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Abstract

In this paper we look at the development of radiation therapy treat-
ment planning from a mathematical point of view. Historically, plan-
ning for Intensity-Modulated Radiation Therapy (IMRT) has been
considered as an inverse problem. We discuss first the two funda-
mental approaches that have been investigated to solve this inverse
problem: Continuous analytic inversion techniques on one hand, and
fully-discretized algebraic methods on the other hand. In the second
part of the paper, we review another fundamental question which has
been subject to debate from the beginning of IMRT until the present
day: The rotation therapy approach versus fixed angle IMRT. This
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builds a bridge from historic work on IMRT planning to contemporary
research in the context of Intensity-Modulated Arc Therapy (IMAT).

1 Introduction

External radiation therapy treatment planning (RTTP) has historically been
considered as an inverse problem. There are two quantities: the external
radiation field and the dose distribution that this field entails, which are
related to each other by an operator. This operator is a mathematical and/or
computational construct that associates with each external radiation field a
dose distribution and vice versa. The operator carries in it our physical
knowledge of the real-world relationship between the two quantities, under
some specified conditions.
In the scientific discipline of inverse problems there are two fundamen-

tal approaches to such problems. One is the transform method approach, in
which the operator is formulated analytically by a mathematical transform
(hence the name) which is then mathematically inverted in order to find a
solution to the inverse problem. This approach is referred to as the con-
tinuous model and when applied it is called analytic inversion. When this
approach fails, for any of a variety of possible reasons, one needs to resort
to the full-discretization approach. In this approach the problem is fully-
discretized at the outset, yielding a finite-dimensional vector space problem.
This approach is referred to as the algebraic model and when applied it is
called algebraic inversion. The two approaches differ in many ways and are
treated with different mathematical tools. Which approach is more appro-
priate for external radiation treatment planning? This is the first question
that we discuss below.
Nowadays, the IMRT planning inversion problem is primarily viewed as

a mathematical optimization problem rather than an inverse problem. This
is partly due to the fact that in radiotherapy planning there is no dose dis-
tribution per se which ought to be realized. The physical dose distribution is
only a surrogate for the underlying goal of tumor control with minimal side
effects in healthy organs. Therefore, the ultimate aim of treatment planning
is to find the dose distribution and a corresponding external radiation field
which fulfills the underlying clinical goal, rather than defining the dose dis-
tribution that needs to be achieved. The formulation of IMRT planning as
an optimization problem is reviewed in Section 4.
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In Section 5, we discuss a second fundamental question that was subject
to debate historically and still is today: The rotation therapy approach which
can be formulated as a full IMRT problem on one hand, or as a fixed angle
IMRT approach on the other hand. In the full IMRT problem the exter-
nal radiation field is discretized evenly and uniformly regarding both beam
angles and lateral positions in the beams, i.e., the patient is potentially ir-
radiated from all directions. In the limited angle approach, a small set of
approximately 10 beam angles is pre-determined and the patient is irradiated
from those directions only.
Historically, this rotation therapy approach has attracted significant at-

tention in the context of analytic inversion techniques. When IMRT was
introduced clinically, most of the research on IMRT planning shifted toward
the fixed angle approach, partly due to the hardware that was available to
deliver such treatment plans in practice. However, with the emergence of
Tomotherapy and, more recently, Intensity-Modulated Arc Therapy (IMAT)
the competition between the full IMRT problem and limited angle IMRT has
been revived.
Several fragments of the presentation in various parts of the paper are

adopted from some of our earlier publications in this field.

2 IMRT as an inverse problem

In this section, we first define the continuous model of IMRT planning in
the context of analytic inversion techniques (Subsection 2.1), and the fully-
discretized model for algebraic inversion methods (Subsection 2.2). We pro-
ceed with general remarks regarding the selective use of analytic versus al-
gebraic methods and point out analogies with the related field of image re-
construction from projection (Subsection 3.1). We consider, without loss of
generality of the ideas and the discussion, the two-dimensional (2D) case.
Everything said below could have been formulated in 3D without affecting
the arguments in the discussions. Some of the ideas can be applied also to
other radiation therapy modalities such as Intensity-Modulated Proton Ther-
apy (IMPT).
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Figure 1: Geometry and nomenclature

2.1 The continuous model for analytic inversion

Let D(r, θ) be a real-valued nonnegative function, of the polar coordinates
r and θ, whose value is the dose absorbed at a point (r, θ) in the patient’s
planar cross-section Ω coincident with the plane of the machine’s gantry
motion (see Figure 1). This is the dose function, or dose distribution. A
ray is a directed line along which photons travel away from the source (the
teletherapy source). Rays are parametrized by the beam angle u and a lateral
coordinate w describing the distance from the central axis of the beam. The
real-valued nonnegative function ρ(u,w) represents the radiation intensity
along the ray (u,w) due to a point source on the gantry circle, located at
(u,w).
In terms of fundamental physics, the dose distribution D(r, θ) inside the

patient relates to the vector-valued photon fluence incident on the patient
surface. By assuming a point source and a fixed photon energy spectrum,
the vector-valued photon fluence can be reduced to a scalar function ρ(u,w)
which we call the radiation intensity1.

