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Problems
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ABSTRACT. The convex or quasiconvex feasibility problem and the
split feasibility problem in the Euclidean space have many applica-
tions in various fields of science and technology, particularly in prob-
lems of image reconstruction from projections, in solving the fully
discretized inverse problem in radiation therapy treatment planning,
and in other image processing problems. Solving systems of linear
equalities and/or inequalities is one of them. The class of methods,
generally called Projection Methods, has witnessed great progress in
recent years and its member algorithms have been applied with suc-
cess to fully discretized models of inverse problems in image recon-
struction and image processing, and in intensity-modulated radiation
therapy. We introduce the reader to this field by reviewing algo-
rithmic structures and specific algorithms for the convex feasibility
problem, the quasiconvex feasibility problem and the split feasibility
problem.
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1. Introduction

In this paper we focus our attention on iterative projection methods
that have been found useful in biomedical inverse problems. We review
some basic results that are by now well-known and discuss also some
more recent developments. The presentation is admittedly biased towards
our own work but contains also many pointers to other works in the liter-
ature.

Projection algorithms employ projections onto convex sets in vari-
ous ways. This class of algorithms has witnessed great progress in re-
cent years and its member algorithms have been applied with success to
fully discretized models of problems in image reconstruction and image
processing, see, e.g., Stark and Yang [87], Censor and Zenios [47]. Our
aim in this paper is to introduce the reader to this field by reviewing algo-
rithmic structures and specific algorithms for the convex feasibility prob-
lem, the quasiconvex feasibility problem and the split feasibility problem.

The convex feasibility problem is to find a point (any point) in the
nonempty intersection C := ∩mi=1Ci 6= ∅ of a family of closed convex
subsets Ci ⊆ Rn, 1 ≤ i ≤ m, of the n-dimensional Euclidean space
Rn. It is a fundamental problem in many areas of mathematics and the
physical sciences, see, e.g., Combettes [50, 52] and references therein. It
has been used to model significant real-world problems in image recon-
struction from projections, see, e.g., Herman [69], in radiation therapy
treatment planning, see Censor, Altschuler and Powlis [29] and Censor
[27], and in crystallography, see Marks, Sinkler and Landree [78], to
name but a few, and has been used under additional names such as set
theoretic estimation or the feasible set approach. A common approach
to such problems is to use projection algorithms, see, e.g., Bauschke and
Borwein [4], which employ orthogonal projections (i.e., nearest point
mappings) onto the individual sets Ci. The orthogonal projection PΩ(z)
of a point z ∈ Rn onto a closed convex set Ω ⊆ Rn is defined by

PΩ(z) := argmin{k z − x k2 | x ∈ Ω}, (1.1)

where k · k2 is the Euclidean norm in Rn. Frequently a relaxation para-
meter is introduced so that

PΩ,λ(z) := (1− λ)z + λPΩ(z) (1.2)

is the relaxed projection of z onto Ω with relaxation λ.
The multiple-sets split feasibility problem requires to find a point

closest to a family of closed convex sets in one space such that its im-
age under a linear transformation will be closest to another family of
closed convex sets in the image space. It serves as a model for inverse
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problems where constraints are imposed on the solutions in the domain
of a linear operator as well as in the operator’s range. It generalizes the
convex feasibility problem and the two-sets split feasibility problem. For-
mally, given nonempty closed convex sets Ci ⊆ Rn, i = 1, 2, . . . , t, in
the n-dimensional Euclidean spaceRn, and nonempty closed convex sets
Qj ⊆ Rm, j = 1, 2, . . . , r, and anm×n real matrix A, the multiple-sets
split feasibility problem (MSSFP) is

find a vector x∗ ∈ C := ∩ti=1Ci such that Ax∗ ∈ Q := ∩ri=1Qj . (1.3)

Such MSSFPs, formulated in [35], arise in the field of intensity-modulated
radiation therapy (IMRT) when one attempts to describe physical dose
constraints and equivalent uniform dose (EUD) constraints within a sin-
gle model, see [30].

