
The Multiple-Sets Split Feasibility
Problem and Its Applications for

Inverse Problems∗

Yair Censor1, Tommy Elfving2, Nirit Kopf1

and Thomas Bortfeld3

1Department of Mathematics, University of Haifa
Mt. Carmel, Haifa 31905, Israel

(yair@math.haifa.ac.il, nirit_kopf@hotmail.com)

2Department of Mathematics, Linköping University,
SE-581 83 Linköping, Sweden (toelf@mai.liu.se).

3Department of Radiation Oncology
Massachusetts General Hospital (MGH)

and Harvard Medical School
Boston, MA 02114, USA (tbortfeld@hms.harvard.edu)

May 27, 2005. Revised: October 6, 2005.

Abstract

The multiple-sets split feasibility problem requires to find a point
closest to a family of closed convex sets in one space such that its
image under a linear transformation will be closest to another family
of closed convex sets in the image space. It can be a model for many

∗Accepted for publication in the journal Inverse Problems.
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inverse problems where constraints are imposed on the solutions in
the domain of a linear operator as well as in the operator’s range. It
generalizes the convex feasibility problem as well as the two-sets split
feasibility problem. We propose a projection algorithm that minimizes
a proximity function that measures the distance of a point from all
sets. The formulation, as well as the algorithm, generalize earlier work
on the split feasibility problem. We offer also a generalization to prox-
imity functions with Bregman distances. Application of the method to
the inverse problem of intensity-modulated radiation therapy (IMRT)
treatment planning is studied in a separate companion paper and is
here only briefly described.

1 Introduction

In this, somewhat lengthy, introduction we define the new multiple-sets split
feasibility problem as a generalization of the well-known convex feasibility
problem and as a generalization of the two-sets split feasibility problem. We
briefly explain the, in principle, advantage of applying projection methods to
such problems and mention the inverse problem of intensity-modulated ra-
diation therapy as the real-world application that inspired the present work.
We must emphasize though that, in spite of the general statements that we
make below about the computational advantages of projection algorithms
in other fields where huge-size real-world problems need to be solved, our
development of the multiple-sets split feasibility problem formulation and
algorithm are not computation cost driven. Even in the inverse problem of
intensity-modulated radiation therapy (IMRT) that inspired our work (see
Section 3) we do not yet have enough computational experience that would
support computational cost-effectiveness claims. What our study does, there-
fore, offer, both in IMRT and for other inverse problems, is a mathematically
valid framework for applying projection algorithms to inverse problems where
constraints are imposed on the solutions in the domain of a linear operator
as well as in the operator’s range.

1.1 Feasibility problems

Given closed convex sets Ci ⊆ RN , i = 1, 2, . . . , t, and closed convex sets
Qj ⊆ RM , j = 1, 2, . . . , r, in the N- and M-dimensional Euclidean spaces,
respectively, the multiple-sets split feasibility problem, proposed and studied
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here, is to find a vector x∗ for which

x∗ ∈ C := ∩ti=1Ci such that Ax∗ ∈ Q := ∩rj=1Qj, (1)

where A is a givenM×N real matrix. This can serve as a model for many in-
verse problems where constraints are imposed on the solutions in the domain
of a linear operator as well as in the operator’s range. The multiple-sets split
feasibility problem extends the well-known convex feasibility problem which
is obtained from (1) when there are no matrix A and sets Qj present at all,
or put differently, when Q = RM . For information on the convex feasibil-
ity problem see, e.g., Bauschke and Borwein [4], Combettes [20], or Censor
and Zenios [19]. Systems of linear equations, linear inequalities, or convex
inequalities are all encompassed by the convex feasibility problem which has
broad applicability in many areas of mathematics and the physical and en-
gineering sciences. These include, among others, optimization theory (see,
e.g., Eremin [23] and Censor and Lent [18]), approximation theory (see, e.g.,
Deutsch [21] and references therein) and image reconstruction from projec-
tions in computerized tomography (see, e.g., Herman [25, 26], Censor [13]).

