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Abstract

We present a subgradient extragradient method for solving variational
inequalities in Hilbert space. In addition, we propose a modified version
of our algorithm that finds a solution of a variational inequality which is
also a fixed point of a given nonexpansive mapping. We establish weak
convergence theorems for both algorithms.
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1 Introduction
In this paper, we are concerned with the Variational Inequality (VI), which
consists in finding a point x∗, such that

x∗ ∈ C and hf(x∗), x− x∗i ≥ 0, ∀x ∈ C, (1)

where H is a real Hilbert space, f : H → H is a given mapping, C ⊆ H is
nonempty, closed and convex, and h·, ·i denotes the inner product in H. This
problem, denoted by VI(C, f), is a fundamental problem in Variational Analysis
and, in particular, in Optimization Theory. Many algorithms for solving the VI
are projection algorithms that employ projections onto the feasible set C of the
VI, or onto some related set, in order to iteratively reach a solution. In particu-
lar, Korpelevich [1] proposed an algorithm for solving the VI in Euclidean space,
known as the Extragradient Method (see also Facchinei and Pang [2, Chapter
12]). In each iteration of her algorithm, in order to get the next iterate xk+1,
two orthogonal projections onto C are calculated, according to the following
iterative step. Given the current iterate xk, calculate

yk = PC(x
k − τf(xk)), (2)

and then
xk+1 = PC(x

k − τf(yk)), (3)

where τ is some positive number and PC denotes the Euclidean least distance
projection onto C. Figure 1 illustrates the iterative step (2) and (3). The

Figure 1: Korpelevich’s iterative step.

literature on the VI is vast and Korpelevich’s extragradient method has received
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great attention by many authors, who improved it in various ways; see, e.g.,
[3, 4, 5] and references therein, to name but a few.
Though convergence was proved in [1] under the assumptions of Lipschitz

continuity and pseudo-monotonicity, there is still the need to calculate two pro-
jections onto C. If the set C is simple enough, so that projections onto it are
easily executed, then this method is particularly useful; but, if C is a general
closed and convex set, then a minimal distance problem has to be solved (twice)
in order to obtain the next iterate. This might seriously affect the efficiency
of the extragradient method. Therefore, we developed in [6] the subgradient
extragradient algorithm in Euclidean space, in which we replace the (second)
projection (3) onto C by a projection onto a specific constructible half-space,
which is actually one of the subgradient half-spaces as will be explained later.
In this paper, we study the subgradient extragradient method for solving the VI
in Hilbert space. In addition, we present a modified version of the algorithm,
which finds a solution of the VI that is also a fixed point of a given nonexpansive
mapping. We establish weak convergence theorems for both algorithms.
Our paper is organized as follows. In Section 3, we sketch a proof of the

weak convergence of the extragradient method. In Section 4, the subgradient
extragradient algorithm is presented. It is analyzed in Section 5. In Section
6, we modify the subgradient extragradient algorithm and then analyze it in
Section 7.

2 Preliminaries
Let H be a real Hilbert space with inner product h·, ·i and norm k · k, and let
D be a nonempty, closed and convex subset of H. We write xk * x to indicate
that the sequence

©
xk
ª∞
k=0

converges weakly to x and xk → x to indicate that
the sequence

©
xk
ª∞
k=0

converges strongly to x. For each point x ∈ H, there
exists a unique nearest point in D, denoted by PD(x). That is,

kx− PD (x)k ≤ kx− yk , ∀y ∈ D. (4)

The mapping PD : H → D is called the metric projection of H onto D. It is
well known that PD is a nonexpansive mapping of H onto D, i.e.,

kPD (x)− PD (y)k ≤ kx− yk , ∀x, y ∈ H. (5)

The metric projection PD is characterized [7, Section 3] by the following two
properties:

PD(x) ∈ D (6)

and

hx− PD (x) , PD (x)− yi ≥ 0, ∀x ∈ H, y ∈ D, (7)

and if D is a hyperplane, then (7) becomes an equality. It follows that

kx− yk2 ≥ kx− PD (x)k2 + ky − PD (x)k2 , ∀x ∈ H, y ∈ D. (8)
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We denote by ND (v) the normal cone of D, at v ∈ D, i.e.,

ND (v) := {d ∈ H | hd, y − vi ≤ 0, ∀y ∈ D}. (9)

We also recall that in a real Hilbert space H,

kλx+ (1− λ)yk2 = λkxk2 + (1− λ)kyk2 − λ(1− λ)kx− yk2, (10)

for all x, y ∈ H and λ ∈ [0, 1].