The quasiconvex feasibility problem is a different generalization of
the convex feasibility problem. Let f1(x), f2(x), . . . , fm(x) be contin-
uous quasiconvex functions defined on Rn. The quasiconvex feasibility
problem is to find a point x∗, such that fi(x∗) ≤ 0 for i = 1, 2, . . . ,m.
The notion quasiconvex feasibility problem was introduced by Goffin,
Luo and Ye in [66], where they used cutting planes algorithms but only
the differentiable case was considered there.

Another problem that is related to the convex feasibility problem is
the best approximation problem of finding the projection of a given point
y ∈ Rn onto the non-empty intersection C := ∩mi=1Ci 6= ∅ of a family
of closed convex subsets Ci ⊆ Rn, 1 ≤ i ≤ m, see, e.g., Deutsch’s
book [61]. The convex sets {Ci}mi=1 commonly represent mathematical
constraints obtained from the modeling of the real-world problem. In
the convex feasibility approach any point in the intersection is an accept-
able solution to the real-world problem whereas the best approximation
formulation is usually appropriate if some point y ∈ Rn has been ob-
tained from modeling and computational efforts which initially did not
take into account the constraints represented by the sets {Ci}mi=1 and now
one wishes to incorporate them by seeking a point in the intersection of
the convex sets which is closest to the point y.

Iterative projection algorithms for finding a projection of a point onto
the intersection of sets are more complicated then algorithms for finding
just any feasible point in the intersection. This is so because they must
have, in their iterative steps, some built-in “memory” mechanism to re-
member the original point whose projection is sought after. The sequen-
tial or parallel algorithms of Dykstra in Bregman, Censor and Reich [15],
of Haugazeau in Bauschke and Combettes [7], of Bauschke [3] and oth-
ers, and their modifications, employ different such memory mechanisms.
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We will not deal with these algorithms here although many of them share
the same algorithmic structural features described below.

1.1. Projection methods: Advantages and earlier work. The rea-
son why feasibility problems of various kinds are looked at from the
viewpoint of projection methods can be appreciated by the following
brief comments, that we made in earlier publications, regarding projec-
tion methods in general. Projections onto sets are used in a wide variety
of methods in optimization theory but not every method that uses projec-
tions really belongs to the class of projection methods. Projection meth-
ods are iterative algorithms that use projections onto sets while relying on
the general principle that when a family of (usually closed and convex)
sets is present then projections onto the given individual sets are easier to
perform then projections onto other sets (intersections, image sets under
some transformation, etc.) that are derived from the given individual sets.

A projection algorithm reaches its goal, related to the whole family
of sets, by performing projections onto the individual sets. Projection
algorithms employ projections onto convex sets in various ways. They
may use different kinds of projections and, sometimes, even use different
projections within the same algorithm. They serve to solve a variety of
problems which are either of the feasibility or the optimization types.
They have different algorithmic structures, of which some are particularly
suitable for parallel computing, and they demonstrate nice convergence
properties and/or good initial behavior patterns.

Apart from theoretical interest, the main advantage of projection meth-
ods, which makes them successful in real-world applications, is computa-
tional. They commonly have the ability to handle huge-size problems of
dimensions beyond which other, more sophisticated currently available,
methods cease to be efficient. This is so because the building bricks of
a projection algorithm are the projections onto the given individual sets
(assumed and actually easy to perform) and the algorithmic structure is
either sequential or simultaneous (or in-between). Sequential algorith-
mic structures cater for the row-action approach (see Censor [26]) while
simultaneous algorithmic structures favor parallel computing platforms,
see, e.g., Censor, Gordon and Gordon [37]. The field of projection meth-
ods is vast and we can only mention here a few recent works that can
give the reader some good starting points. Such a list includes, among
many others, the paper of Lakshminarayanan and Lent [76] on the SIRT
method, the works of Crombez [56, 58], the connection with variational
inequalities, see, e.g., Aslam Noor [80], Yamada’s [89] which is moti-
vated by real-world problems of signal processing, and the many con-
tributions of Bauschke and Combettes, see, e.g., Bauschke, Combettes
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and Kruk [8] and references therein. Consult Bauschke and Borwein [4]
and Censor and Zenios [47, Chapter 5] for a tutorial review and a book
chapter, respectively. Systems of linear equations, linear inequalities, or
convex inequalities are all encompassed by the convex feasibility prob-
lem which has broad applicability in many areas of mathematics and the
physical and engineering sciences. These include, among others, opti-
mization theory (see, e.g., Eremin [65], Censor and Lent [41] and Chin-
neck [48]), approximation theory (see, e.g., Deutsch [61] and references
therein) and image reconstruction from projections in computerized to-
mography (see, e.g., Herman [69, 70], Censor [26]).

