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Abstract

Intensity—modulated radiation therapy (IMRT) gives rise to sys-
tems of linear inequalities, representing the effects of radiation on the
irradiated body. These systems are often infeasible, in which case
one settles for an approximate solution, such as an {α,β}—relaxation,
meaning that no more than α percent of the inequalities are violated
by no more than β percent. For real-world IMRT problems, there is a
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feasible {α,β}—relaxation for sufficiently large α,β > 0, however large
values of these parameters may be unacceptable medically.
The {α,β}—relaxation problem is combinatorial, and for given val-

ues of the parameters can be solved exactly by Mixed Integer Pro-
gramming (MIP), but this may be impractical because of problem
size, and the need for repeated solutions as the treatment progresses.
As a practical alternative to the MIP approach we present a heuris-

tic non—combinatorial method for finding an approximate relaxation.
The method solves a Linear Program (LP) for each pair of values of
the parameters {α,β} and progresses through successively increasing
values until an acceptable solution is found, or is determined non—
existent. The method is fast and reliable, since it consists of solving
a sequence of LP’s.

1 Introduction

The fully-discretized feasibility model of the inverse problem of intensity-
modulated radiation therapy (IMRT) gives rise to a system of linear inequal-
ities that describes the effects of radiation on the irradiated body and the
treatment prescription, see Censor, Altschuler and Powlis [8, 9], see also
Censor [7]. As an illustration, consider a simple representative system

A1x ≤ u1, (1)

A2x ≥ ` 2, (2)

x ≥ 0, (3)

where the nonnegative nonzero matrices A1 ∈ Rn1×m and A2 ∈ Rn2×m and
vectors u1 ∈ Rn1 and ` 2 ∈ Rn2 are given. The inequalities (1) represent
healthy tissues where radiation is undesirable (hence the upper bound u1),
and the inequalities (2) represent malignant tissues that must receive a mini-
mal amount of radiation dose (expressed by the lower bound ` 2). The IMRT
application is described in more detail in the Section 3.
Often the system (1)—(3) is infeasible, in which case the inequalities may

be relaxed to obtain a feasible solution. Relaxation means here changing the
right-hand side of an inequality so as to allow more feasible solutions, by
raising the upper bounds in the inequalities of type (1), and/or lowering the
lower bounds in the inequalities of type (2). There is a sizable literature on
inconsistent subsystems of linear systems, see, e.g., Chinneck [12, 13] for a
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thorough and up to date coverage of this field. However, it appears, from
[13, ?, ?], that our proposed model and method has not been discussed before.
Although the question: “what is the smallest adjustment to the constraints
in the model that will render it feasible?” certainly has.
In Section 2 we describe and justify our approach. In Section 3 we discuss

the application to IMRT and describe the linear model for the inverse prob-
lem of IMRT and its potential infeasibility. Our successive {α,β}—relaxation
method is given in Section 4 which includes also a brief discussion of other
methods. Experimental results are presented in Section 5 and some conclud-
ing comments are given in Section 6.

2 A relaxation to achieve feasibility

If the system (1)—(3) is infeasible, we may relax the inequalities in a con-
trolled manner until a feasible system is obtained. For simplicity we consider
here the case where only the inequalities (1) are relaxed. In the IMRT appli-
cation various subsets of the inequalities may be relaxed and several different
relaxation levels may be applied to a single subset of inequalities. We define
an {α, β}-relaxation as follows.
Definition 2.1 β—relaxation and {α,β}—relaxation.
(i) Given a ∈ Rm, b ∈ R, and β ≥ 0, a β—relaxation of the inequality,

ha,xi ≤ b, (4)

is the inequality
ha,xi ≤ (1 + β) b . (5)

(ii) Given 0 ≤ α ≤ 1 and β ≥ 0, an {α,β}—relaxation of the system
(1) is any system obtained from (1) in which at most a fraction α of the
constraints (1) undergoes a β—relaxation.