Definition 2.1 Let B : H ⇒ 2H be a point-to-set operator defined on a real
Hilbert space H. B is called a maximal monotone operator iff B is monotone,
i.e.,

hu− v, x− yi ≥ 0, ∀u ∈ B(x) and ∀v ∈ B(y), (11)

and the graph G(B) of B,

G(B) := {(x, u) ∈ H ×H | u ∈ B(x)} , (12)

is not properly contained in the graph of any other monotone operator.

It is clear ([8, Theorem 3]) that a monotone mapping B is maximal if and
only if, for any (x, u) ∈ H ×H, if hu− v, x− yi ≥ 0 for all (v, y) ∈ G(B), then
it follows that u ∈ B(x).
The next property is known as the Opial condition [9]. Any Hilbert space

has this property.

Condition 2.1 (Opial) For any sequence
©
xk
ª∞
k=0

in H that converges weakly
to x (xk * x),

lim inf
k→∞

kxk − xk < lim inf
k→∞

kxk − yk, ∀y 6= x. (13)

The next lemma was proved in [10, Lemma 3.2].

Lemma 2.1 Let H be a real Hilbert space and let D be a nonempty, closed and
convex subset of H. Let the sequence

©
xk
ª∞
k=0
⊂ H be Fejér-monotone with

respect to D, i.e., for every u ∈ D,

kxk+1 − uk ≤ kxk − uk, ∀k ≥ 0. (14)

Then
©
PD

¡
xk
¢ª∞
k=0

converges strongly to some z ∈ D.

Notation 2.1 Any closed and convex set D ⊂ H can be represented as

D = {x ∈ H | c(x) ≤ 0} , (15)

where c : H → R is an appropriate convex function.
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We denote the subdifferential set of c at a point x by

∂c(x) := {ξ ∈ H | c(y) ≥ c(x) + hξ, y − xi, ∀y ∈ H}. (16)

For z ∈ H, take any ξ ∈ ∂c(z) and define

T (z) := {w ∈ H | c(z) + hξ, w − zi ≤ 0} . (17)

This is a half-space the bounding hyperplane of which separates the set D from
the point z if z /∈ intD. Otherwise T (z) = H.
The next lemma is known (see, e.g., [11, Lemma 3.1]).

Lemma 2.2 Let H be a real Hilbert space, {αk}∞k=0 a real sequence satisfying
0 < a ≤ αk ≤ b < 1 for all k ≥ 0, and let

©
vk
ª∞
k=0

and
©
wk
ª∞
k=0

be two
sequences in H such that for some σ ≥ 0,

lim sup
k→∞

kvkk ≤ σ, (18)

lim sup
k→∞

kwkk ≤ σ (19)

and
lim
k→∞

kαkvk + (1− αk)w
kk = σ. (20)

Then
lim
k→∞

kvk − wkk = 0. (21)

The next fact is known as the Demiclosedness Principle [12].
Demiclosedness Principle. Let H be a real Hilbert space, D a closed and

convex subset of H and let S : D→ H be a nonexpansive mapping, i.e.,

kS(x)− S(y)k ≤ kx− yk, ∀x, y ∈ D. (22)

Then I − S (I is the identity operator on H) is demiclosed at y ∈ H, i.e., for
any sequence

©
xk
ª∞
k=0

in D such that xk * x ∈ D and (I −S)xk → y, we have
(I − S)x = y.

3 The extragradient algorithm
In this section we sketch the proof of the weak convergence of Korpelevich’s
extragradient method, (2)—(3).
We assume the following conditions.

Condition 3.1 The solution set of (1), denoted by SOL(C, f), is nonempty.

Condition 3.2 The mapping f is monotone on C, i.e.,

hf(x)− f(y), x− yi ≥ 0, ∀x, y ∈ C. (23)
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Condition 3.3 The mapping f is Lipschitz continuous on C with constant
L > 0, that is,

kf(x)− f(y)k ≤ Lkx− yk, ∀x, y ∈ C. (24)

We will use the same outline in Section 5. The next lemma is a known result
which is crucial for the proof of our convergence theorem.