Problem 1 The continuous forward problem of IMRT. Assume that
the cross-section Ω of the patient and its radiation absorption characteristics
are known. Given an external radiation intensity function ρ(u,w), for 0 ≤

1Practically, the radiation intensity is quantified via the concept ofMonitor units, which
measures the amount of radiation relative to defined norm conditions.
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u < 2π and −W ≤ w ≤W , find the dose function D(r, θ), for all (r, θ) ∈ Ω,
from the formula

D(r, θ) = D[ρ(u,w)](r, θ), (1)

where D is the dose operator which relates the dose function D to the
radiation intensity function ρ.

In other words, the continuous forward problem amounts to the calcula-
tion of the total dose absorbed at each point of a patient’s cross-section when
all parameters of the external radiation field (all radiation rays) are specified
and the description of the patient’s cross-section is known. The treatment
planning problem for IMRT amounts to the solution of the corresponding
inverse problem.

Problem 2 The continuous inverse problem of IMRT. Assume that
the cross-section Ω of the patient and its radiation absorption characteris-
tics are known. Given a prescribed dose function D(r, θ), find a radiation
intensity function ρ(u,w) such that equation (1) holds, or, equivalently,

ρ(u,w) = D−1[D(r, θ)], (2)

where D−1 is the inverse operator of D.

Solving Problem 2 should yield an external radiation field (configura-
tion and relative intensities of radiation sources represented by rays) that
will deliver the prescribed radiation dose distribution (or some acceptable
approximation thereof).
The difficulties associated with both these forward and inverse problems

stem from the fact that to this date there exists no, realistically adequate,
closed-form analytic representation of the dose operator D that will
enable us to use equation (1) for the calculation of D(r, θ). Although the
interaction between radiation and tissue is measured and understood at the
atomic level, the situation is so complex that, to solve the forward problem
in practice, a state-of-the-art computer program (i.e., a sufficiently accurate
dose calculation engine), which represents a computational approximation of
the operator D, must be used.
By stating that “there exists no, realistically adequate, closed-form ana-

lytic representation of the dose operator D” we mean that only if drastically
simplifying assumptions are made about the geometry of the patient and the
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dose calculation model, then it is sometimes possible to express the dose op-
erator in a closed-form analytic formula. This has been done first by Brahme,
Roos and Lax [11] and extended by Cormack and co-workers; consult the re-
view paper of Cormack and Quinto [26] for further references. In a similar
approach Bortfeld and Boyer [8] used the exponential Radon transform as
an approximation of the dose operator D. See also Brahme’s review [10] and
Goitein’s editorial [29] for related discussions.
In current practice of IMRT, when dose calculations are performed to

verify the dose that will result from a proposed treatment plan, the goal is
to obtain results that are as accurate as possible. To achieve this, various
empirical data, which are often condensed in look-up tables, are incorporated
into the forward calculation. Thus, the true forward calculation, or true dose
operator, is not represented by a closed-form analytic relation between the
radiation intensity function ρ(u,w) and the dose function D(r, θ), but by a
state-of-the-art software package that calculates D(r, θ) from ρ(u,w).
Because no closed-form analytic mathematical representation is available

for the dose operator D, it seems that the inverse problem of IMRT cannot
be solved by analytical methods because without such a mathematical repre-
sentation of D it is impossible to employ mathematical methods for analytic
inversion to find the inverse operator D−1.

2.2 The fully-discretized model for algebraic inversion

Full discretization of the problem at the outset is generally used in inversion
problems to circumvent the difficulties associated with the analytic inver-
sion of the forward operator, here D. The patient’s cross-section Ω is fully-
discretized into a grid of J points (sometimes thought of as centers of pixels)
represented by the pairs {(rj, θj) | j = 1, 2, . . . , J}. Define Dj[ρ] by

Dj[ρ(u,w)] := [Dρ](rj, θj) (3)

and call Dj a dose functional, for every j = 1, 2, . . . , J . Acting on a radiation
intensity function ρ(u,w), the functional Dj provides Dj[ρ], which is the
dose absorbed at the j-th grid point of the patient’s cross-section Ω due to
the radiation intensity field ρ. To continue the full-discretization process
of the problem it is assumed that a set of I basis radiation intensity fields
is fixed and that their nonnegative linear combinations can give adequate
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approximations to any radiation intensity field that we wish to specify. This
is done by discretizing the region 0 ≤ u < 2π, −W ≤ w ≤ W in the
(u,w)-plane into a grid of points given by {(ui, wi) | i = 1, 2, . . . , I}. In this
fully-discretized model, a desired radiation intensity function ρ that solves
the inverse problem is approximated by bρ

bρ(u,w) = IX
i=1

xiσi(u,w), (4)

where σi(u,w) is a unit basis radiation intensity fields or beamlet at the grid
point i. For IMRT, this can, to first approximation, be defined as