The parameter β is a measure of the relaxation (violation) of the original
inequality constraint. This relaxation can be modelled by a linear program
(LP) that attempts to minimize the violations. Let the rows of the n1 ×m
matrix A1 be denoted by aj. The β—relaxations of the inequalities (1) can
be written, for j = 1, 2, . . . , n1, as follows,

aj,x
® ≤ tj u1j , (6)

1 ≤ tj ≤ (1 + β), (7)

3



where u1j are the components of the upper bound u
1. We relax the inequalities

(7) further,
0 ≤ tj ≤ (1 + β), (8)

noting that smaller values of tj are preferred, since they represent less radi-
ation on healthy tissues. We collect the inequalities (6), (8) in the system,

A1x ≤ U1t, 0 ≤ t ≤ (1 + β)1, (9)

where U1 is the diagonal matrix with the components of u1 in its diagonal,
t = (tj) and 1 is the vector of ones. Since β—relaxation applies to at most a
fraction α of the n1 constraints of (1), it follows that the components tj of t
must satisfy,

n1X
j=1

tj ≤ αn1 (1 + β) + (1− α)n1 = n1(1 + αβ), (10)

a consistency condition called here the check inequality.
We propose the following LP formulation to approximate the solution of

the system (1)—(3),

min h1, ti (LP(α,β))

such that A1x ≤ U1 t, (LP.a)

A2x ≥ ` 2, (LP.b)

t ≤ (1 + β)1, (LP.c)

h1, ti ≤ n1(1 + αβ), (LP.d)

x, t ≥ 0, (LP.e)

where (LP.d) is the check inequality (10). In applications to IMRT the pa-
rameters α and β in (LP(α,β)) are bounded above,

0 ≤ α ≤ αmax , 0 ≤ β ≤ βmax, (11)

where αmax and βmax are the upper bounds acceptable to the user.
For IMRT problems (1)—(3) arising in practice, the inequalities (2) or

(LP.b), representing the minimum dosage on the target, are assumed con-
sistent. We also assume that the upper bound u1 is a positive vector. It is
therefore obvious that there exist values 0 ≤ α ≤ 1 and β > 0 such that the
problem (LP(α,β) is feasible.
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However these values may violate the upper bounds (11), and therefore
be unacceptable.
It should be noted that (LP(α, β)) is not a precise model of {α,β}—

relaxation, since the inequalities (8) are weaker than (7), and on the other
hand, the violations may be spread over more than a fraction α of the con-
straints in (1). The check inequality (LP.d) is thus a relaxation of the combi-
natorial condition of Definition 2.1(ii). However, if the most relaxed problem
(LP(αmax,βmax)) is infeasible, it follows that (LP(α, β)) is infeasible for all
α,β satisfying (11). We use this LP formulation as a tool for the relaxation
process and not as a model of the IMRT inverse problem. The latter is done
by various workers, see, e.g., Holder [18], Romeijn et al. [27].

3 The linear model for the inverse problem
in intensity-modulated radiation therapy

Intensity-modulated radiation therapy (IMRT) has been implemented widely
since the time it was first introduced. The radiation therapy community
has gathered considerable experience in taking advantage of the currently-
available software and hardware tools to devise and deliver good IMRT plans
that better treat targets while sparing critical structures, see, e.g., Palta and
Mackie [24], Webb [30] and references therein. A critical input needed for
the generation of good IMRT plans is the definition of reasonable treatment
planning goals. A set of goals that are self-contradicting or too stringent
may steer the planning in an undesirable direction. Based on the relaxation
methodology presented in Section 2, we study here an approach that can take
a set of goals that could be infeasible and gradually relax them selectively
until a feasible solution is reached. This IMRT planning tool has the potential
for significantly shortening the traditional iterative trial and error planning
process used for this treatment modality. This is because it avoids bringing
the responsible physician back to re-adjust constraints when a plan is not
acceptable. Instead, the physician can choose from a number of solutions with
different constraints that have been relaxed in a methodologically-organized
way.
We consider a prototypical system of linear inequalities that arises in

the fully-discretized approach to the inverse problem of IMRT. Historically,
we proposed and studied this fully-discretized model of the inverse problem
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prior to the time when IMRTwas identified as a complete process, see Censor,
Altschuler and Powlis [9, 8], or Censor and Zenios [11, Chapter 11]. For recent
review papers see, e.g., Reemtsen and Alber [26], Shepard, Ferris, Olivera and
Mackie [28], Censor [7], Galvin et al. [17], Bortefld [5] and references therein.
The problem is formulated as follows. A system of linear inequalities of the
form

0 ≤
mX
v=1

ajvxv ≤ uj, for all j ∈ Bs, for all s = 1, 2, . . . , S, (12)

0 ≤ lj ≤
mX
v=1

ajvxv, for all j ∈ Lq, for all q = 1, 2, . . . , Q, (13)