Lemma 3.1 Let {xk}∞k=0 and {yk}∞k=0 be the two sequences generated by the
extragradient method, (2)—(3), and let u ∈ SOL(C, f). Then, under Conditions
3.1—3.3, we have°°xk+1 − u°°2 ≤ °°xk − u°°2 − (1− τ2L2)

°°yk − xk°°2 , ∀k ≥ 0. (25)

Proof. see, e.g., [1, Theorem 1, eq. (14)], [2, Lemma 12.1.10, p. 1117]

Theorem 3.1 Assume that Conditions 3.1—3.3 hold and let τ < 1/L. Then any
sequences {xk}∞k=0 and {yk}∞k=0 generated by the extragradient method weakly
converge to the same solution u∗ ∈ SOL(C, f) and furthermore,

u∗ = lim
k→∞

PSOL(C,f)(x
k). (26)

Proof. Fix u ∈ SOL(C, f) and define ρ := 1 − τ2L2. Since τ < 1/L,
ρ ∈ (0, 1). By (25), we have

ρ
°°yk − xk°°2 ≤ °°xk − u°°2 . (27)

Using (25) with k← (k − 1), we get

ρ
°°yk − xk°°2 + ρ

°°yk−1 − xk−1°°2 ≤ °°xk−1 − u°°2 . (28)

Continuing, we get for all integers K ≥ 0,

ρ
KX
k=0

°°yk − xk°°2 ≤ °°x0 − u°°2 (29)

and therefore

ρ
∞X
k=0

°°yk − xk°°2 ≤ °°x0 − u°°2 . (30)

Hence
lim
k→∞

°°yk − xk°° = 0. (31)

By Lemma 3.1, the sequence {xk}∞k=0 is bounded. Therefore it has at least
one weak accumulation point. If x̄ is a weak limit point of some subsequence
{xkj}∞j=0 of {xk}∞k=0, then

w- lim
j→∞

xkj = x̄ (32)

6



and
w- lim

j→∞
ykj = x̄. (33)

Let

A(v) =

½
f(v) +NC (v) , v ∈ C,

∅, v /∈ C, (34)

where NC (v) is the normal cone of C at v ∈ C (see 9). It is known that A is a
maximal monotone operator and A−1 (0) = SOL(f, C). If (v, w) ∈ G(A), then

hw, v − x̄i ≥ 0, (35)

and therefore x̄ ∈ A−1 (0) = SOL(f, C) . The Opial condition now implies that
the entire sequence weakly converges to x̄. Finally, if we take

uk = PSOL(C,f)(x
k), (36)

then by (7) and Lemma 2.1, we see that
©
uk
ª∞
k=0

converges strongly to some
u∗ ∈ SOL(C, f). We also have

hx− u∗, u∗ − xi ≥ 0, (37)

and hence u∗ = x, which completes the proof.

4 The subgradient extragradient algorithm
Next we present the subgradient extragradient algorithm [6].

Algorithm 4.1 The subgradient extragradient algorithm
Step 0: Select a starting point x0 ∈ H and τ > 0, and set k = 0.
Step 1: Given the current iterate xk, compute

yk = PC(x
k − τf(xk)) (38)

construct the half-space Tk the bounding hyperplane of which supports C at yk,

Tk := {w ∈ H | ­¡xk − τf(xk)
¢− yk, w − yk® ≤ 0} (39)

and calculate the next iterate

xk+1 = PTk(x
k − τf(yk)). (40)

Step 2: If xk = yk then stop. Otherwise, set k ← (k + 1) and return to
Step 1.

Remark 4.1 Every convex set C can be represented as a sublevel set of a convex
function c : H → R as in (15); so if c is, in addition, differentiable at yk, then
{¡xk − τf(xk)

¢ − yk} = ∂c(yk) = {∇c(yk)}. Otherwise, ¡xk − τf(xk)
¢ − yk ∈

∂c(yk).
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Figure 2: xk+1 is a subgradient projection of the point xk − τf(yk) onto the
hyperplane Tk.

