes through z and is perpendicular to ṽ. Then P (y) /∈ lev<f (z) thus,
f(P (y)) ≥ f(z). Furthermore, since P (y) − y is co-linear with ṽ and the
latter has length L, we have

hz − y, ṽi = kP (y)− yk · kṽk = L kP (y)− yk . (51)

Thus, from Lipschitzity and (51), we have

f(z)− f(y) ≤ f(P (y))− f(y) ≤ L kP (y)− yk = hz − y, ṽi , (52)

showing that ṽ ∈ ∂Pf(z). The additional assertion follows immediately from
(47). See Figure 1 for a geometrical illustration.
Now we are ready to study Eremin’s algorithms for solving systems of

inequalities with quasiconvex Lipschitz continuous functions {fi}mi=1 on the
left-hand side. Assume that {Ki}mi=1 is a set of real positive numbers and let
I(x) = {j | max{fi(x) | i = 1, 2, . . . ,m} = fj(x)} and s(x) = {i | fi(x) > 0}.
The following definition was given by Eremin [16].

Definition 21 Let D ⊆ Rn be a closed convex set, let d(x) be a continuous
real-valued function, defined on Rn, that satisfies {x | d(x) ≤ 0} = D. Let
e(x) be a vector-valued function that is defined and nowhere equal to zero on
Rn\D. Assume also that e(x) is bounded on any bounded set. Such a pair
of functions d(x) and e(x) is said to have the d-e property if for arbitrary
z /∈ D the half-space

Ω = {x ∈ Rn | he(z), x− zi+ d(z) ≤ 0} (53)

contains D.
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Figure 1: Geometric illustration of the theorem.

Algorithm 22 (Eremin’s algorithmic scheme)
Initialization: x0 ∈ Rn is arbitrary.
Iterative step: Given xk, calculate the next iterate xk+1 from

xk+1 =

⎧⎨⎩ xk − λk
d(xk)

k e(xk) k2 e(x
k), if d(xk) > 0,

xk, if d(xk) ≤ 0,
(54)

where the pair d(x) and e(x) are user-chosen functions that have the d-e
property.
Relaxation parameters: {λk}∞k=0 are confined to the interval ε1 ≤ λk ≤

2− ε2, for all k ≥ 0 with some arbitrary small ε1, ε2 > 0.

While Eremin discussed this algorithmic scheme only for convex and dif-
ferentiable functions we are able to extend the scope of convergence, as the
following theorem shows.

Theorem 23 Let the following assumptions hold
(i) the functions fi(x) are quasiconvex and Lipschitz continuous with Lip-

schitz constants Li on Rn, for all i ∈ {1, 2, . . . ,m},
(ii) the problem (17) is consistent, i.e., D 6= ∅,
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Then any sequence {xk}∞k=0, generated by Algorithm 22, converges to a
point x∗ ∈ D, if the pairs of functions d(x) and e(x) are chosen by one of the
following methods.
Method 1:

d(x) = fj(x) and e(x) = Lj
tj

k tj k , (55)

where tj ∈ ∂Pfj(x) and j is any index from I(x).
Method 2:

d(x) =

½ P
i∈s(x)Kifi(x), if s(x) 6= ∅,

0, if s(x) = ∅, (56)

and

e(x) =
X
i∈s(x)

KiLi
ti

k ti k, (57)

where ti ∈ ∂Pfi(x) for all i ∈ {1, 2, . . . ,m}.
Method 3:

d(x) =

½ P
i∈s(x) f

2
i (x), if s(x) 6= ∅,

0, if s(x) = ∅, (58)

and

e(x) =
X
i∈s(x)

Lifi(x)
ti

k ti k , (59)

where ti ∈ ∂Pfi(x) for all i ∈ {1, 2, . . . ,m}.

Proof. The above should have been phrased in the language of multival-
ued functions and selectors. Recall that a multivalued function from Rn to
itself is a function F : Rn → P, where P is the power set of Rn (consisting of
all subsets of Rn) and a continuous function t(x) fromRn to itself is a selector
for F if t(x) ∈ F(x), for all x ∈ Rn. Using this language, in Method 2, for
example, Φ(x) = ∂Pfi(x) is a multivalued function and t(x) is a selector of
Φ(x). However, for simplicity we do not use the language of selectors here be-
cause there is no ambiguity. To prove the theorem we show that all d(x) and
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e(x) pairs have the d-e property for D = ∩i∈IDi. Then the required result
will follow from Eremin’s theorem which states that if d(x) and e(x) have the
d-e property then convergence of his algorithm is achieved, see [16, Lemma
2]. In all three methods d(x) is a continuous real-valued function defined on
Rn and satisfying {x | d(x) ≤ 0} = D. From Theorem 19 it follows that e(x)
is well-defined, from Theorem 9 we know that it is nowhere equal to zero on
Rn\D and, by its construction, we know that it is bounded on any bounded
set. Suppose that z /∈ D and Ω = {x ∈ Rn | he(z), x− zi+ d(z) ≤ 0}. We
must verify the inclusion D ⊆ Ω for each of the three methods of choosing
d(x) and e(x). From z /∈ D and y ∈ D we obtain that f(y) < f(z), where f
stands for fj, with j ∈ I(z) in the case of Method 1, and for fi, with i ∈ s(z),
for all other cases. Therefore, we can make use of Definition 8 and Theorem
20 in considering all three methods. Indeed, in Method 1

he(z), y − zi+ d(z) =
¿
Lj

tj

k tj k , y − z
À
+ fj(z)

≤ fj(y) ≤ 0, where j ∈ I(z). (60)

In Method 2

he(z), y − zi+ d(z) =
*X
i∈s(z)

KiLi
ti

k ti k , y − z
+
+
X
i∈s(z)

Kifi(z)

=
X
i∈s(z)

Ki

µ¿
Li

ti

k ti k , y − z
À
+ fi(z)

¶
≤
X
i∈s(z)

Kifi(y) ≤ 0. (61)

In Method 3

he(z), y − zi+ d(z) =
*X
i∈s(z)

Lifi(z)
ti

k ti k , y − z
+
+
X
i∈s(z)

f2i (z)

=
X
i∈s(z)

fi(z)

µ¿
Li

ti

k ti k , y − z
À
+ fi(z)

¶
≤
X
i∈s(z)

fi(z)fi(y) ≤ 0, (62)
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and the proof is complete.
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