2. Bregman projections

Bregman projections onto closed convex sets were introduced by
Censor and Lent [40], based on Bregman’s seminal paper [14], and were
subsequently used in a plethora of research works as a tool for building
sequential and parallel feasibility and optimization algorithms, see, e.g.,
Censor and Elfving [31], Censor and Reich [44], Censor and Zenios [47],
De Pierro and Iusem [60], Kiwiel [73, 74], Bauschke and Borwein [5] and
references therein, to name but a few.

A Bregman projection of a point z ∈ Rn onto a closed convex set
Ω ⊆ Rn with respect to a, suitably defined, Bregman function f (see,
e.g., [47, Definition 2.1.1]) is denoted by P fΩ(z). It is formally defined as

P fΩ(z) := argmin{Df (x, z) | x ∈ Ω ∩ clS} (2.1)

where clS is the closure of the open convex set S, which is the zone of f ,
andDf (x, z) is the so-called Bregman distance, defined by

Df (x, z) := f(x)− f(z)− h∇f(z), x− zi, (2.2)

for all pairs (x, z) ∈ clS × S, where h·, ·i is the standard inner product
in Rn. If Ω ∩ clS 6= ∅, then (2.1) defines a unique P fΩ(z) ∈ clS, for
every z ∈ S [47, Lemma 2.1.2]. If, in addition, P fΩ(z) ∈ S, for every
z ∈ S, then f is called zone consistent with respect to Ω. If f is a Breg-
man/Legendre function (see Bauschke and Borwein [5, Theorem 3.14])
and S = int(dom f), then f is zone consistent with respect to any closed
convex set Ω such that Ω ∩ clS 6= ∅.

Orthogonal projections are a special case of Bregman projections,
obtained from (2.1) by choosing [47, Example 2.1.1] f(x) = (1/2)kxk2
and S = Rn. Bregman generalized distances and generalized projections
are instrumental in several areas of mathematical optimization theory.
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They were used, among others, in special-purpose minimization meth-
ods, in the proximal point minimization method, and for stochastic fea-
sibility problems. These generalized distances and projections were also
defined in non-Hilbertian Banach spaces, where, in the absence of or-
thogonal projections, they can lead to simpler formulas for projections,
see, e.g., Butnariu and Iusem [19] and references therein.

Bregman’s method for minimizing a convex function (with certain
properties) subject to linear inequality constraints employs Bregman pro-
jections onto the half-spaces represented by the constraints [40, 60]. Re-
cently the extension of this minimization method to nonlinear convex
constraints has been identified with the Dykstra projection algorithm for
finding the projection of a point onto an intersection of closed convex
sets, see Bregman, Censor and Reich [15]. It looks as if there might be
no point in using non-orthogonal projections for solving the convex fea-
sibility problem inRn since they are generally not easier to compute. But
this is not always the case. Shamir and co-workers [75, 77] have used the
multiprojection method of Censor and Elfving [31] to solve filter design
problems in image restoration and image recovery posed as convex fea-
sibility problems. They took advantage of that algorithm’s flexibility to
employ Bregman projections with respect to different Bregman functions
within the same algorithmic run. Another example is the seminal paper
by Csiszár and Tusnády [59], where the central procedure uses alternating
entropy projections onto convex sets. In their “alternating minimization
procedure,” they alternate between minimizing over the first and second
arguments of the Kullback-Leibler divergence. This divergence is noth-
ing but the generalized Bregman distance obtained by using the negative
of Shannon’s entropy as the underlying Bregman function. Recent stud-
ies about Bregman projections (Kiwiel [74]), Bregman/Legendre pro-
jections (Bauschke and Borwein [5]), and averaged entropic projections
(Butnariu, Censor and Reich [17]) – and their uses for convex feasibility
problems inRn discussed therein – attest to the continued theoretical and
practical interest in employing Bregman projections in projection meth-
ods for convex feasibility problems.