0 ≤ xv, for all v = 1, 2, . . . ,m, (14)

must be solved where the m-dimensional vector x = (xv)mv=1 is the vector of
unknowns. These are the beamlets intensities (or beam segments weights) in
the inverse planning problem of IMRT and the index v counts all the beamlets
in some agreed manner. The {Bs}Ss=1 are specified subsets of inequalities that
have some common properties. In IMRT, these represent Organs at Risk
(OARs) whose total absorbed radiation dose should stay below the specified
upper bounds, denoted by uj. The individual inequalities for the OARs are
indexed by j. The {Lq}Qq=1 are additional specified subsets of inequalities. In
IMRT they represent Planning Target Volumes (PTVs) whose total absorbed
radiation dose should stay above the specified lower bounds, denoted by lj.
The real numbers ajv ≥ 0 are modelling-related quantities that are prede-

termined. In IMRT they represent the dose deposited in voxel (i.e., volume-
element) j due to unit radiation intensity coming from beamlet v. They
are known in IMRT ahead of time by performing appropriate “forward”
dosimetry calculations. We denote the vectors aj = (ajv)

m
v=1, for all j ∈

(∪Ss=1Bs) ∪ (∪Qq=1Lq), where the total number of elements in all the sets is
identified with the total number n of inequalities in the generic system (12)—
(13).
The original formulation of the inverse problem of IMRT in its fully-

discretized “feasibility” (as opposed to “optimization”) approach is to find an
intensities vector x = (xv)mv=1 such that the system (12)—(14) will be satisfied.
Using special hardware called a multileaf collimator (MLC) it is possible
to modulate the intensity of a radiation beam according to the individual
beamlet intensities given by the vector x, see, e.g., Cho and Marks II [14] for
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a recent application in the field of IMRT. However, in cases when a feasible
solution to that system cannot be found it is possible to relax the system in
a certain controlled manner so that a feasible solution to the relaxed system
is found. Since relaxing the system means, inevitably, violating the original
system to some extent, the method proposed here finds such a solution by
relaxing the original system by as little as possible.
This objective is achieved by imposing on the system (12)—(14) an addi-

tional condition that will dynamically control such violation/relaxation of the
original system. This condition can be formulated for more then one subset
of the inequalities which represent either an OAR or a PTV and several such
conditions may be applied with different levels to one organ. However, to
keep the notation and presentation simple, we assume for now, without loss
of generality, that a single condition is formulated for only one OAR. Thus,
the additional condition, called a dose-volume constraint (DVC) in IMRT, is
formulated as follows for an OAR.

Condition 3.1 For one subset of the system of inequalities (12)—(14), say
B1, to be explicit, allow up to αmax% of the total number of inequalities in B1
to have their right-hand side values {uj | j ∈ B1} increase by up to βmax%.

The permissions on both the total number of inequalities in B1 that may
be violated and the increase of their right-hand side values use the words “up
to”. It is desirable to rely on these permissions as little as possible. There-
fore, we should not aim initially at the maximal αmax% and βmax% values.
Condition 3.1 is not common in the literature on feasibility problems outside
IMRT, see, e.g., the recent special issue on algorithms and computational
methods in feasibility and infeasibility, Chinneck [12]. It does not specify a
priori which inequalities in B1 should or could be violated, but instead leaves
this as another degree of freedom for the algorithm that solves the problem.
For a PTV organ a DVC would be formulated as follows.

Condition 3.2 For one subset of the system of inequalities (12)—(14), say
L1, to be explicit, allow up to αmax% of the total number of inequalities in L1
to have their left-hand side values {lj | j ∈ L1} decrease by up to βmax%.

It is possible to handle infeasible systems and, in particular, the combina-
tion of (12)—(14) and Conditions 3.1 or 3.2 using mixed-integer programming
(MIP) or other methods, as discussed briefly at the end of the next section.
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The advantages of the approach described here are that (i) it does not resort
to MIP which generally suffers from difficulties in handling high-dimensional
problems, (ii) the linear nature of the model is preserved, in contrast with
other approaches that resort to nonlinear formulations, (iii) the model per-
mits dynamic incrementation of the violations permitted by Conditions 3.1
or 3.2 so that we can search for a solution with small violations and then,
gradually, increase the permissible violations, up to αmax and βmax, (iv) the
intensities vector that is obtained from our algorithm is checked after each
incrementation of the permissible violation and additional increase of the vi-
olation is employed only if necessary, and (v) the method is very fast and
can, therefore, be re-applied in an adaptive planning environment.