σi(u,w) :=

½
1, if u = ui and wi − ∆w

2
≤ w ≤ wi +

∆w
2

0, otherwise,
(5)

where ∆w is the distance between the evenly-spaced grid points wi.2 The
coefficient xi in Equation (4) is the actual intensity along the i-th basis
field, which is required to be nonnegative, i.e., xi ≥ 0 for all i = 1, 2, . . . , I.
Once the grid points are fixed, any radiation intensity function bρ, that can
be represented as a nonnegative linear combination of the rays, is uniquely
determined by the intensity coefficients xi. The latter form the components
of the vector x = (xi)Ii=1 ∈ RI , in the I-dimensional Euclidean space, referred
to as the radiation intensity vector.
Further, assume that the dose functionals Dj are linear and continuous.

This assumption cannot be mathematically verified due to the absence of an
analytic representation of either D or Dj, but it is a reasonable assumption
based on the empirical knowledge of Dj. Using linearity and continuity of
all Dj’s, we can write

Dj[ρ] ' Dj[ρ̂ ] =
IX

i=1

xiDj[σi]. (6)

For j = 1, 2, . . . , J , and i = 1, 2, . . . , I, denote by

aij := Dj[σi] (7)

2∆w corresponds to the resolution of the Multi-leaf collimator for IMRT. Generally,
the basis radiation intensity fields depend on the treatment modality. For example, in
intensity-modulated proton therapy, σi could represent a Gaussian pencil beam.
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the dose deposited at the j-th grid point (rj, θj), in the patient’s cross-section
Ω, due to a basis radiation filed σi(u,w), and define vectors aj := (aij)Ii=1 ∈
RI , for j = 1, 2, . . . , J. Then the right-hand side of (6) becomes equal to the

inner product haj, xi =
IX

i=1

aijxi in RI . The desired dose functional is also

discretized by defining

bj := D(rj, θj), for all j = 1, 2, . . . , J. (8)

Problem 3 The fully-discretized inverse problem of IMRT. Let aij be
as in (7) and let bj be the desired doses as in (8), for j = 1, 2, . . . , J , and
i = 1, 2, . . . , I. Find a radiation intensity vector x∗ ∈ RI such that

aj, x∗
®
= bj, for j = 1, 2, . . . , J, (9)

and

x∗i ≥ 0, for i = 1, 2, . . . , I. (10)

Defining the J × I matrix A as the matrix whose transpose AT has aj

in its j-th column, and the J-dimensional vector b = (bj)
J
j=1, the system

(9)—(10) can be rewritten as an algebraic system

Ax∗ = b and x∗ ≥ 0. (11)

This analysis has its roots in a similar analysis, labelled as series expan-
sion approaches, presented by Herman and Lent [32] (see also Herman [31,
Section 6.3]), for the full discretization of the image reconstruction from pro-
jections problem (associated with computerized tomography). Similar dis-
cussions about analytic (continuous) inversion versus algebraic inversion in
IMRT were given in Censor [14, 15]. This fully-discretized model calls for the
quantities aij which can be pre-calculated with any state-of-the-art forward-
problem-solver. The tendency to make the discretization finer results in very
large values of I and J .

3 Analytic or algebraic inversion?

We start with general remarks regarding the selective use of algebraic ver-
sus analytic inversion methods to solve inverse problems and point out in-
teresting analogies with the field of image reconstruction (Subsection 3.1).
Subsequently, we discuss the situation in IMRT planning (Subsection 3.2).
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3.1 Remarks on modeling approaches for inverse prob-
lems