3. Algorithmic structures

Projection algorithmic schemes for the convex feasibility problem
and for the best approximation problem are, in general, either sequential
or simultaneous or block-iterative (see, e.g., Censor and Zenios [47] for
a classification of projection algorithms into such classes, and the review
paper of Bauschke and Borwein [4] for a variety of specific algorithms
of these kinds). In the following subsections we explain and demonstrate
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these structures along with the more recent string averaging structure.
The philosophy behind these algorithms is that it is easier to calculate
projections onto the individual sets Ci then onto the whole intersection
of sets. Thus, these algorithms call for projections onto individual sets as
they proceed sequentially, simultaneously or in the block-iterative or the
string-averaging algorithmic modes.

3.1. Sequential projections. The well-known “Projections Onto
Convex Sets” (POCS) algorithm for the convex feasibility problem is a
sequential projection algorithm, see Bregman [13], Gubin, Polyak and
Raik [68], Youla [91] and the review papers by Combettes [50, 52]. Start-
ing from an arbitrary initial point x0 ∈ Rn, the POCS algorithm’s itera-
tive step is

xk+1 = xk + λk(PCi(k)(x
k)− xk), (3.1)

where {λk}k≥0 are relaxation parameters and {i(k)}k≥0 is a control se-
quence, 1 ≤ i(k) ≤ m, for all k ≥ 0, which determines the individual
set Ci(k) onto which the current iterate xk is projected.

DEFINITION 3.1. (Control sequences)
(1) Almost cyclic control. A control sequence {i(k)}k≥0 is almost

cyclic on {1, 2, . . . ,m} if 1 ≤ i(k) ≤ m, for all k ≥ 0, and
there exists an integer σ ≥ m (called the almost cyclicality con-
stant) such that, for all k ≥ 0, {1, 2, . . . ,m} ⊆ {i(k+1), i(k+
2), . . . , i(k + σ)}. An almost cyclic control with σ = m is
called cyclic.

(2) Most violated constraint control. This sequence {i(k)}k≥0 is
obtained by determining which constraint is most violated by
the iterate xk. If Ci = {x ∈ Rn | fi(x) ≤ 0}, are the sets in
the feasibility problem then i(k) is the most violated constraint
control index if fi(k)(xk) > 0 and

fi(k)(x
k) = max{fi(xk) | i = 1, 2, . . . ,m}. (3.2)

Other controls are also available, e.g., [47, Definition 5.1.1]. Breg-
man’s projection algorithm [47, 14], allowed originally only unrelaxed
projections, i.e., its iterative step is of the form

xk+1 = P fCi(k)(x
k), for all k ≥ 0. (3.3)

This has been extended by Censor and Herman [39]. For the Bregman
function f(x) = (1/2)kxk2 with zone S = Rn and for unity relaxation
(λk = 1, for all k ≥ 0), (3.3) coincides with (3.1).
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3.2. The string averaging algorithmic structure. This prototypi-
cal algorithmic scheme was proposed by Censor, Elfving and Herman
[34]. For t = 1, 2, . . . ,M, let the string It be an ordered subset of
{1, 2, . . . ,m} of the form

It = (i
t
1, i

t
2, . . . , i

t
m(t)), (3.4)

withm(t) denoting the number of elements in It. Suppose that there is a
set S ⊆ Rn such that there are operatorsR1, R2, . . . , Rm mapping S into
S and an operator R which maps SM = S ×S × · · · ×S (M times) into
S. Initializing the algorithm at an arbitrary x0 ∈ S, the iterative step of
the string averaging prototypical algorithmic scheme is as follows. Given
the current iterate xk, calculate, for all t = 1, 2, . . . ,M,