4 The successive {α,β}-relaxation method
In order to solve the combination of (12)—(14) and Condition 3.1, as de-
scribed above, we identify (12)—(14) with the system (1)—(3) and apply the
methodology of Section 2 to obtain the following LP problem.

min
X
j∈B1

tj, (15)

such that 0 ≤
mX
v=1

ajvxv ≤ tjuj, for all j ∈ B1, (16)

0 ≤
mX
v=1

ajvxv ≤ uj, for all j ∈ Bs, for all s = 2, 3, . . . , S, (17)

0 ≤ lj ≤
mX
v=1

ajvxv, for all j ∈ Lq, for all q = 1, 2, . . . , Q, (18)

0 ≤ xv, for all v = 1, 2, . . . ,m, (19)

0 ≤ tj ≤ 1 + β, for all j ∈ B1, (20)X
j∈B1

tj ≤ n1(1 + αβ). (21)

Each inequality j of the OAR B1 (the subset of inequalities to which
Condition 3.1 applies) is assigned its, real, not necessarily integer, tj that
controls the amount by which the right-hand side of an inequality of B1,
associated with a voxel j, will go above its original prescribed upper bound
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uj. In (20) we confine all tjs (for all inequalities (voxels) j ∈ B1) to lie between
0 and 1 + β. This β is a user-chosen parameter that can be set by the user
to any value 0 ≤ β ≤ βmax. Equations (17), (18) and (19) are the same as in
the original problem (12)—(14) because for all remaining OARs and all PTVs
no changes are permitted. In (17) the indexing starts from s = 2 since B1 is
treated separately. The last constraint (21) is the check inequality (10). The
number n1 is the total number of voxels (inequalities) in the OAR (subset)
B1, thus,

P
j∈B1 =

Pn1
j=1 . The α is a user-chosen parameter that can be set

to any value 0 ≤ α ≤ αmax.
The next comments elaborate on this LP and its application to the com-

bination of (12)—(14) and Condition 3.1. As mentioned before, the check
constraint (21) does not guarantee that the algorithm will find a relaxed
solution, even if such a solution exists. This is because a solution that vio-
lates all inequalities of B1 (or just more than α% of them) might be found
which violates all inequalities (or just more than α% of them) by a very small
amount, so small that the total still fulfills (21) although violations occur in
more than α% of the inequalities. Thereby, it will violate the “up to αmax%”
permission of Condition 3.1. This is why the formulation presented here does
not stop at a relaxed feasibility problem consisting of (16)—(21) alone but we
use an LP that strives to minimize

P
j∈B1 tj over all inequalities of B1. LP

solutions are “extreme points” and, therefore, it is expected that many of
the tjs will attain their upper bound value 1 + β in (21), in which case the
solution may come close to satisfying the condition on α. However, even the
LP cannot guarantee that a solution that violates all of (or just more than
α% of) the inequalities of B1 by a very small amount will not be obtained.
This is because “minimize

P
j∈B1 tj” is still of a global nature over all voxels

in B1.
This situation has not been remedied at this time. However, the exper-

imental work performed here indicates that, when solving the LP, this kind
of violation occurs very rarely. Second and more importantly, even if the LP
finds such a solution it will not pass the “substitution” step where there is
a check of each solution for compliance to the combination of (12)—(14) and
Condition 3.1.
The successive {α,β}-relaxation method works by dynamically incre-

menting the values of α and β and successively applying the LP. All of
[0, βmax]× [0,αmax] is discretely searched bottom-up. There is an outer-loop
constructed around the LP-solver (which is the linprog function of MAT-
LAB applied to the IMRT situation, see details in Section 5) that allows a
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selection of the values of α and β that the LP-solver will run with. The
execution is started by putting α = 0 and β = 0, i.e., trying to solve the
original system without any violation of the inequalities of the OAR (i.e.,
no dose-volume constraints at all). At the end of each run of the LP-solver
the (x1, x2, . . . , xm) part of the solution vector of the LP-solver is substituted
back into the original system (12)—(14) to verify that it solves the original
system without violating Condition 3.1. This guarantees that no inequality
in the OAR B1 overflows the (1+βmax) upper bound on the right-hand side,
and that no more then αmax% of the inequalities of B1 are satisfied with
uj(1 + βmax), and that all other constraints are fulfilled. The desired final
solution is obtained when the current run of the LP-solver satisfies (12)—(14)
with Condition 3.1. The outer loop automatically increments the values of α
and β by ∆α and/or ∆β, re-runs the LP-solver, and then re-checks the LP
solutions repeatedly until an acceptable solution is obtained. If α and β have
reached their maximal values without reaching a solution then it is necessary
to go back to the radiation oncologist and report infeasibility with Condition
3.1. The radiation oncologist has then to decide whether to raise the values
of αmax, βmax, or both, or to modify his prescription in some other way. If
a satisfactory solution has been found then it is presented to the “owner” of
the original problem (the radiation oncologist) for final approval.
The above is summarized in the following algorithm statement; it is as-