We formulate the inverse problem through the generic functional equation

y = Ox (12)

which relates an unknown object x to some measurements or other data y
through an operator O. The object x and the data y belong to appropriate
function spaces and the fundamental inverse problem is to recover x, or an
acceptable approximation thereof, given y and O. In IMRT planning, x is
the fluence (i.e., the intensity distribution) to be determined and y is the
desired dose distribution. In order for an analytic inversion approach to be
successful all the following conditions must be met:
(i) O must be representable, i.e., the operator O should be represented in

a mathematically-closed-form analytic formula.
(ii) O−1 must be representable.
(iii) O−1 must be implementable, i.e., all conditions which are required,

either mathematically or practically, for efficient implementation of the com-
putations involved in O−1, should be met.
(iv) The analytic inversion approach has to perform better than alterna-

tive algebraic methods regarding the quality of the solution and/or compu-
tational efficiency.
If any one of the above conditions fails then a full discretization ap-

proach is recommended. In IMRT or other radiation therapy modalities,
such as Intensity-Modulated Proton Therapy (IMPT), it is the case that the
operator O could not be represented in a mathematically-closed-form an-
alytic formula, unless stringent and unrealistic limitations are imposed on
the geometry. Therefore, radiation therapy treatment planning has so far
developped uniquely in the direction of the full discretization approach.
An example where both O and its inverse O−1 are representable is x-

ray computerized tomography (CT) reconstruction. O is given by the Radon
Transform and an analytic derivation of its inverse is known due to Radon
[47]. Therefore, an analytic solution to this inverse problem was available
early on. This analytic approach to image reconstruction was generally
termed “transform methods,” see Lewitt [37]. At the same time, and simul-
taneously with this transform inversion approach to image reconstruction,
people have also used the full-discretization approach at the modeling stage
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which led to the representation of quantities by finite-dimensional vectors
and the relations between them by functions over the vector space.
A solution of the fully-discretized inverse problem in CT does not need

further discretization of formulas for the computer implementation. This
was termed “series-expansion reconstruction methods,” see Herman and Lent
[32], Censor [13]. The well-knownAlgebraic Reconstruction Technique (ART)
was the first such series-expansion reconstruction method, published in 1970
by Gordon, Bender and Herman [30]. Later ART was identified with Kacz-
marz’s projection method [34] and it became common knowledge that, inde-
pendently, Hounsfield [33] used in his computerized tomography head-scanner
the same algebraic reconstruction algorithm. In 1979 Hounsfield and Cor-
mack received the Nobel prize in physiology or medicine for their pioneering
work in CT. Until today, both the analytic transform approach and the
algebraic series-expansion approach exist, side by side, in the image recon-
struction field, each having its advantages and disadvantages. Today, the
filtered backprojection algorithm, which is based on the continuous analytic
approach, is still a widely used algorithm in commercial systems although its
dominance is challenged by advances regarding algebraic approaches [45].
An example where the forward operator O is representable but, to date

the analytic inversion has not been solved in general is that of the attenu-
ated Radon transform of the image reconstruction problem of Single Photon
Emission Computerized Tomography (SPECT).

3.2 Analytic versus algebraic methods in IMRT

In IMRT the situation is quite different than that in the image reconstruction
field. Brahme, Roos and Lax [11], Lax and Brahme [35], Cormack [23],
Cormack and Cormack [24], and Cormack and Quinto [25, 26], as well as
Bortfeld and Boyer [8] all attempted to do analytic transform inversion for
the IMRT inverse problem. But today almost every paper that deals with
the inverse problem or some of its specific aspects, starts off, as a matter of
routine, with a fully-discretized model in which the external radiation field is
finely discretized into, so called, beamlets (equivalently named: pencil beams
or rays) and the body’s cross-section — into pixels or voxels. Even reviews
and tutorials often take the fully-discretized model in IMRT for granted, see,
e.g., Shepard et al. [51], to name but one example.
The reason for this is plain and simple: The inherent difficulty of IMRT,

already mentioned above, is that the forward problem, i.e., the calculation
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of absorbed dose within a geometrically- and anatomically-known body due
to a known external radiation field, does not lend itself to description by a
mathematical closed-form formula. The forward problem of dose calculation,
encapsulates our knowledge of how radiation interacts with tissue, and this is
such a complex physical phenomenon that state-of-the-art dose calculation
software packages use Monte Carlo methods, look-up tables and a variety
of other heuristics. In addition, IMRT planning starts off with a patient
model in the form of a CT image; hence the patient model is available in
discretized form only without an analytic parameterization. Therefore, we
wrote in 1988 [16]: “... the point is made that, in this field of application
[meaning: IMRT], the inverse problem calls for the inversion of an operator
for which no analytic closed-form mathematical representation exists. To
attack the inverse problem under such circumstances, a discretized model is
set up in which both patient section and radiation field are finely discretized.
This leads to a linear feasibility problem, which is solved by a relaxation
method.”
The term “algebraic inverse planning”, often used in IMRT, should in-

clude the following ingredients: (i) recognition that there is a pair of forward
and inverse problems, (ii) a full-discretization of both the patient’s cross-
section and the external radiation field, (iii) an algebraic fully-discretized (as
opposed to analytic and continuous) model, and (iv) an algebraic iterative
algorithm of one kind or another designed to solve the fully-discretized model
of the inverse planning problem.
Should one adhere to the state-of-the-art software representation of D