1.2 Projection methods and their advantage

Projections onto sets are used in a wide variety of methods in optimization
theory but not every method that uses projections really belongs to the
class of projection methods. Projection methods are iterative algorithms that
use projections onto sets while relying on the general principle that when a
family of (usually closed and convex) sets is present then projections onto the
given individual sets are easier to perform then projections onto other sets
(intersections, image sets under some transformation, etc.) that are derived
from the given individual sets.
A projection algorithm reaches its goal that is related to the whole fam-

ily of sets by performing projections onto the individual sets. Projection
algorithms employ projections onto convex sets in various ways. They may
use different kinds of projections and, sometimes, even use different projec-
tions within the same algorithm. They serve to solve a variety of problems
which are either of the feasibility or the optimization types. They have dif-
ferent algorithmic structures, of which some are particularly suitable for par-
allel computing, and they demonstrate nice convergence properties and/or
good initial behavior patterns. This class of algorithms has witnessed great
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progress in recent years and its member algorithms have been applied with
success to fully-discretized models of problems in image reconstruction and
image processing, see, e.g., Stark and Yang [32], Bauschke and Borwein [4]
and Censor and Zenios [19].
Apart from theoretical interest, the main advantage of projection methods

which makes them successful in real-world applications is computational.
They commonly have the ability to handle huge-size problems of dimensions
beyond which other, more sophisticated currently available, methods cease to
be efficient. This is so because the building bricks of a projection algorithm
are the projections onto the given individual sets (assumed and actually easy
to perform) and the algorithmic structure is either sequential or simultaneous
(or in-between). Sequential algorithmic structures cater for the row-action
approach (see Censor [13]) while simultaneous algorithmic structures favor
parallel computing platforms, see, e.g., Censor, Gordon and Gordon [17].

1.3 The split feasibility problem

The special case when there is only one set in each space, i.e., t = r = 1
in (1), was proposed by Censor and Elfving in [16] and termed the split
feasibility problem (because of the limitation to one set in each space we will
call this from now on the two-sets split feasibility problem). There we used
our simultaneous multiprojections algorithm (see also [19, Subsection 5.9.3])
to obtain an iterative algorithm whose iterative step has the form

xk+1 = A−1(I +AAT )−1(APC
¡
xk) +AATPQ(Ax

k
¢
) (2)

to solve the two-sets split feasibility problem. Here xk and xk+1 are the cur-
rent and the next iteration vectors, respectively, T stands for matrix transpo-
sition, I is the unit matrix and PC and PQ denote the orthogonal projections
onto C and Q, respectively. That solution was restricted to the case when
M = N and to the feasible case, i.e., when Q∩A(C) 6= ∅. Byrne and Censor
investigated this further in [11, Section 5]. Recognizing the potential diffi-
culties with calculating inverses of matrices, or, equivalently, solving a linear
system in each iterative step, particularly when the dimensions are large,
Byrne [9] devised the CQ-algorithm which uses the iterative step

xk+1 = PC
¡
xk + γAT (PQ − I)Axk

¢
, (3)

where γ ∈ (0, 2/L) and L is the largest eigenvalue of the matrix ATA.
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One might wonder why not solve one of the convex feasibility problems
of finding a point in Q ∩ A(C) or of finding a point in C ∩ A−1(Q) instead
of using the CQ-algorithm? Examples of situations when this would not
be recommended can occur when, due to the underlying specific data of
the real-world problem, it is not easy to perform projections onto the sets
A(C) and/or A−1(Q). Other examples might occur when the dimensions M
and N are very different from each other and choosing one of those convex
feasibility problems would cost us in calculating projections for one of the
sets in a much larger dimensional space then if we perform projections in each
space separately onto the given individual sets. Similar arguments apply to
the multiple-sets split feasibility problem.
Our aim in this paper is to present, motivate and study the multiple-

sets split feasibility problem. We devise, in Section 2, a projection method
that obeys the general paradigm of projection algorithms, described above,
namely, it performs projections onto the given individual sets to reach the
overall goal of the problem, and which reduces precisely to Byrne’s CQ-
algorithm in the two-sets split feasibility situation. In order to cover the
feasible and the infeasible cases for our problem, we handle it with a proxim-
ity function minimization approach. We apply to this proximity function a
gradient projection algorithmic scheme and study conditions that guarantee
its convergence.
While the multiple-sets split feasibility problem is potentially useful for a

variety of inversion problems that can be formulated so, we describe briefly,
in Section 3, a specific application in intensity-modulated radiation therapy
(IMRT) that motivates our interest in the multiple-sets split feasibility prob-
lem and which is presented in detail in our separate companion article to this
one [14]. In the Appendix we bring a telegraphic list of definitions and results
that we use in our work. The recent work of Yang [36] on the two-sets split
feasibility problem and the CQ-algorithm will be mentioned in the sequel.
Related to the two-sets split feasibility problem are also the recent papers of
Zhao and Yang [37] and Qu and Xiu [30]. The linear case for the two-sets
split feasibility problem is discussed by Cegielski [12].
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2 A Projection Algorithm for the Multiple-
Sets Split Feasibility Problem

2.1 The algorithm

Consider the multiple-sets split feasibility problem defined in Section 1. For
notational convenience reasons we consider an additional closed convex set
Ω ⊆ RN and further define the constrained multiple-sets split feasibility prob-
lem as the problem of finding

x∗ ∈ Ω such that x∗ solves (1). (4)