sumed that an LP-solver is available before hand.

Algorithm 4.1 The successive {α,β}-relaxation method.
1. Initialization: (i) read the data of the original system (12)—(14),

i.e., all ajv, uj, lj, for all subsets of inequalities, (ii) obtain from the problem
“owner” his prescription for the values of αmax and βmax, (iii) choose values
for ∆α and ∆β, (iv) specify the subset B1 to which Condition 3.1 is applied,
(v) define α0 = β0 = 0.
2. The first step: set α← α0 and β ← β0 and apply the LP-solver on

the problem (15)—(21).
2.1 If the LP-solver fails, i.e., reports “no solution” to the LP, go to step

3.
2.2 If the LP-solver returns a solution to the LP then take the LP solution

vector x as a solution to the original problem (12)—(14) and exit the program.
3. The k-th Iterative Step: Given the values αk and βk from the end

of the previous iterative step, do the following:
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3.1 Solving the LP: set α ← αk and β ← βk and apply the LP-solver
on the problem (15)—(21).
3.1.1 If the LP-solver fails, i.e., reports “no solution” to the LP, go to

step 3.2.
3.1.2 If the LP-solver returns a solution to the LP then take the LP

solution vector x and substitute it into the original system (12)—(14) to check
if x solves the combination of (12)—(14) and Condition 3.1. If this is the case
then save the vector x as the desired solution and exit the program, otherwise,
delete it and go to step 3.2.
3.2 Incrementing αk and βk: Define ρ = βk +∆β.
3.2.2 If ρ ≤ βmax then define βk+1 = ρ and αk+1 = αk and go to step 3.
3.2.3 If ρ > βmax then reset βk = β0 and define σ = αk +∆α.
3.2.3.1 If σ ≤ αmax then define αk+1 = σ and βk+1 = βk and go to step

3.
3.2.3.2 If σ > αmax then exit the program and report that no solution

has been found.

It is instructive to briefly mention other existing approaches: MIP and
proximity function minimization. The first treatment of dose-volume con-
straints in IMRT was Bortfeld’s conference report [4] followed by Spirou and
Chui’s journal publication [29], see [5, p. R368]. There are other approaches
to handle the infeasibility of the system (12)—(14), see, e.g., Michalski et
al. [23]. The mixed integer programming (MIP) method and the proximity
function minimization approach are of special interest. Both methods are
fundamentally different than the one presented here. In MIP one consid-
ers an optimization formulation over the constraint set defined by (12)—(14).
With some exogenous, user-chosen, linear objective function f : Rm → R.
For IMRT, this MIP formulation can be found in Langer et al. [19] and also
in Shepard et al. [28, p. 737]. Other applications of MIP in this field include
Lee, Fox and Crocker, [20] and [21], who used it for radiosurgery treatment
planning, Boland, Hamacher and Lenzen [3] who employed a nonlinear MIP
formulation to incorporate MLC settings within the treatment planning, and
Bednarz et al. [2] who compared MIP performance with that of Cimmino’s
algorithm, see also [31]. Ferris, Meyer and D’Souza [16] give details of the
mathematical formulations and algorithmic approaches as well as pointers
to supporting literature for MIP-based approaches to problems of radiation
therapy. As Ferris, Meyer and D’Souza correctly notice, the main difficulty
associated with the MIP approach is that it can become quickly impractical
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due to large numbers of voxels in the region of interest (i.e., a large number
of inequalities). These difficulties have then to be attacked by approximation
techniques. See also Preciado-Walters et al. [25].
A completely different approach to infeasibility of a system such as (12)—