rather than to a compromise of allowing simplifying assumptions that might
lead to a closed-form analytic mathematical formula for D? Since the lat-
ter can be done only at the expense of the physical reality of the forward
calculation, it seems that present-day IMRT, as well as other radiation ther-
apy treatment planning modalities, already made the choice. This is why
full-discretization of the problem has to be adopted, as we did in [1] and
[17]. Modern computer-controlled multileaf collimator (MLC) technology,
capable of generating arbitrary intensity-modulation, fills in the gap that
existed between the fully-discretized beamlet-based solution of the inverse
problem and the delivery capabilities, see, e.g., Cho and Marks II [21] and
references therein. The fully-discretized model is not difficulties-free, but it
offers a route of circumventing the analytic inversion problem of the compu-
tational dose operator D without compromising on any of the heuristics and
empiricism involved in advanced dose calculations. Brahme also reached a
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conclusion in favor of full-discretization in his 1995 review paper [10] where
he said: “. . . In either case it is very useful to transform the relevant integral
equation into an algebraic form by discretizing the transport quantities along
the coordinates of the free variables.”
Another idea that has been investigated consists of decomposing an arbi-

trary dose distribution into simpler geometric areas, say, circles or triangles.
This can to some extent be viewed as providing a bridge between the fully-
discretized and the analytic methods approaches. See, for example, Barth
[5], Bortfeld and Boyer [8]. See also Brahme [9].
Even though practical IMRT planning nowadays solely uses the algebraic

approach, analytical methods are valuable for theoretical investigations which
aim at a more fundamental understanding of a given question. A recent
example for such work is a paper by Bortfeld [7] on the number of required
beam directions in IMRT (see also Section 5 below).

4 IMRT inverse planning as an optimization
problem

In the early years of the IMRT era, IMRT planning was often perceived as an
inverse problem. However, nowadays it is mostly viewed as an optimization
problem where the term optimization is not construed only in its narrow
sense of being a method that solves the fully-discretized version of the inverse
problem. There is a wider sense in recognizing IMRT planning as an intrinsic
optimization problem.
A predominant reason for this change of perspective relates to recogniz-

ing that there is no desired dose distribution vector b (as defined in (11)) per
se which needs to be achieved. In regions outside the tumor, every dose is
undesired, though it is physically impossible to deliver zero dose to surround-
ing tissue if the tumor is irradiated to its desired dose. Hence, the notion of
minimizing dose to healthy tissues is more natural.
Within the tumor, the physical dose distribution is only a surrogate for

the underlying clinical goal of tumor control and patient cure. In other
words, the desired dose distribution vector b is not fixed and given. Instead,
the aim is to find an unknown dose distribution d along with an intensities
vector (fluence) x so that the chance of patient cure is maximized. Thus,
the IMRT planning problem is formulated in terms of a real-valued objective
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function f of these two vector variables d and x, namely, f : RJ × RI → R
and with some real-valued constraints functions cm : RJ × RI → R. The
objective function and the constraints functions typically depend on the dose
distribution d, but may also depend explicitly on the intensities vector x. We
can now reformulate the radiation therapy treatment planning problem as a
mathematical optimization problem as follows.

Problem 4 The IMRT optimization problem. Let f(d, x) be a given
objective function and let cm(d, x) be given constraint functions, for m =
1, 2, . . . ,M. Let aij be as in (7) for j = 1, 2, . . . , J and i = 1, 2, . . . , I, and
let m and um be lower and upper bounds for the constraints cm, for m =
1, 2, . . . ,M, respectively. Find a radiation intensity vector x∗ ∈ RI and a
corresponding dose vector d∗ ∈ RJ that solve the problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

minimize f(d, x)
such that
haj, xi = dj, for j = 1, 2, . . . , J,

m ≤ cm(d, x) ≤ um, for m = 1, 2, . . . ,M,
xi ≥ 0, for i = 1, 2, . . . , I.

(13)

In practice, the objective function f and the constraints are typically
chosen to be convex so that standard algorithms for convex optimization are
applicable. Traditionally, a widely used objective function is the 2-Norm of
the difference of dose d and a desired dose b, i.e.,

f(d) = kd− bk22 =
JX

j=1

(dj − bj)
2 . (14)

Quadratic objective functions have been used in the first generation of com-
mercial treatment planning systems and are still widely used today. In
this case, the optimization problem can still be viewed as falling within the
methodology of solving the fully-discretized inverse problem of IMRT.
Another objective function that has attracted attention and which made

its way into commercial treatment planning systems is the equivalent uniform
dose (EUD) [41] which can be considered as a generalized mean value of the
dose in an organ, given by

f(d) = EUD(d) =

Ã
1

J

JX
j=1

(dj)
α

!(1/α)
(15)
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For the parameter value α = 1, the EUD is equivalent to the mean dose
in the organ. For α→∞, the EUD converges towards the maximum dose in
the organ. The EUD plays a role in simple radiobiological models of tumor
control probability (TCP) function and normal tissue complication probability
(NTCP) function.
The most common dosimetric constraints are maximum and minimum

dose constraints of the form

dmin
j ≤ dj ≤ dmax

j , for j = 1, 2, . . . , J. (16)