Figure 2 illustrates the iterative step of this algorithm.
We assume the following condition.

Condition 4.1 The function f is Lipschitz continuous on H with constant
L > 0, that is,

kf(x)− f(y)k ≤ Lkx− yk, ∀x, y ∈ H. (41)

5 Convergence of the subgradient extragradient
algorithm

In this section we give a complete proof of the weak convergence theorem for
Algorithm 4.1, using similar techniques to those sketched in Section 3. First we
show that the stopping criterion in Step 2 of Algorithm 4.1 is valid.

Lemma 5.1 If xk = yk in Algorithm 4.1, then xk ∈ SOL(C, f).

Proof. If xk = yk, then xk = PC(xk−τf(xk)), so xk ∈ C. By the variational
characterization of the metric projection onto C, we have­

w − xk, (xk − τf(xk))− xk® ≤ 0, ∀w ∈ C, (42)

which implies that
τ
­
f(xk), w − xk® ≥ 0, ∀w ∈ C. (43)

Since τ > 0, inequality (43) implies that xk ∈ SOL(C, f).
The next lemma is crucial for the proof of our convergence theorem.
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Lemma 5.2 Let {xk}∞k=0 and {yk}∞k=0 be the two sequences generated by Algo-
rithm 4.1 and let u ∈ SOL(C, f). Then, under Conditions 3.1, 3.2 and 4.1, we
have °°xk+1 − u°°2 ≤ °°xk − u°°2 − (1− τ2L2)

°°yk − xk°°2 , ∀k ≥ 0. (44)

Proof. Since u ∈ SOL(C, f), yk ∈ C and f is monotone, we have­
f(yk)− f(u), yk − u® ≥ 0, ∀k ≥ 0. (45)

This implies that ­
f(yk), yk − u® ≥ 0, ∀k ≥ 0. (46)

So, ­
f(yk), xk+1 − u® ≥ ­f(yk), xk+1 − yk® . (47)

By the variational characterization of the metric projection onto Tk, we have­
xk+1 − yk, ¡xk − τf(xk)

¢− yk® = 0 (48)

for all k ≥ 0. Thus,­
xk+1 − yk, (xk − τf(yk))− yk® = ­xk+1 − yk, xk − τf(xk)− yk®

+ τ
­
xk+1 − yk, f(xk)− f(yk)®

= τ
­
xk+1 − yk, f(xk)− f(yk)® . (49)

Denoting zk = xk − τf(yk), we obtain°°xk+1 − u°°2 = °°PTk(zk)− u°°2
=
­
PTk(z

k)− zk + zk − u,PTk(zk)− zk + zk − u
®

=
°°zk − u°°2 + °°zk − PTk(zk)°°2 + 2 ­PTk(zk)− zk, zk − u® . (50)

Since

2
°°zk − PTk(zk)°°2 + 2 ­PTk(zk)− zk, zk − u®
= 2

­
zk − PTk(zk), u− PTk(zk)

® ≤ 0 (51)

for all k ≥ 0, we get°°zk − PTk(zk)°°2 + 2 ­PTk(zk)− zk, zk − u® ≤ −°°zk − PTk(zk)°°2 (52)

for all k ≥ 0. Hence,°°xk+1 − u°°2 ≤ °°zk − u°°2 − °°zk − PTk(zk)°°2
=
°°(xk − τf(yk))− u°°2 − °°(xk − τf(yk))− xk+1°°2

=
°°xk − u°°2 − °°xk − xk+1°°2 + 2τ ­u− xk+1, f(yk)®

≤ °°xk − u°°2 − °°xk − xk+1°°2 + 2τ ­yk − xk+1, f(yk)® , (53)
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where the last inequality follows from (47). So,°°xk+1 − u°°2 ≤ °°xk − u°°2 − °°xk − xk+1°°2 + 2τ ­yk − xk+1, f(yk)®
=
°°xk − u°°2 − ¡­xk − yk + yk − xk+1, xk − yk + yk − xk+1®¢

+ 2τ
­
yk − xk+1, f(yk)®

=
°°xk − u°°2 − °°xk − yk°°2 − °°yk − xk+1°°2

+ 2
­
xk+1 − yk, xk − τf(yk)− yk® , (54)

and by (49),°°xk+1 − u°°2 ≤ °°xk − u°°2 − °°xk − yk°°2 − °°yk − xk+1°°2
+ 2τ

­
xk+1 − yk, f(xk)− f(yk)® . (55)