Denoting by P the orthogonal projection onto the closed convex set appearing
in its subscript, we define a proximity function on RN for this problem by

p(x) := (1/2)
tX
i=1

αi||PCi(x)− x||2 + (1/2)
rX
j=1

βj||PQj(Ax)−Ax||2, (5)

where αi > 0 for all i, βj > 0 for all j. An additional condition like
tP
i=1

αi +

rP
j=1

βj = 1 is sometimes very useful in practical application to real-world

problems when the αi’s and βj’s are weights of importance attached to the
constraints. But this condition is not necessary for our analysis below since
p(x) is convex by being a linear positive combination of convex terms. This
proximity function “measures” the “distance” of a point to all sets of (1) for
which the coefficient αi or βj is positive. If the problem (1) is feasible then
unconstrained minimization of p(x) will yield the value zero, otherwise it will,
in the infeasible (i.e., inconsistent) case find a point which is least violating
the feasibility in the sense of being “closest” to all sets, as “measured” by
p(x). Note that with the choice t = r = 1, C1 = RN and Q1 = {b} we
retrieve the classical Tikhonov regularization, namely, p(x) = (1/2)α1||x||2+
(1/2)β1||b−Ax||2. In order to find a solution of the constrained multiple-sets
split feasibility problem we consider the minimization problem

min{p(x) | x ∈ Ω} (6)

and propose the following algorithm.
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Algorithm 1
Initialization: Let x0 be arbitrary.
Iterative step: For k ≥ 0, given the current iterate xk calculate the next

iterate xk+1 by

xk+1 = PΩ

(
xk + s

Ã
tX
i=1

αi(PCi(x
k)− xk) +

rX
j=1

βjA
T (PQj(Ax

k)−Axk)
!)

,

(7)

where s is a positive scalar such that 0 < s < 2/L and L is the Lipschitz
constant of the gradient ∇p(x) of the proximity function in (5).

2.2 Convergence analysis

We address the convergence question of Algorithm 1 with two different tools.
One is based on the constant stepsize lemma for gradient projection methods
(Lemma 12 in the Appendix). The other is based on Dolidze’s theorem
(Theorem 13 in the Appendix) and is inspired by the work of Byrne [10].

Theorem 2 Let C = ∩ti=1Ci and Q = ∩rj=1Qj be intersections of nonempty
closed convex sets in RN and RM , respectively, let Ω ⊆ RN be a nonempty
closed convex set, let A be an M × N real matrix and let p(x) be as in (5)
with αi and βj positive scalars. Then
(i) the gradient ∇p(x) of the proximity function (5) is Lipschitz continu-

ous and

L =
tX
i=1

αi + ρ(ATA)
rX
j=1

βj, (8)

is a Lipschitz constant for it, where ρ(ATA) is the spectral radius of ATA,
and
(ii) if s is a positive scalar such that 0 < s < 2/L, where L is a Lipschitz

constant of ∇p(x), then every limit point of any sequence {xk}∞k=0, generated
by Algorithm 1, is a stationary point of the function p(x) over Ω.

Proof. (i) If F (x) = (1/2)||PΘ(x)−x||2 where PΘ(x) is the projection of
x onto some closed convex set Θ then, by Aubin and Cellina ([2, Proposition
1, p. 24]), ∇F (x) = x−PΘ(x). Using the chain rule (see, e.g., [31, Theorem
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23.9]) ∇x(F (Ax)) = AT∇yF (y) |y=Ax, where ∇x and ∇y are the gradients
with respect to the subscript variable, respectively, we obtain

∇
¡
(1/2) k PΘ(Ax)−Ax k2

¢
= AT (I − PΘ)Ax. (9)

Applying this to p(x) we get

∇p(x) =
tX
i=1

αi(I − PCi)x+
rX
j=1

βjA
T (I − PQj)Ax. (10)

Let Ti := I − PCi and Sj := I − PQj . Since an orthogonal projector is firmly
nonexpansive, see, e.g., [4, Fact 1.5], both Ti and Sj are firmly nonexpansive
by Lemma 10 in the Appendix, thus, nonexpansive. From (10) we have

∇p(x)−∇p(y) =
tX
i=1

αi(Tix− Tiy) +
rX
j=1

βjA
T (SjAx− SjAy). (11)

Hence,

||∇p(x)−∇p(y)|| ≤
tX
i=1

αi||x− y||+
rX
j=1

βj||AT || · ||A|| · ||x− y||. (12)

By choosing the two-norm, and observing that ||AT ||2 · ||A||2 = ||ATA||2 =
ρ(ATA) the expression (8) follows.
(ii) Algorithm 1 is of the form (40)—(41) for rk = 1 and sk = s, for all

k ≥ 0, with the proximity function p(x) of (5) playing the role of f(x). Using
Lemma 12 in the Appendix we get the required result.
This theorem does not guarantee convergence of sequences generated by

the algorithm though. Therefore, our second convergence result is as follows.