For voxels that belong to healthy tissues, the minimum dose would be zero.
Alternatively, constraints could be imposed on the maximum EUD in healthy
tissues.
Different formulations of the IMRT optimization have been investigated

over the years, ranging from linear models to nonlinear formulations based
on TCP and NTCP models. In Problem 4 the IMRT optimization problem
is introduced as a constrained optimization problem. The first generation
of commercial treatment planning systems (and probably most systems cur-
rently in use) do not support a strict handling of dosimetric constraints.
Instead, constraints are handled approximately via quadratic penalty func-
tions. Constrained optimization methods have always been applied in the
mathematically oriented community. Nowadays, also commercial treatment
planning systems start to support dosimetric constraints (see, e.g., [50]). For
an extensive recent review of IMRT planning from a mathematical perspec-
tive, we refer the reader to Ehrgott et al. [28].

5 The full IMRT problem versus limited an-
gle IMRT

In the full-discretization approach to IMRT planning we distinguish between
the full IMRT problem and limited angle IMRT. In the full IMRT problem,
the external radiation field is discretized evenly and uniformly regarding both
the beam angle u and the lateral position w, i.e., the patient can be poten-
tially irradiated from all directions. In the limited angle approach, a fixed
set of beam positions is determined during the treatment plan optimization
process, and the patient is to be irradiated from those directions only. Which
one of these two models is more appropriate for external radiation treatment
planning?
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Historically, the rotation therapy approach has attracted attention in the
context of analytic inversion techniques. In [11] Brahme, Roos and Lax solved
the IMRT inverse problem analytically for a circular tumor surrounding an
organ to be spared. Later, this was extended by several authors. See, e.g.,
the work by Cormack and co-workers (consult the review paper of Cormack
and Quinto [26]) or Oelfke and Bortfeld [42], see also Raphael [48]. In a sim-
ilar approach Bortfeld and Boyer [8] used the exponential Radon transform
as an approximation of the dose operator D. Such historical echos of the
recognition of the Radiation Therapy Treatment Planning (RTTP) problem
as an inverse problem and of the practicality of the fully-discretized approach
over analytic inversion can be found in Brahme’s review [10] and Goitein’s
editorial [29]. In the context of rotation therapy, the dose operator D corre-
sponds to an integral operator, involving integration over dose contributions
from all angles u between 0 and 2π. Thus, for analytic inversion methods,
the rotation therapy idea is natural and shows analogies with the inversion
problems in the field of image reconstruction from projections that can be
exploited.
When IMRT was introduced clinically, most of the applied research and

commercial treatment planning systems focused on limited angle IMRT. At
the time, standard computers did not have sufficient memory to store the
dose contributions aij (see Eq. (7)) of realistic clinical cases for the full
IMRT problem. Hence, limiting the beam angles was an obvious way to make
the planning problem tractable. In addition, the existing hardware used to
deliver IMRT treatments (linear accelerators mounted on a gantry, equipped
with a multileaf collimator (MLC)) favored the limited angle approach.
However, with the emergence of Tomotherapy [40] and its first clinical

use in 2002, treatment machines became available that were able to deliver
intensity-modulated fields at every beam angle. Tomotherapy provided ded-
icated hardware for a clinical implementation of the rotation therapy ap-
proach. In recent years, rotation therapy has regained popularity also in the
context of conventional treatment machines, i.e., linear accelerators mounted
on a gantry and equipped with a multileaf collimator. This approach has
been introduced under a variety of names3. Here, we refer to all of these ap-
proaches as Intensity-Modulated Arc Therapy (IMAT). However, the driving

3including intensity-modulated arc therapy (IMAT), arc-modulated radiation therapy
(AMRT) [55], volumetric modulated arc therapy (VMAT) [44], arc-modulated cone beam
therapy [54].
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force behind this development is not only the quest for delivery of superior
dose distributions, but also the desire to reach reduction of treatment times.
From a mathematical point of view, the full IMRT solution is always at