Tt(x
k) = Rit

m(t)
(. . . (Rit2(Rit1(x

k))), (3.5)

and then calculate

xk+1 = R(T1(x
k), T2(x

k), . . . , TM(x
k)). (3.6)

For every t = 1, 2, . . . ,M, this prototypical algorithmic scheme ap-
plies to xk successively the operators whose indices belong to the t-th
string. This can be done in parallel for all strings and then the operator
R maps all end-points onto the next iterate xk+1. This is indeed an al-
gorithm provided that the operators {Ri}mi=1 and R all have algorithmic
implementations. In this framework we get a sequential algorithm by the
choice M = 1 and I1 = (1, 2, . . . ,m) and a simultaneous algorithm by
the choiceM = m and It = (t), t = 1, 2, . . . ,M.

We demonstrate the underlying idea of the string averaging prototyp-
ical algorithmic scheme with the aid of Figure 1. For simplicity, we take
the convex sets to be hyperplanes, denoted by H1, H2, H3, H4, H5, and
H6, and assume all operators Ri to be orthogonal projections onto the
hyperplanes. The operator R is taken as a convex combination

R(x1, x2, . . . , xM) =
MX
t=1

ωtx
t, (3.7)

with ωt > 0, for all t = 1, 2, . . . ,M, and
PM
t=1 ωt = 1.

Figure 1(a) depicts the purely sequential algorithmic structure. This
is the so-called POCS (Projections Onto Convex Sets) algorithm which
coincides, for the case of hyperplanes, with the Kaczmarz algorithm, see,
e.g., Algorithms 5.2.1 and 5.4.3, respectively, in [47]. The fully simulta-
neous algorithmic structure appears in Figure 1(b). With orthogonal re-
flections instead of orthogonal projections it was first proposed, by Cim-
mino [49], for solving linear equations, see also Benzi [10]. Here the
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current iterate xk is projected on all sets simultaneously and the next iter-
ate xk+1 is a convex combination of the projected points. In Figure 1(c)
we show how averaging of successive projections (as opposed to averag-
ing of parallel projections in Figure 1(b)) works. In this case M = m
and It = (1, 2, . . . , t), for t = 1, 2, . . . ,M. This scheme, appearing in
Bauschke and Borwein [4], inspired the formulation of the general string
averaging prototypical algorithmic scheme whose action is demonstrated
in Figure 1(d). In this example it averages, via convex combinations, the
end-points obtained from strings of sequential projections and in this fig-
ure the strings are I1 = (1, 3, 5, 6), I2 = (2), I3 = (6, 4). Such schemes
offer a variety of options for steering the iterates towards a solution of the
convex feasibility problem. It is an inherently parallel scheme in that its
mathematical formulation is parallel (like the fully simultaneous method
mentioned above). We use this term to contrast such algorithms with
others which are sequential in their mathematical formulation but can,
sometimes, be implemented in a parallel fashion based on appropriate
model decomposition (i.e., depending on the structure of the underly-
ing problem). Being inherently parallel, this algorithmic scheme enables
flexibility in the actual manner of implementation on a parallel machine.
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Figure 1. (a) Sequential projections. (b) Fully simultaneous projections.
(c) Averaging of sequential projections. (d) String averaging. (Repro-
duced from Censor, Elfving and Herman [34]).

At the extremes of the “spectrum” of possible specific algorithms,
derivable from the string averaging prototypical algorithmic scheme, are
the generically sequential method, which uses one set at a time, and the
fully simultaneous algorithm, which employs all sets at each iteration.
For results on the behavior of the fully simultaneous algorithm with or-
thogonal projections in the inconsistent case see, e.g., Combettes [51]
or Iusem and De Pierro [71]. The “block-iterative projections” (BIP)
scheme of Aharoni and Censor [1] also has the sequential and the fully
simultaneous methods as its extremes in terms of block structures (see
also Butnariu and Censor [16], Bauschke and Borwein [4], Bauschke,
Borwein and Lewis [6], Elfving [63] and Eggermont, Herman and Lent
[62]). The question whether there are any other relationships between the
BIP and the string averaging prototypical algorithmic schemes is of theo-
retical interest and is still open. However, the string averaging prototypi-
cal algorithmic structure gives users a tool to design many new inherently
parallel computational schemes.