Theorem 3 If the assumptions of Theorem 2 hold then any sequence {xk}∞k=0,
generated by Algorithm 1, converges to a solution of the constrained multiple-
sets split feasibility problem, if a solution exists.

Proof. Since p(x) is convex and its gradient has a Lipschitz constant L
(Theorem 2) ∇p is a ν-ism (see Definition 8 in the Appendix) with

ν = 1/L = 1/

Ã
tX
i=1

αi + ρ(ATA)
rX
j=1

βj

!
. (13)
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This follows from Baillon and Haddad [3, Corollary 10] and can also be
deduced from [24, Lemma 6.7, p. 98]. Using Dolidze’s theorem (Theorem 13
in the Appendix) it follows that for the gradient in (10) and for γ ∈ (0, 2/L),
any sequence generated by the iterative step

xk+1 = PΩ(I − γG)xk, (14)

converges to a solution of the variational inequality problem V IP (G,Ω) (see
Problem 7 in the Appendix), if a solution exists. Since γ ∈ (0, 2/L) the
operator B = PΩ(I − γG) is averaged and, by Dolidze’s theorem, the orbit
sequence {Bkx}∞k=0 converges to a fixed point of B, whenever such points
exists. If z is a fixed point of B, then z = PΩ(z − γGz). Therefore, for any
c ∈ Ω,

hc− z, z − (z − γGz)i ≥ 0. (15)

which means that

hc− z,Gzi ≥ 0, (16)

implying that z minimizes p(x) over the set Ω.

Remark 4 Byrne’s CQ-algorithm (3) and its convergence results follow from
the above analysis by taking Ω = C, no sets Ci at all and a single set Q1 = Q.
A further potentially useful modification that we proposed in [14], but which
does not yet have a mathematical validation, is the replacement of the orthog-
onal projections onto the sets in each of the spaces by subgradient projections,
see, e.g., Censor and Lent [18] or [19, Subsection 5.3]. These are “projec-
tions” which do not require the iterative minimization of distance between the
point and the set but are rather given by closed-form analytical expressions.
Recently, Yang [36] proved that replacement of orthogonal projections by sub-
gradient projections is permissible, without ruining the convergence of the
CQ-algorithm, for the two-sets split feasibility problem under the assumption
of consistency.

2.3 A generalized proximity function

The formula ∇F (x) = x− PΘ(x), mentioned above from ([2, Proposition 1,
p. 24]), has been recently generalized to cover Bregman functions, distance
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and projections by Censor, De Pierro and Zaknoon [15] after an earlier gen-
eralization to the entropy case was done by Butnariu, Censor and Reich [8].
The Bregman directed distance dfΘ(x) of a point x from a set Θ with respect
to the Bregman function f is defined [15, Equation (44)] by

dfΘ(x) := Df
³
P fΘ(x), x

´
= f

³
P fΘ(x)

´
− f(x)− h∇f (x) , P fΘ(x)− xi (17)

where P fΘ(x) is the Bregman projection of x onto Θ with respect to the
Bregman function f and Df (y, x) is the Bregman distance between y and
x. See, e.g., [19, Chapter 2] for definitions, basic properties and references.
Proposition 12 in [15] gives precise conditions under which the formula

∇
³
dfΘ(x)

´
= ∇2f(x)

³
x− P fΘ(x)

´
(18)

holds. In this formula∇2f(x) is the Hessian matrix of f at x. The availability
of this formula enables us to calculate the gradient of a generalized proximity
function pf(x), with respect to a Bregman function f, for the multiple-sets
split feasibility problem, that will have the form

pf(x) :=
tX
i=1

αiDf(P
f
Ci
(x), x) +

rX
j=1

βjDf(P
f
Qj
(Ax), Ax). (19)

Using (18) and the chain rule in the proof of Theorem 2, we find that

∇pf(x) =
tX
i=1

αi∇2f(x)(I − P fCi)x+
rX
j=1

βjA
T∇2f(Ax)(I − P fQj)Ax. (20)

For the special Bregman function f(x) = (1/2)kxk2 (see, e.g., [19, Exam-
ple 2.1.1]) the Hessians are ∇2f(x) = ∇2f(Ax) = I, Bregman projections
are orthogonal projections and the proximity function (5) is recovered. For
the entropy case the Bregman function is f (x) = − entx, where entx is
Shannon’s entropy function which maps the nonnegative orthant Rn+ into R
according to

entx := −
nX
j=1

xj log xj. (21)
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Here “log” denotes the natural logarithms and, by definition, 0 log 0 = 0.
See [19, Example 2.1.2 and Lemma 2.13] for a verification that f (x) is a
Bregman function with zone