least as good as limited angle IMRT. If we consider IMRT as an optimization
problem, the optimization variables for fixed angle IMRT are a subset of
those of the full IMRT problem. Assuming that the same objective function
and the same constraints are applied, the solution to the full IMRT problem
will typically be better (not worse) than the solution for fixed angle IMRT
for any set of angles4. Intuitively, there is a point of diminishing returns
that is reached when adding more beam angles does not improve further the
achievable dose distribution to an extent that would be practically relevant.
This has been confirmed in multiple treatment planning studies. Recently,
this empirical finding was supported through a theoretical investigation by
Bortfeld [7]. He showed that, under certain simplifying assumptions, there is
no benefit in adding more beam directions beyond a certain number which is
estimated to be in the range of 10 to 20. The maximum number of required
beam directions depends on the highest degree of the polynomial that can
describe the intensity profile of any beam direction in the full IMRT solution.
From a practical point of view, the situation is less clear if limitations

of the delivery machine are taken into account and treatment time is lim-
ited. For fixed angle IMRT, contemporary treatment machines equipped
with multileaf collimators can deliver intensity-modulated radiation fields
with high accuracy. For rotation therapy approaches, the degree of intensity-
modulation that can effectively be achieved at a given angle may be limited,
depending on the treatment machine. Thus, the question of whether fixed
angle IMRT or the full IMRT rotation therapy approach is superior can-
not be answered without considering limitations of the treatment machines.
Since the answer to this question depends on the current capabilities of the
treatment machines, it may change over time and improvement in technol-
ogy might make the delivery of full IMRT solutions feasible in a clinically-
acceptable treatment time.
Nowadays, linear accelerators with multileaf collimators could approxi-

mate the full IMRT solution arbitrarily-well if treatment time was allowed
to be arbitrarily long. If treatment time is limited, the full IMRT solution

4In this statement we implicitely assume that the mathematical formulation of the
IMRT problem reflects the clinical goals and that a lower value of the objective function
corresponds to a better treatment plan.
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cannot be delivered, making the use of approximations necessary. In fixed
angle IMRT, this is done through reduction of the number of beam angles;
in rotation therapy approaches this is done through limiting the amount of
intensity-modulation for a given beam angle.
We assume that the solution to the full IMRT problem is the optimal

treatment plan that can theoretically be obtained. Thus, the goal of a prac-
tical treatment planning method is to find an IMRT treatment plan that ap-
proximates the full IMRT solution optimally, taking into account constraints
regarding the treatment time and the treatment machine. This may lead to
difficult-to-solve, non-convex, possibly discrete, mathematical optimization
problems.
In the context of fixed angle IMRT, research efforts have been devoted to

approximating the full IMRT solution as well as possible with a given num-
ber of beam angles. The problem has been called Beam Angle Optimization
(BAO) and has been subject to research since IMRT with fixed beam angles
has been introduced. One approach to BAO is based on heuristics which try
to judge the quality of a given beam direction based on geometric or simple
dosimetric criteria. In these approaches, a set of beam directions is deter-
mined before the intensity profiles of the radiation fields are determined (see,
e.g., [4] and references therein). Treating the beam angles as optimization
variables leads to non-convex optimization problems that in practice can-
not be solved accurately. Local beam angle refinement has been approached
through gradient descent [27], whereas most researchers applied stochastic
search methods like genetic algorithms [38] or particle swarm algorithms [39].
Exact approaches that aim at truly finding an optimal subset of beam di-
rections from a larger set of candidate beams are based on Mixed Integer
Programming (MIP) methods [61]. See also the mathematically oriented
review by Ehrgott et al. [28].
In rotation therapy approaches, the approximation to be made concerns

the amount of intensity-modulation that can be achieved. With Tomother-
apy machines, those restrictions are relatively small. Conventional treatment
machines impose larger restrictions. In intensity-modulated arc therapy the
radiation source continuously rotates around the patient during the irradi-
ation. In a single rotation, the intensity-modulation of the radiation field
at a given angle is binary: The beamlet is either blocked by the multileaf
collimator so that the intensity is zero, or the beamlet is within the col-
limator opening and has nonzero intensity. However, the intensity cannot
be modulated within the field. If the radiation source rotates around the
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patient multiple times, different apertures (i.e., collimator openings) can be
delivered in each rotation, thus effectively modulating the beam intensity at
every angle. In order to reduce treatment time, it is desirable to deliver the
entire treatment in a single rotation. In such an approach, the intensity at a
given angle cannot be modulated (i.e., it is only binary). However, if the col-
limator opening can change very rapidly over a small interval of beam angles,
this effectively realizes intensity-modulation, even though, strictly speaking,
an open field is delivered at every given angle. The amount by which the
collimator opening can change over an interval of gantry angles is determined
by the maximum leaf speed of the multileaf collimator (and possibly other
leaf motion constraints, such as interdigitation), and the angular velocity
of the gantry. These machine limitations need to be taken into account in
treatment planning for IMAT.
Treatment plan optimization for IMAT is an active area of research and

has experienced a boom in recent years. Different approaches are being pur-
sued but to the present day it is not clear which of these approaches will
perform better. A comprehensive review of IMAT treatment planning would
require an introduction to the delivery hardware, primarily multileaf colli-
mators. Since this paper focuses on a historic review of the classical IMRT
problem, we avoid an extensive discussion of delivery hardware. However,
we provide next a brief overview of the current status of the topic and point
the reader to relevant publications. A recent review of IMAT principles is
provided by Yu and Tang [62].
Most current treatment planning methods for IMAT are based on Direct