Using the Cauchy—Schwarz inequality and Condition 4.1, we obtain

2τ
­
xk+1 − yk, f(xk)− f(yk)® ≤ 2τL°°xk+1 − yk°°°°xk − yk°° . (56)

In addition,

0 ≤ ¡τL°°xk − yk°°− °°yk − xk+1°°¢2
= τ2L2

°°xk − yk°°2 − 2τL°°xk+1 − yk°°°°xk − yk°°+ °°yk − xk+1°°2 . (57)

So,

2τL
°°xk+1 − yk°°°°xk − yk°° ≤ τ2L2

°°xk − yk°°2 + °°yk − xk+1°°2 . (58)

Combining the above inequalities and using Condition 4.1, we see that°°xk+1 − u°°2 ≤ °°xk − u°°2 − °°xk − yk°°2 − °°yk − xk+1°°2
+ 2τL

°°xk+1 − yk°°°°xk − yk°°
≤ °°xk − u°°2 − °°xk − yk°°2 − °°yk − xk+1°°2
+ τ2L2

°°xk − yk°°2 + °°yk − xk+1°°2
=
°°xk − u°°2 − °°xk − yk°°2 + τ2L2

°°xk − yk°°2 . (59)

Finally, we get°°xk+1 − u°°2 ≤ °°xk − u°°2 − (1− τ2L2)
°°yk − xk°°2 , (60)

which completes the proof.

Theorem 5.1 Assume that Conditions 3.1, 3.2 and 4.1 hold and let τ < 1/L.
Then any sequences {xk}∞k=0 and {yk}∞k=0 generated by Algorithm 4.1 weakly
converge to the same solution z∗ ∈ SOL(C, f) and furthermore,

u∗ = lim
k→∞

PSOL(C,f)(x
k). (61)
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Proof. Fix u ∈ SOL(C, f) and define ρ := 1 − τ2L2. Since τ < 1/L,
ρ ∈ (0, 1). By (60), we have

0 ≤ °°xk − u°°2 − ρ
°°yk − xk°°2 , (62)

or
ρ
°°yk − xk°°2 ≤ °°xk − u°°2 . (63)

Using (60) with k← (k − 1), we get°°xk − u°°2 ≤ °°xk−1 − u°°2 − ρ
°°yk−1 − xk−1°°2 , (64)

or
ρ
°°yk − xk°°2 + ρ

°°yk−1 − xk−1°°2 ≤ °°xk−1 − u°°2 . (65)

Continuing, we get for all integers K ≥ 0,

ρ
KX
k=0

°°yk − xk°°2 ≤ °°x0 − u°°2 . (66)

Since the sequence
nPK

k=0

°°yk − xk°°2o
K≥0

is monotonically increasing and

bounded,

ρ
∞X
k=0

°°yk − xk°°2 ≤ °°x0 − u°°2 . (67)

Hence
lim
k→∞

°°yk − xk°° = 0. (68)

By Lemma 5.2, the sequence {xk}∞k=0 is bounded. Therefore, it has at least
one weak accumulation point. If x̄ is a weak limit point of some subsequence
{xkj}∞j=0 of {xk}∞k=0, then

w- lim
j→∞

xkj = x̄ (69)

and
w- lim

j→∞
ykj = x̄. (70)

Define the operator A by (34). It is known that A is a maximal monotone
operator and A−1 (0) = SOL(f, C). If (v, w) ∈ G (A), since w ∈ A(v) = f(v) +
NC (v), we get w − f(v) ∈ NC (v). Then

hw − f(v), v − yi ≥ 0, ∀y ∈ C. (71)

On the other hand, by the definition of yk and (7),­
xk − τf(xk)− yk, yk − v® ≥ 0, (72)

or
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¿µ
yk − xk

τ

¶
+ f(xk), v − yk

À
≥ 0 (73)

for all k ≥ 0. Using (68) and applying (71) with ©ykjª∞
j=0

, we get­
w − f(v), v − ykj® ≥ 0. (74)