Se := {x ∈ Rn | xj > 0, for all 1 ≤ j ≤ n} (22)

and that

Df (x, y) =
nX
j=1

xj (log (xj/yj)− 1) +
nX
j=1

yj. (23)

The Hessian of f

∇2f (x) = ∇2
Ã

nX
j=1

xj log xj

!
=

⎛⎜⎜⎜⎜⎝
1
x1 0 · · · 0

0 1
x2 · · · 0

...
...

...
0 0 · · · 1

xn

⎞⎟⎟⎟⎟⎠ , (24)

is always a positive semi-definite matrix on Se × Se [15, Lemma 22].
In the general case, we make the additional assumption of boundedness of

the Hessians, i.e., that k∇2f (x) k ≤ χ1 for all x ∈ Ω and that k∇2f (Ax) k ≤
χ2 for all Ax ∈ A(Ω), for some constants χ1 and χ2. Then we can show, in a
similar manner to what has been done in the proof of Theorem 2, that

||∇pf(x)−∇pf(y)||

≤
Ã

tX
i=1

αik∇2f (x) k+
rX
j=1

βj||AT || · ||A|| · k∇2f (Ax) k
!
||x− y||, (25)

so that

L = χ1

tX
i=1

αi + ρ(ATA)χ2

rX
j=1

βj (26)

is a Lipschitz constant for ∇pf(x) and a theorem that generalizes Theorem
2 to the case of generalized proximity functions follows. The generalized
projection algorithm, for the multiple-sets split feasibility problem, that uses
Bregman projections takes the following form.
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Algorithm 5
Initialization: Let x0 be arbitrary.
Iterative step: For k ≥ 0, given the current iterate xk calculate the next

iterate xk+1 by

xk+1 = PΩ
¡
xk + sΓ(xk)

¢
, (27)

where

Γ(xk) =
tX
i=1

αi∇2f
¡
xk
¢
(P fCi(x

k)− xk) +
rX
j=1

βjA
T∇2f

¡
Axk

¢
(P fQj(Ax

k)−Axk)

(28)

and s is a positive scalar such that 0 < s < 2/L and L is the Lipschitz
constant of the gradient ∇pf(x) of the generalized proximity function in (19).

3 The multiple-sets split feasibility problem
in intensity-modulated radiation therapy

In our companion article to the present one [14] the multiple-sets split fea-
sibility problem is applied to the inverse problem of intensity-modulated ra-
diation therapy. In intensity-modulated radiation therapy (IMRT), see, e.g.,
Palta and Mackie [29], beams of penetrating radiation are directed at the
lesion (tumor) from external sources. Based on understanding of the physics
and biology of the situation, there are two principal aspects of radiation
teletherapy that call for computational modeling.
The first aspect is the calculation of dose. The dose is a measure of the

actual energy absorbed per unit mass everywhere in the irradiated tissue.
This yields a dose function (also called dose map or dose distribution) whose
values are the dose absorbed as a function of location inside the irradiated
body. This dose calculation is the forward problem of IMRT.
The second aspect is the inverse problem of the first. In addition to

the physical and biological parameters of the irradiated object that were
assumed known for the dose calculation, we assume here that information
about the capabilities and specifications of the available treatment machine
(i.e., radiation source) is given. Based on medical diagnosis, knowledge, and
experience, the physician prescribes desired upper and lower dose bounds
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to the treatment planning case. The output of a solution method for the
inverse problem is a radiation intensity function (also called intensity map).
Its values are the radiation intensities at the sources, as a function of source
location, that would result in a dose function which agrees with the prescribed
dose bounds.
To be of practical value, this radiation intensity function must be deliv-

erable on the available treatment machine. The set of deliverable intensity
maps is convex because for any two deliverable intensity maps (intensity vec-
tors in the fully-discretized model) x1 and x2 the (nonnegative) linear combi-
nation a1x1+a2x2 is also deliverable: simply deliver x1 for a time fraction a1
and x2 for a time fraction a2 (here we disregard the fact that in practice the
treatment time often has to be an integer multiple of a “monitor unit”). An
important delivery constraint is nonnegativity, namely, we can never deliver
negative intensities. Hence, all deliverable intensity vectors must belong to
the nonnegative orthant. Another physical/technical issue that needs to be
considered in this context is leakage radiation, which always accompanies
any primary radiation. Depending on the technical equipment used to de-
liver the treatment, there are also other delivery constraints. An orthogonal
projector can easily be found for simple delivery constraints such as nonneg-
ativity. For other delivery constraints, calculating projections might involve
an inner-loop optimization process of minimizing the distance from a point
to the set in each iteration.
An example of a constraint set Ci in the space of radiation intensity vec-