(14) is to minimize a proximity function that measures in some manner the
infeasibility of the system. A common choice is a (weighted) proximity func-
tion of the form

p(x) := (1/2)
nX
j=1

wj k Pj(x)− x k2 . (22)

Here Pj(x) is the orthogonal (nearest point) projection of the point x onto the
j-th half-space determined by any of the inequalities in (12)—(13), where the
distance is measured by the Euclidean norm k x k2= hx,xi .The real numbers
{wj}nj=1 are user-chosen positive weights such that

Pn
j=1wj = 1. Algorithms

for unconstrained minimization of such proximity functions exist within the
class of projection methods, see, e.g., Bauschke and Borwein [1], Xiao et
al. [32]. Such algorithms are either simultaneous projection methods, see,
e.g., Byrne and Censor [6] or steered sequential projection methods, see, e.g.,
Censor, De Pierro and Zaknoon [10]. Cimminio’s simultaneous projection
method performs proximity function minimization, see, e.g., Xiao et al. [31].
The proximity function is always nonnegative and if a sequence of iterates
{xk}∞k=0, generated by some algorithm, converges to a point x∗ at which
p(x∗) > 0 then the underlying problem is infeasible and the size of p(x∗)
reflects the degree of infeasibility. An algorithm that will generate such an
x∗, or an approximation of it, will simply give the problem-solver a solution
that is “best” in the sense that it “minimally” violates the constraints but it
does not give the problem-solver a tool to control the overall violation like a
method that incorporates Condition 3.1.

5 Experimentation

Next we supply details on the implementation of Algorithm 4.1 and report
our experiments. All computations were carried out within MATLAB6.5 [22]
using the routine linprog as the LP-solver for Algorithm 4.1. The option
for equality constraints Aeqx = beq in linprog must be disabled by setting
Aeq = [ ] and beq = [ ] and our LP problem (15)—(21) was appropriately
transformed into the format of MATLAB’s linprog.
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5.1 A randomly-generated test problem

For a non-clinical example we use the system (1)—(3) that represents an exam-
ple with a single OAR and a single PTV. We define the dimensions m (num-
ber of beamlets), n1 (number of inequalities, i.e., voxels, in the OAR) and
n2 (number of inequalities, i.e., voxels, in the PTV (2)). On truly randomly-
generated problems one cannot intelligently make any statement about when
or why the algorithm reaches or does not reach an acceptable solution. The
reason for this is that the creation of a truly randomly-generated matrix A
and a truly randomly-generated right-hand sides vector may result in a very
“large” infeasibility and it is possible that the βmax needed to reach feasi-
bility is huge (thousands or millions %). Therefore, to test the method and
algorithm described here we construct test-problems in which there is a pri-
ori control on the infeasibility. This is done by first randomly generating a
matrix A and a “solution” x, then calculating Ax = d and, finally, changing
a certain number of the components of d by a certain percentage and taking
the resulting vector as the right-hand side for the test problem.
Randomly-generated data for the m-dimensional vectors aj, for all j =

1, 2, . . . , n1, and for the vectors aj, for all j = n1+1, n1+2, . . . , n1+n2, is used.
We specified a range within which the random numbers are generated. All ajv
are generated to be nonnegative. Then we generate randomly a nonnegative
“solution” x. Denoting A1x = d1, where A1 is as in (1), a (randomly chosen)bα% of the components of d1 is decreased by a (randomly chosen) bβ% and
the resulting vector is defined as the vector u1 = (u1j)

n1
j=1 of upper bounds

on the OAR inequalities. Denoting A2x = d2, where A2 is as in (2), we
let d2 = ` 2, the vector of lower bounds on the PTV inequalities. The final
step is to let the user define the αmax and βmax up to which he is willing to
“sacrifice” voxels of the OAR. The user also defines parameters ∆α and ∆β
which indicate by how much the program should increment the parameters α
and/or β in each iterative step of Algorithm 4.1 until an acceptable solution
is reached or until both αmax and βmax are reached.
When iterations of Algorithm 4.1 stop, due to the finiteness of the dis-

cretized grid of αs and βs, either no solution, or exactly one solution that
solves (12)—(14) and Condition 3.1 can be found. If this were a real IMRT
case then in the first case it would be up to the original problem “owner” to
decide whether to raise αmax, or βmax, or both or modify the prescription in
any other way.