Aperture Optimization (DAO) [49, 52]. DAO aims at optimizing the shape
of the MLC openings directly instead of first solving the IMRT problem
as stated in this paper, and then converting the resulting intensity vectors
into practically deliverable MLC apertures. IMAT optimization (for a single
gantry rotation) represents the DAO problem in which a single aperture
per beam angle is determined, subject to additional constraints on aperture
shapes of adjacent beam angles that reflect leaf motion constraints. As is
true in general, we can distinguish, among DAO based approaches, stochastic
search methods and gradient based approaches. Gradient based methods aim
at minimizing the objective function f(d) by approximately calculating the
gradient of f with respect the leaf positions of the MLC. This approach
is implemented in the commercial system Pinnacle distributed by Philips
Medical Systems [12, 49]. Stochastic search methods [44, 54] search in the
space of MLC leaf positions without using gradient information.
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Another approach to IMAT planning is in fact based on the solution of
the full IMRT problem. In this approach, the challenge is to devise a sequenc-
ing algorithm that converts the intensity vectors at every beam angle into
leaf trajectories of the MLC to optimally approximate the dose distribution
achievable by the full IMRT solution [55, 63].

6 Conclusion

The abandoning of the analytic transform approach to the inverse problem
in IMRT was not a simple matter. As late as 1987, Cormack [23, p. 623]
brushed away the algebraic inverse planning concept by saying: “An obvious
approach to treatment optimization is to use iterative numerical techniques
such as those of Altschuler and Censor [1] and Altschuler, Powlis and Censor
[3] to see how close one can come to a desired dose distribution. These have
the advantage that the problem of non-negativity (discussed below) never
arises but they do not provide an analytical approach such as is contemplated
here.”
So, the adoption of the, nowadays naturally accepted, algebraic inverse

planning approach was not self-evident in those times and, therefore, it seems
to have an intrinsic importance in the development and history of IMRT. Al-
gebraic inverse planning became the inverse planning method of choice upon
which present day IMRT rests. Cho and Marks II [21, p. 429] noted: “... A
fully discretized formulation of the inverse radiotherapy problem was intro-
duced by Censor et al. (1988) in which each beam was quantized into rays.
Although the individual ray weights were summed to rank the prominence
of each beam, their work has laid a foundation for computer-controlled MLC
technology capable of generating arbitrary intensity modulation.”
The novelty of the algebraic inverse planning approach lies in its timely

appearance on the scene of IMRT. The rivalry between analytic transform
methods and the algebraic inverse planning approach in IMRT disappeared
because the former was abandoned altogether. On the other hand, the
main ingredients of the algebraic inverse planning approach were, separately,
known when this approach was proposed. Full discretization was known and
used in other fields and iterative projection methods such as the sequential
projection method of Agmon, Motzkin and Shoenberg that we used in [16]
(also used later by Lee et al. [36] under a different name) or the Cimmino
simultaneous projections method [22] that we used in [17] were known. See,
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e.g., Bauschke and Borwein [6] or Censor and Zenios [20, Chapter 5] for gen-
eral presentations of iterative projection methods for the convex feasibility
problem and Censor et al. [18] for a very recent work. The novelty was, there-
fore, in putting together the concept and applying it to the IMRT inverse
problem at that particular cross-roads where the field was by the mid-1980s.
See also [2, 19, 46].
The abandoning of the analytic inversion was followed by another change

of perspective. Whereas in the beginning, radiotherapy planning was often
considered an inverse problem, it is nowadays primarily viewed as an op-
timization problem encompassing a more flexible mathematical formulation
of the underlying clinical goal of radiation treatment in terms of objective
functions and constraints.
The use of algebraic methods led to a focus on fixed angle IMRT. The

work on analytic methods instead was based on rotation therapy models.
Interestingly, with the emergence of Tomotherapy and intensity-modulated
arc therapy, the question of rotation therapy versus fixed angle IMRT has
been revived in recent years. Given constraints of the delivery machine and
treatment time, approximating the full calssical IMRT solution as well as
possible, leads to non-convex, possibly discrete optimization problem which
are more difficult to solve than the IMRT optimization problems. It can
be speculated that with further improvement in technology and mathemat-
ical optimization methods, the rotation therapy approach will eventually be
able to deliver treatments close to the optimum provided by the full IMRT
solution.
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