tors is the smoothness constraint. Smoothness of intensity maps is desirable
because it permits more efficient and robust delivery of IMRT with a multi-
leaf collimator (MLC), see Webb, Convery and Evans [34], Alber and Nüsslin
[1] and Kessen, Grosser and Bortfeld [28]. Smoothness constraints may be
either convex or non-convex. One example of a convex smoothness constraint
is the bandlimited constraint. Its associated orthogonal projector is an ideal
low-pass filter with a given cut-off frequency.
For the sets Qj, in the dose space, we already mentioned the commonly-

used minimum and maximum dose constraints as examples. More recently
the concept of equivalent uniform dose (EUD) was introduced to describe dose
distributions with a higher clinical relevance, see, e.g., [14] for references. It
has been used in IMRT optimization by Thieke et al. [33] and by Wu et
al. [35]. EUD constraints are defined for tumors as the biological equivalent
dose that, if given uniformly, will lead to the same cell-kill in the tumor
volume as the actual non-uniform dose distribution. They could also be
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defined for normal tissues. Following the recent work of Thieke et al. [33]
who derived an approximately orthogonal EUD projector, we develop, study
and test experimentally in [14] a unified theory that enables treatment of
both EUD constraints and physical dose constraints.
The unified new model relies on the multiple-sets split feasibility problem

formulation, developed here, and it accommodates the specific IMRT situa-
tion. The constraints are formulated in two different Euclidean vector spaces.
The delivery constraints are formulated as sets in the Euclidean vector space
of radiation intensity vectors (i.e., vectors whose components are radiation
intensities) and the dimensionality of this space equals the total number of
discretized radiation sources.
The basic linear feasibility problem associated with recovering the radia-

tion intensities vector x is the following.

0 ≤ lν ≤
NX
j=1

dijxj, for all i ∈ SPTVν , ν = 1, 2, · · · , T, (29)

0 ≤
NX
j=1

dijxj ≤ uν, for all i ∈ SOARν , ν = 1, 2, · · · , Q, (30)

xj ≥ 0, for all j = 1, 2, · · · , N, (31)

where SPTVν are the planning target volumes (PTVs), SOARν are organs at
risk (OARs) and lν and uν are lower and upper bounds, respectively, on the
required or permitted doses to organs. The system (29)—(31) can be rewritten
in the general form

0 ≤ li ≤
MX
j=1

dijxj ≤ ui, for all i = 1, 2, · · · , t, (32)

where li and ui are correctly identified with the lν and uν , according to
the organ to which the i-th voxel belongs, and by appropriately defining
additional lower and upper bounds.
The EUD constraints are formulated in the Euclidean vector space of

dose vectors (i.e., vectors whose components are the doses in each voxel)
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and the dimensionality of this space equals the total number of voxels. The
EUD constraints refer to individual organs, thus to individual subsets of
voxels. To simplify notations in the sequel let us count all PTVs and OARs
sequentially by Sµ, µ = 1, 2, · · · , T, T + 1, · · · , T + Q, where the first T
structures Sµ represent the sets SPTVν , ν = 1, 2, · · · , T, and the next Q
structures Sµ represent the sets SOARν , ν = 1, 2, · · · , Q. Also, let us denote
for now by Jµ the number of voxels in structure Sµ. With these notations
let h(µ) = (hi)i∈Sµ, be the Jµ-th dimensional (i.e., h

(µ) ∈ RJµ) sub-vector (of
the vector h) whose coordinates are the doses absorbed in the voxels of the
µ-th structure Sµ. Alternatively, we say that h(µ) is the µ-th block of the
vector h. For each structure Sµ, µ = 1, 2, · · · , T, T +1, · · · , T +Q, we define
a real-valued function Eµ,α : RJµ → R, called the EUD function, by

Eµ,α(h
(µ)) =

⎛⎝(1/Jµ)X
i∈Sµ

(hi)
α

⎞⎠1/α

. (33)

Each Eµ,α maps the dose sub-vector of the µ-th structure Sµ into a single
real number via (33). The parameter α is a tissue-specific number which is
negative for PTVs and positive for OARs. For α = 1 the EUD function is
precisely the mean dose of the organ for which it is calculated.
For each PTV structure Sµ, µ = 1, 2, · · · , T, the parameter α is chosen

negative and the EUD constraint is described by the set

Ωµ = {h(µ) ∈ RJµ | Eminµ,α ≤ Eµ,α(h(µ)), and α < 0}, (34)

where Eminµ,α is given, for each PTV structure, by the treatment planner. For
each OAR Sµ, µ = T + 1, T + 2, · · · , T + Q, the parameter is chosen α ≥ 1
and the EUD constraint can be described by the set