This methodology has been experimentally tested by running many ex-
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amples of various sizes. All experiments reached acceptable relaxed solutions
for the test problems randomly-generated in the controlled manner described
above. An example is presented below. The size of this example is n1 = 600,
n2 = 450 and m = 80. In the test problem generation we used bα = 0.2 andbβ = 0.3 to destroy in a controlled manner the feasibility of the generated
problem. In the solution phase we let αmax = βmax = 0.5 and employ incre-
mental steps of ∆α = ∆β = 0.1. The generated test problem turned out to
be indeed infeasible, namely, no solution could be found for it with α = β =
0. Then the program repeatedly applied the LP-solver while gradually incre-
menting the αs and βs. The first acceptable solution (i.e., a solution of the
LP problem (15)—(21) whose x part solved (12)—(14) and Condition 3.1) was
encountered for the pair (α,β) = (0.3, 0.4).
However, out of curiosity, we did not stop there and rather let the algo-

rithm work on until the whole grid of (α, β)-pairs was exhausted. Naturally,
with increased values of (α,β) more acceptable solutions were discovered be-
fore (αmax, βmax) was reached. In the table below we list all pairs of αs and
βs for which an acceptable solution was found. The third column in the table
gives the values of the proximity function (22) that we calculated for each
solution.

Solution # α β p(x)

1 0.3 0.4 125.92
2 0.3 0.5 122.3
3 0.4 0.3 143.67
4 0.4 0.4 125.92
5 0.4 0.5 122.3
6 0.5 0.3 143.67
7 0.5 0.4 125.92
8 0.5 0.5 122.3

Mixed integer programming (MIP) was applied in studies of similar size
in [2]. The time reported there was between 20—120 minutes. The time
required for this case here is around 5 minutes for all the iterations. Similar
computers were used for both experiments.
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5.2 A clinical IMRT example

Next we present a clinical IMRT example. Since most institutions where
IMRT is implemented offer treatment of prostate cancer, it is of general
interest to pick an example from this particular disease site. Prostate cases
are among the most common IMRT treatments, which is one of the reasons
that they are chosen. We encounter infeasibility in clinical planning of these
cases around 5-10% of the time. The physicians have to reconsider higher
probabilities of either bladder or rectum toxicities for these infeasible cases.
We use 18 MV beams for all our prostate IMRT planning and treatment.
Some parallel opposed beams are also used routinely in our clinic for IMRT
planning to obtain optimal target coverage and critical structure sparing.
The geometrical center of the prostate PTV was chosen as the center of the
IMRT radiation beams. The beam angles selected for the inverse planning
system are 0o, 55o, 90o, 145o, 180o, 215o, 270o and 305o. The aperture-based
inverse planning (ABIP) (see, e.g., Xiao et al. [31]) method was applied.
The aperture definition was carried out with the commercial CMS FOCUS
treatment planning system [15]. For the prostate cases, a 5 mm margin
surrounding the Clinical Target Volume (CTV) was used to define the PTV.
An additional 8mmmargin was added to accommodate the beam penumbra.
The total number of voxels for PTV (target volume), bladder and rectum

are 685, 862 and 381, respectively. Using Matlab version 7 on a PC of
processor 1.1GHz running Windows XP with 1.24 GB of RAM. The running
time is around 5 minutes for all the iterations.
The apertures were selected according to the methodology of [31] and

they include: fields that conform to the combined outline of all targets pro-
jected back to the radiation point source for all orientations of the treatment
unit; fields that conform to the projection of the boost volume for all orien-
tations; field segments that conform to the target but fully shield the critical
structures; extra segments to adjust for the dose inhomogeneity that results
from shielding critical structures that do not run along the whole length of
the target. The number of apertures depended on the geometry and the
topology of a particular site as well as on the complexity of the prescription,
e.g., the number of boost regions. For treatment plans of prostate cancer,
with bladder and rectum as the critical organs that have to be avoided, the
total number of segments is usually in the range of 50—60. The dose lower
and upper bounds for the prostate case are given in the next table. The
lower bound is the minimum dose that has to be deposited in the organ and
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the upper bound is the maximum dose that the organ can tolerate. For the
target volume, upper bounds on the dose are also imposed to achieve accept-
able dose homogeneity. The dose values in the table are in cGy units.