Hence,­
w, v − ykj® ≥ ­f(v), v − ykj® ≥ ­f(v), v − ykj®

−
¿µ

ykj − xkj
τ

¶
+ f(xkj ), v − ykj

À
=
­
f(v)− f(ykj ), v − ykj®+ ­f(ykj )− f(xkj ), v − ykj®

−
¿µ

ykj − xkj
τ

¶
, v − ykj

À
≥ ­f(ykj )− f(xkj ), v − ykj®−¿µykj − xkj

τ

¶
, v − ykj

À
(75)

and­
w, v − ykj® ≥ ­f(ykj )− f(xkj ), v − ykj®−¿µykj − xkj

τ

¶
, v − ykj

À
. (76)

Taking the limit as j →∞, we obtain

hw, v − x̄i ≥ 0, (77)

and since A is a maximal monotone operator, it follows that x̄ ∈ A−1 (0) =
SOL(f, C) . In order to show that the entire sequence weakly converges to x̄,

assume that there is another subsequence
n
xkj
o∞
j=0

of
©
xk
ª∞
k=0

that weakly

converges to some x̄
0 6= x̄ and x̄

0 ∈ SOL(f, C) . Note that from Lemma 5.2 it
follows that the sequence

©kxk − x̄kª∞
k=0

is decreasing for each u ∈ SOL(C, f).
By the Opial condition we have

lim
k→∞

kxk − x̄k = lim inf
j→∞

kxkj − x̄k < lim inf
j→∞

kxkj − x̄0k

= lim
k→∞

kxk − x̄0k = lim inf
j→∞

kxkj − x̄0k < lim inf
j→∞

kxkj − x̄k
= lim
k→∞

kxk − x̄k, (78)

and this is a contradiction, thus x̄
0
= x̄. This implies that the sequences

©
xk
ª∞
k=0

and
©
yk
ª∞
k=0

converge weakly to the same point x̄ ∈ SOL(C, f). Finally, put

uk = PSOL(C,f)(x
k), (79)
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so by (7) and since x̄ ∈ SOL(C, f),­
x̄− uk, uk − xk® ≥ 0. (80)

By Lemma 2.1,
©
uk
ª∞
k=0

converges strongly to some u∗ ∈ SOL(C, f). Therefore
hx̄− u∗, u∗ − x̄i ≥ 0 (81)

and hence u∗ = x̄.

6 The modified subgradient extragradient algo-
rithm

Next we present the modified subgradient extragradient algorithm which finds a
solution of the VI which is also a fixed point of a given nonexpansive mapping.
Let S : H → H be a nonexpansive mapping and denote by Fix(S) its fixed
point set, i.e.,

Fix(S) = {x ∈ H | S(x) = x}. (82)

Let {αk}∞k=0 ⊂ [c, d] for some c, d ∈ (0, 1).
Algorithm 6.1 The modified subgradient extragradient algorithm
Step 0: Select a starting point x0 ∈ H and τ > 0, and set k = 0.
Step 1: Given the current iterate xk, compute

yk = PC(x
k − τf(xk)), (83)

construct the half-space Tk as in (39) and calculate the next iterate

xk+1 = αkx
k + (1− αk)SPTk(x

k − τf(yk)). (84)

Step 2: Set k ← (k + 1) and return to Step 1.

Figure 3 illustrates the iterative step of this algorithm. We assume the
following condition.

Condition 6.1 Fix(S) ∩ SOL(C, f) 6= ∅.

7 Convergence of the modified subgradient ex-
tragradient algorithm

In this section we establish a weak convergence theorem for Algorithm 6.1. The
outline of its proof is similar to that of [11, Theorem 3.1].

Theorem 7.1 Assume that Conditions 3.2, 4.1 and 6.1 hold and τ < 1/L.
Then any sequences

©
xk
ª∞
k=0

and
©
yk
ª∞
k=0

generated by Algorithm 6.1 weakly
converge to the same point u∗ ∈ Fix(S) ∩ SOL(C, f) and furthermore,

u∗ = lim
k→∞

PFix(S)∩SOL(C,f)(xk). (85)
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Figure 3: The iterative step of Algorithm 6.1.