The behavior of the string averaging algorithmic scheme, with or-
thogonal projections, in the inconsistent case when the intersection C =
∩mi=1Ci is empty was studied by Censor and Tom in [46]. They defined
projection along the string It operator as the composition of orthogonal
projections onto sets indexed by It, that is,

Tt := Pit
m(t)

· · ·Pit2Pit1 , for t = 1, 2, . . . ,M, (3.8)

and, given a positive weight vector ω ∈ RS, they used as the algorithmic
operator R the following

R =
SX
t=1

ωtTt. (3.9)

Using this R the following string averaging algorithm is obtained.

ALGORITHM 3.2.
Initialization: x0 ∈ V is an arbitrary starting point.
Iterative Step: Given xk, use (3.8) and (3.9) to compute xk+1

xk+1 = R(xk). (3.10)

THEOREM 3.3. [46] Let C1, C2, . . . , Cm, be nonempty closed con-
vex subsets of Rn. If for at least one x0 ∈ Rn the sequence

©
xk
ª
k≥0,

generated by the string averaging algorithm (Algorithm 3.2 with R as in
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(3.9)), is bounded then any sequence
©
xk
ª
k≥0, generated by the string

averaging algorithm (Algorithm 3.2 with R as in (3.9)), converges for
any x0 ∈ Rn.

Varying and iteration dependent relaxation parameters and string con-
structions could be interesting future extensions. The practical perfor-
mance of specific algorithms needs also to be evaluated in applications
and on parallel machines. The string averaging prototypical algorith-
mic scheme has attracted attention recently and further work on it has
been reported since its presentation in [34]. In Bauschke, Matoušková
and Reich [9] string averaging was studied in Hilbert space. In Crombez
[55, 57] the string averaging algorithmic paradigm is used to find com-
mon fixed points of certain paracontractive operators in Hilbert space. In
Bilbao-Castro, Carazo, García and Fernández [11] an implementation of
the string averaging method to electron microscopy is reported. Butnariu,
Davidi, Herman and Kazantsev [18] call a certain class of string averag-
ing methods the Amalgamated Projection Method and show its stable
behavior under summable perturbations. In Rhee [83] a string averaging
scheme is applied to a problem in approximation theory.

3.3. The block-iterative algorithmic scheme with underrelaxed
Bregman projections. In this subsection we briefly review the block-
iterative algorithmic scheme with underrelaxed Bregman projections for
the solution of the convex feasibility problem proposed by Censor and
Herman [39]. By block-iterative we mean that, at the k-th iteration, the
next iterate xk+1 is generated from the current iterate xk by using a sub-
set (called a block) of the family of sets {Ci}mi=1 of the convex feasibil-
ity problem [47, Section 1.1.3]. We use the term algorithmic scheme to
emphasize that different specific algorithms may be derived by different
choices of Bregman functions, and by various block structures. For ex-
ample, if all blocks consist of a single set Ci, then our scheme gives rise
to a sequential row-action [26] type algorithm. Taking the other extreme,
if we let every block contain all sets, then we obtain a fully simultaneous
algorithm. Such a block-iterative scheme for the convex feasibility prob-
lem was first proposed by Aharoni and Censor [1], using orthogonal pro-
jections onto convex sets. That block-iterative projections (BIP) method
generalizes the sequential POCS method. The block-iterative scheme,
described below, extends Aharoni and Censor’s BIP method by employ-
ing underrelaxed Bregman projections which contain the underrelaxed
orthogonal projections as a special case. The underrelaxed Bregman pro-
jection with Bregman function f and relaxation parameter λ ∈ [0, 1] of a
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point z onto a closed convex set Ω, denoted by P fΩ,λ(z), is given by

∇f(P fΩ,λ(z)) = (1− λ)∇f(z) + λ∇f(P fΩ(z)). (3.11)