lower bound upper bound
PTV 7560 9000

Rectum 0 6500

Bladder 0 6500

Standard dose-volume constraints (DVCs) commonly applicable to this
clinical case are specified in the next table. No more than 5% of the target
volume is allowed to receive dose that is by at most 5% less than the lower
bound goal dose. For critical organs no more then 20% of the OAR is al-
lowed to receive dose that is by at most 20% more than the upper bound
permitted dose. The dose calculations are performed with the calculation
engine within the system. Dose matrices to voxels due to each of the beams
are then extracted. The voxel sizes are 3 × 3 × 3 mm3. Only those voxels
that intercept target volumes are included in the dose matrices extracted.

upper/lower bound DVC: vol below DVC: vol above
PTV 7560 ≤ 5% –
Rectum 6500 – ≤ 20%
Bladder 6500 – ≤ 20%

When applying our method and program to this prostate case we used the
rectum as the single OAR for which we exercise a DVC. We set αmax = 100%
and βmax = 100% for this organ with the intent to be able to report on the
smallest (α, β) pair which turns the original feasibility problem into a feasible
one, even if it will not satisfy the physician’s prescription of α = β = 20%.
The PTV and the other OAR were not permitted any DVC. We then ran
the program first with α = β = 0 and no feasible solution could be found.
Then we gradually incremented the values of α and β according to Algorithm
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4.1 with ∆α = 0.1 and ∆β = 0.1. Feasible solutions were obtained for all
pairs (α, β) with α ≥ 0.2 and β ≥ 0.2. A plot of a cumulative dose-volume
frequency distribution, commonly known as a dose-volume histogram (DVH),
graphically summarizes the radiation dose distribution within a volume of
interest of a patient which would result from a proposed radiation treatment
plan. DVHs are used as tools for comparing rival treatment plans for a
specific patient by presenting the distribution of dose in the target volume
and in volumes of adjacent normal organs or tissues. Figures 1, 2 and 3
show the DVH graphs for PTV, CTV coverage, rectum and bladder doses to
percent volumes for different alpha and beta pairs. Of the two parameters,
β seems to affect the DVH outcome more. Figures 2 and 3 show the results
from (α, β) pairs of (0.3, 0.2) and (0.3, 0.3), respectively. The receding of
the rectum DVH line to lower doses is evident with smaller β values, which
is quite reasonable considering the fact that this is the relaxation upper dose
limit we impose. The α value of 0.3 is higher than expected, especially
when studying the DVH results for the rectum where less than 20% of the
volume is getting 6500 cGy or less. However, from the model (15)—(21), the
combination of (α, β) may be the dominating factor. When more organs are
implemented in the study, as we plan to do next, the trade-off performance
of various (α, β) pairs will be even more interesting.

6 Conclusion

The introduction of IMRT has in many ways revolutionized Radiation On-
cology. Using this treatment modality, it is now possible to generate dose
distributions that conform to treatment volumes that partially wrap around
a critical structure or even surround it completely. However, a new prob-
lem has surfaced in that obtaining a good IMRT plan is highly dependent
on the abilities of the clinician and dosimetrist to specify reasonable dose
constraints. It is currently necessary for the individual operating the treat-
ment planning system to manually modify input parameters and generate
successive plans as a technique of working to an acceptable final result that
is superior to other treatment plans obtained during the process. If the dose
constraints used as a starting point for the process of generating alternative
plans are too relaxed, better dose distributions might go undetected. On the
other hand, if very strict constraints are used and convergence to an accept-
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Figure 1: DVH plots for the pair (α, β) = (0.2, 0.2).

able plan does not occur, it is hard to know how to relax them in a stepwise
fashion or when to stop trying to find a better result.
This paper discusses a new approach that allows the dose constraints to

be varied (relaxed) in an organized way within the inverse planning process
so that a feasible solution can be found for an otherwise infeasible problem.
By automating the step of sorting through different combinations of dose
constraints, it is possible to find a treatment plan or series of plans with target
and critical structure DVHs that are at least near the original dose constraints
specified by the attending physician responsible for a particular patient’s care.
This approach can be an advantage for busy clinicians that might otherwise
be challenged by the prospect of remembering how alternate plans compare
when they are generated over periods of time that could involve a number
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Figure 2: DVH plots for the pair (α, β) = (0.3, 0.2).

of days. The approach described can produce a series of plans with relaxed
constraints when the original dose limits are not met, and the responsible
physician can review and select a result from among those plans presented.
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Figure 3: DVH plots for the pair (α, β) = (0.3, 0.3).
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