Proof. Denote tk := PTk(x
k − τf(yk)) for all k ≥ 0. Let u ∈ Fix(S) ∩

SOL(C, f). Applying (8) with D = Tk, x = xk − τf(yk) and y = u, we obtain°°tk − u°°2 ≤ °°xk − τf(yk)− u°°2 − °°xk − τf(yk)− tk°°2
= kxk − uk2 − kxk − tkk2 + 2τ ­f(yk), u− tk®
= kxk − uk2 − kxk − tkk2
+ 2τ

¡­
f(yk)− f(u), u− yk®+ ­f(u), u− yk®+ ­f(yk), yk − tk®¢ .

(86)

By Condition 3.2, ­
f(yk)− f(u), u− yk® ≤ 0, (87)

and since u ∈ SOL(C, f) ­
f(u), u− yk® ≤ 0. (88)

So, °°tk − u°°2 ≤ kxk − uk2 − kxk − tkk2 + 2τ ­f(yk), yk − tk®
= kxk − uk2 − kxk − ykk2 − 2 ­xk − yk, yk − tk®
− kyk − tkk2 + 2τ ­f(yk), yk − tk®
= kxk − uk2 − kxk − ykk2 − kyk − tkk2
+ 2

­
xk − τf(yk)− yk, tk − yk® . (89)
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By (7) applied to Tk, ­¡
xk − τf(xk)

¢− yk, tk − yk® = 0, (90)

so ­
xk − τf(yk)− yk, tk − yk®
=
­
xk − τf(xk)− yk, tk − yk®+ ­τf(xk)− τf(yk), tk − yk®

=
­
τf(xk)− τf(yk), tk − yk® ≤ τkf(xk)− f(yk)kktk − ykk

≤ τLkxk − ykkktk − ykk, (91)

where the last two inequalities follow from the Cauchy—Schwarz inequality and
Condition 4.1. Therefore°°tk − u°°2 ≤ kxk−uk2−kxk−ykk2−kyk− tkk2+2τLkxk−ykkktk−ykk. (92)
Observe that

0 ≤ ¡ktk − ykk− τLkxk − ykk¢2
= ktk − ykk2 − 2τLkxk − ykkktk − ykk+ τ2L2kxk − ykk2, (93)

so,
2τLkxk − ykkktk − ykk ≤ ktk − ykk2 + τ2L2kxk − ykk2. (94)

Thus °°tk − u°°2 ≤ kxk − uk2 − kxk − ykk2 − kyk − tkk2
+ ktk − ykk2 + τ2L2kxk − ykk2
= kxk − uk2 − kxk − ykk2 + τ2L2kxk − ykk2
= kxk − uk2 + (τ2L2 − 1)kxk − ykk2
≤ kxk − uk2, (95)

where the last inequality follows from the fact that τ < 1/L. Using (10), we get

kxk+1 − uk2 = kαkxk + (1− αk)S
¡
tk
¢− uk2

= kαk
¡
xk − u¢+ (1− αk)

¡
S
¡
tk
¢− u¢ k2

= αkkxk − uk2 + (1− αk)kS
¡
tk
¢− uk2

− αk(1− αk)k
¡
xk − u¢− ¡S ¡tk¢− u¢ k2

≤ αkkxk − uk2 + (1− αk)kS
¡
tk
¢− uk2

= αkkxk − uk2 + (1− αk)kS
¡
tk
¢− S (u) k2

≤ αkkxk − uk2 + (1− αk)ktk − uk2
≤ αkkxk − uk2 + (1− αk)

¡kxk − uk2 + (τ2L2 − 1)kxk − ykk2¢
= kxk − uk2 + (1− αk)(τ

2L2 − 1)kxk − ykk2 ≤ kxk − uk2, (96)
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so
kxk+1 − uk2 ≤ kxk − uk2. (97)

Therefore there exists
lim
k→∞

kxk − uk = σ, (98)

and
©
xk
ª∞
k=0

and
©
tk
ª∞
k=0

are bounded. From the last relations it follows that

(1− αk)(1− τ2L2)kxk − ykk2 ≤ kxk − uk2 − kxk+1 − uk2, (99)

or

kxk − ykk2 ≤ kx
k − uk2 − kxk+1 − uk2
(1− αk)(1− τ2L2)

. (100)