Γµ = {h(µ) ∈ RJµ | Eµ,α(h(µ)) ≤ Emaxµ,α , and α ≥ 1}, (35)

where Emaxµ,α is given, for each OAR, by the treatment planner. These sets
have been shown to be convex. Thus, our unified model for physical dose and
EUD constraints takes the form of a multiple-sets split feasibility problem
where some constraints are formulated in the radiation intensities space RN

and other constraints are formulated in the dose space RM and the two
spaces are related by a (known) linear transformation D (the dose matrix).
The problem then becomes

find x∗ ∈ ∩ti=1Ci such that h∗ = Dx∗ and h∗ ∈ ∩T+Qµ=1 Θµ (36)
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where Ci represent the hyperslabs of (32) and Θµ are generically describing
the EUD constraints of (34) and (35) in the dose space RM . The work
presented here allows us to accommodate such constraints in a valid logical
framework for performing an iterative solution process that iterates in each
of the two spaces and correctly passes back and forth between the spaces
during iterations. There are other inversion problems within IMRT and in
other fields of applications that can be cast into a multiple-sets split feasibility
problem and treated by the projection algorithmic approach presented here.

4 Conclusions

We propose the multiple-sets split feasibility problem as a generalization of
both the convex feasibility problem and the two-sets split feasibility problem.
This constitutes a mathematically valid framework for applying projection
algorithms to inverse problems where constraints are imposed on the solutions
in the domain of a linear operator as well as in the operator’s range. We
explain, in general terms, the advantages of projection methods and develop
a simultaneous projection algorithm that minimizes a proximity function in
order to reach a solution of the multiple-sets split feasibility problem problem.
We offer an additional extension of the theory via using Bregman distances
and Bregman projections in the proximity function and in the algorithm.
A specific inverse problem in intensity-modulated radiation therapy (IMRT),

where both physical dose constraints, EUD (nonlinear) constraints and non-
negativity constraints must all be satisfied to obtain a solution, is our in-
spiration for the work presented here. Our companion IMRT-oriented paper
will be published elsewhere [14].
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Appendix
In this appendix we give some definitions and mathematical tools that we

use. We denote the inner product in Rn by hx, yi and the Euclidean norm
by kxk. Given a nonempty closed convex set Ω ⊆ Rn and a point x ∈ Rn,
an orthogonal projection of x onto Ω, denoted PΩ(x), is a point in Ω which
is closest to x, i.e., PΩ(x) ∈ Ω, such that

kx− PΩ(x)k = min{kx− yk | y ∈ Ω}. (37)

When the set Ω is closed and convex then existence and uniqueness of PΩ(x)
are guaranteed. Projections belong to the broader class of nonexpansive
operators. A (possibly nonlinear) operator T on a closed convex set Ω ⊆ RN
is called nonexpansive if, for all x and y in Ω

||Tx− Ty|| ≤ ||x− y||. (38)

If Ω is a nonempty closed convex subset of RN , then for all x, y ∈ RN we
have kPΩ(x)− PΩ(y)k ≤ kx− yk, see, e.g., Bertsekas [6, Proposition 2.2.1, p.
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88]. Combining nonexpansive operators is done by composition or by convex
combination as the following well-known result states.

Proposition 6 If T1, T2, · · · , Tm are nonexpansive operators then the com-
position Tm · · ·T2T1 is nonexpansive. If w ∈ Rm is a weight vector (i.e.,

wi ≥ 0 and
mP
i=1

wi = 1) then
mP
i=1

wiTi is nonexpansive.

Given a nonexpansive operator U , the operator T := (1− α)I + αU, for
some α ∈ (0, 1), where I is the unit operator, is called averaged or averaging.
Such an operator is obviously also nonexpansive. A condition of the form

k∇f(x)−∇f(y)k ≤ L kx− yk ,for all x, y ∈ Rn, (39)

for some constant L > 0, is called a Lipschitz continuity condition on ∇f .
The projection operators PΩ are averaged, as are the operators of the form
(I−γ∇f) if ∇f is Lipschitz continuous and the parameter γ is appropriately
chosen. The product of finitely many averaged operators is averaged, so the
operators PΩ2PΩ1 and PΩ (I − γ∇f) are also averaged.
The gradient projection method is a feasible directions method whose

iterative step has the form

xk+1 = xk + rk(x
k − xk), (40)

xk = PΩ(x
k − sk∇f(xk)), (41)

where sk is a positive scalar, called stepsize, and the numbers rk ∈ (0, 1] are
relaxation parameters.
An operator G on a closed convex set Ω ⊆ RN is monotone (see, e.g., [27,

Chapter A, Definition 4.1.3]) if for all x and y in Ω

hGx−Gy, x− yi ≥ 0. (42)

For example, if g(·) is a convex differentiable real-valued function on Ω then
the gradient ∇g(·) is a monotone operator.