Hence,
lim
k→∞

kxk − ykk = 0. (101)

In addition, by the definition of yk and Tk,

kyk − tkk2 = kPC(xk − τf(xk))− PTk(xk − τf(yk))k2
= kPTk(xk − τf(xk))− PTk(xk − τf(yk))k2
≤ k(xk − τf(xk))− (xk − τf(yk))k2
= kτf(yk)− τf(xk)k2
≤ τ2L2kyk − xkk2, (102)

where the last inequality follows from Condition 4.1. So,

kyk − tkk2 ≤ τ2L2kyk − xkk2, (103)

and by (101) we get
lim
k→∞

kyk − tkk = 0. (104)

By the triangle inequality,

kxk − tkk ≤ kxk − ykk+ kyk − tkk, (105)

so by (101) and (104), we have

lim
k→∞

kxk − tkk = 0. (106)

Since
©
xk
ª∞
k=0

is bounded, it has a subsequence
©
xkj
ª∞
j=0

which weakly con-
verges to some x ∈ H. We now show that x ∈ Fix(S)∩SOL(C, f). Define the
operator A as in (34). By using arguments similar to those used in the proof
of Theorem 5.1, we get that x ∈ A−1 (0) = SOL(f,C) . It is now left to show
that x ∈ Fix(S). To this end, let u ∈ Fix(S) ∩ SOL(C, f) as before. Since S is
nonexpansive, we get from (95) that

kS ¡tk¢− uk = kS ¡tk¢− S (u) k ≤ ktk − uk ≤ kxk − uk. (107)
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By (98),
lim sup
k→∞

kS ¡tk¢− uk ≤ σ. (108)

Furthermore,

lim
k→∞

kαkxk + (1− αk)S
¡
tk
¢− uk

= lim
k→∞

kαk
¡
xk − u¢+ (1− αk)

¡
S
¡
tk
¢− u¢ k

= lim
k→∞

kxk+1 − uk = σ. (109)

So applying Lemma 2.2, we obtain

lim
k→∞

kS ¡tk¢− xkk = 0. (110)

Since

kS ¡xk¢− xkk = kS ¡xk¢− S ¡tk¢+ S ¡tk¢− xkk
≤ kS ¡xk¢− S ¡tk¢ k+ kS ¡tk¢− xkk
≤ kxk − tkk+ kS ¡tk¢− xkk, (111)

It follows from (106) and (110) that

lim
k→∞

kS ¡xk¢− xkk = 0. (112)

Since S is nonexpansive on H, xkj * x and

lim
j→∞

k(I − S) ¡xkj¢ k = lim
k→∞

kxkj − S ¡xkj¢ k = 0, (113)

we obtain by the Demiclosedness Principle that (I − S)(x) = 0, which means
that x ∈ Fix(S). Now, again by using similar arguments to those used in the
proof of Theorem 5.1, we get that the entire sequence weakly converges to x.
Therefore the sequences

©
xk
ª∞
k=0

and
©
yk
ª∞
k=0

weakly converge to x ∈ Fix(S)
∩ SOL(C, f). Finally, put

uk = PFix(S)∩SOL(C,f)(xk). (114)

Since x ∈ Fix(S) ∩ SOL(C, f), it follows from (7) that­
x− uk, uk − xk® ≥ 0. (115)

By Lemma 2.1,
©
uk
ª∞
k=0

converges strongly to some u∗ ∈ Fix(S) ∩ SOL(C, f).
Therefore

hx− u∗, u∗ − xi ≥ 0 (116)

and hence x = u∗.
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Remark 7.1 In Algorithm 6.1 we assumed that S was a nonexpansive mapping
on H. If it is defined only on C we can replace it by eS = SPC , which is a
nonexpansive mapping on C. In this case the iterative step is as follows:

yk = PC(x
k − τf(xk)),

construct the half-space Tk (39) and calculate the next iterate

xk+1 = αkx
k + (1− αk)eSPTk(xk − τf(yk). (117)

8 Conclusions
In this paper we proposed two subgradient extragradient algorithms for solving
variational inequalities in Hilbert space and established weak convergence the-
orems for both of them. The second algorithm finds a solution of a variational
inequality which is also a fixed point of a given nonexpansive mapping.
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