Problem 7 (The Variational Inequality Problem). Let G be a mono-
tone operator with respect to a closed convex set Ω ⊆ RN . The variational
inequality problem with respect to G and Ω, denoted by V IP (G,Ω),
is to find a point x∗ ∈ Ω for which hGx∗, x− x∗i ≥ 0 for all x ∈ Ω.
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Subject to certain restrictions on G and γ, a sequence
©
xk
ª∞
k=0
, defined

by the iterative step

xk+1 = PΩ(I − γG)xk, (43)

will converge to a solution of the V IP (G,Ω) , if a solution exists. To see this
observe [10, Theorem 2.1] that if G is an averaging operator on Ω and its
fixed points set Fix(G) is nonempty then the sequence

©
Gkx

ª∞
k=0

converges
to a member of Fix(G), for any x ∈ Ω. The projection operator PΩ is
averaging, and for each x ∈ Ω the projection PΩ(x) is characterized by (see,
e.g., [27, Theorem 3.1.1, p. 47])

hy − PΩ(x), PΩ(x)− xi ≥ 0, for all y ∈ Ω. (44)

Therefore, x∗ = PΩ(I − γG)x∗ if and only if

hy − x∗, x∗ − (x∗ − γGx∗)i = γ hy − x∗, Gx∗i ≥ 0, for all y ∈ Ω. (45)

Consequently, the vector x∗ solves the V IP (G,Ω) if and only if x∗ is a fixed-
point of the operator PΩ(I − γG).

Definition 8 (See, e.g., Golshtein and Tretyakov [24, p. 256]). An operator
G on a closed convex set Ω ⊆ RN is called ν-inverse strongly monotone
(ν-ism) if there is a ν > 0 such that

hGx−Gy, x− yi > ν||Gx−Gy||2, for all x, y ∈ Ω. (46)

Definition 9 An operator G on Ω ⊆ RN is called firmly nonexpansive if
it is a 1-ism, i.e., if

hGx−Gy, x− yi ≥ ||Gx−Gy||2, for all x, y ∈ Ω. (47)

Lemma 10 [10, Lemma 2.3] An operator F is firmly nonexpansive if and
only if its complement I − F is firmly nonexpansive. If F is firmly nonex-
pansive then F is averaged.

It is well-known that every firmly nonexpansive operator is nonexpansive
and that a convex combination of firmly nonexpansive operators is also a
firmly nonexpansive operator.
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Definition 11 [5, p. 177]. Given a function f : Rn → R and a set Ω ⊆ Rn,
a vector x∗ that satisfies the condition

h∇f(x∗), x− x∗i ≥ 0, for all x ∈ Ω, (48)

is referred to as a stationary point of f over Ω.

Condition (48) is an optimality condition. It is a necessary condition for
x∗ to be a local minimum of f over Ω, and if f is convex over Ω then it is also
sufficient for local minimum at x∗ (see, e.g., [5, Proposition 2.1.2, p. 176]).
It is known (see, e.g., [7, Proposition 3.3(b), p. 213]) that x∗ is a fixed point
of the gradient projection mapping with constant stepsize PΩ(x− s∇f(x)) if
and only if it is a stationary point of f over Ω. Furthermore, if f is convex on
the set Ω then the latter guarantees that x∗ minimizes f over Ω. Note that if
Ω = Rn or if x∗ is an interior point of Ω then (48) reduces to the stationarity
condition ∇f(x∗) = 0.

Lemma 12 [5, Proposition 2.3.2, pp. 215—216] (Constant Stepsize). Let
{xk}∞k=0 be a sequence, generated by the gradient projection method (40)—(41)
with rk = 1 and sk = s, for all k ≥ 0. Assume that for some constant L > 0,
the gradient ∇f is Lipschitz continuous on Ω. If 0 < s < (2/L) then every
limit point of {xk}∞k=0 is a stationary point of f .

The theorem of Dolidze [22], as presented and proven in Byrne [10, The-
orem 2.3], can also be found in [24] and is as follows.

Theorem 13 (Dolidze’s Theorem). Let G be ν-ism and let γ ∈ (0, 2ν).
Then, for any x ∈ Rn, the sequence {(PΩ(I − γG))kx}∞k=0 converges to a
solution of V IP (G,Ω), whenever a solution exists.
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