Appealing to the definition of a convex combination with respect to a
Bregman function f, as defined by Censor and Reich [44, Definiton 4.1],
the natural formula for a block-iterative step using underrelaxed Bregman
projections is

∇f(xk+1) =
mX
i=1

vki∇f(P fCi,λki (x
k)), (3.12)

where xk is the k-th iterate, λki ∈ [0, 1] is the relaxation parameter used
in the underrelaxed Bregman projection onto the set Ci during the k-th
iterative step and the vki are the weights of the convex combination for
the k-th iterative step (i.e., vki ≥ 0 for 1 ≤ i ≤ m and

Pm
i=1 v

k
i = 1).

Substituting (3.11) into (3.12), defining wki := vki λki , for 1 ≤ i ≤ m, and
introducing

wkm+1 := 1−
mX
i=1

wki and Cm+1 := Rn, (3.13)

we get the following alternative formulation of the block-iterative step
(3.12)

∇f(xk+1) =
m+1X
i=1

wki∇f(P fCi(xk)), (3.14)

with wki ≥ 0 for 1 ≤ i ≤ m+ 1 and
Pm+1
i=1 w

k
i = 1. The block-iterative

nature of this scheme stems from the fact that for every iteration index k
some of the parameters wki can be set to zero. The set of those indices i
for which wki 6= 0 at the k-th iteration defines the “block” of active con-
straints at this iteration. These index sets might vary dynamically from
iteration to iteration as long as some technical conditions are observed
[39].

Many other block-iterative algorithms were studied by Byrne [20, 21,
22, 23] in reference to image reconstruction from projections, where such
algorithmic schemes are sometimes termed ordered subset methods. A
rich source is Byrne’s recent book [25]. See also the work of Combettes
[53] and Section 6 of his paper on quasi-Fejérian methods [54].

4. Component averaging

In [37] a CAV (Component averaging) method for solving systems
of linear equations was introduced. In these methods the sparsity of the



ITERATIVE PROJECTION METHODS IN BIOMEDICAL INVERSE PROBLEMS 13

matrix is explicitly used when constructing the iteration formula. Using
this new scaling, considerable improvement was observed compared to
traditionally scaled iteration methods.

In Cimmino’s simultaneous projections method [49], see also, e.g.,
Censor and Zenios [47, Algorithm 5.6.1] with relaxation parameters and
with equal weights wi = 1/m, the next iterate xk+1 is the average of
the orthogonal projections of xk onto the hyperplanes Hi defined by the
i-th row of the linear system Ax = b and has, for every component j =
1, 2, . . . , n, the form

xk+1j = xkj +
λk
m

mX
i=1

bi − hai, xki
kaik22

aij , (4.1)

where ai is the i-th column of the transpose AT of A and bi is the i-th
component of the vector b and λk are relaxation parameters. When the
m× n system matrix A = (aij) is sparse, only a relatively small number
of the elements {a1j , a2j , . . . , amj } of the j-th column of A are nonzero,
but in (4.1) the sum of their contributions is divided by the relatively
large m. This observation led to the replacement of the factor 1/m in
(4.1) by a factor that depends only on the nonzero elements in the set
{a1j , a2j , . . . , amj }. For each j = 1, 2, . . . , n, denote by sj the number of
nonzero elements of column j of the matrix A, and replace (4.1) by

xk+1j = xkj +
λk
sj

mX
i=1

bi − hai, xki
kaik22

aij . (4.2)

Certainly, if A is sparse then the sj values will be much smaller thanm.
The iterative step (4.1) is a special case of

xk+1 = xk + λk

mX
i=1

wi
bi − hai, xki
kaik22

ai , (4.3)

where the fixed weights {wi}mi=1 must be positive for all i and
Pm
i=1wi =

1. The attempt to use 1/sj as weights in (4.2) does not fit into the scheme
(4.3), unless one can prove convergence of the iterates of a fully simul-
taneous iterative scheme with component-dependent (i.e., j-dependent)
weights of the form

xk+1j = xkj + λk

mX
i=1

wij
bi − hai, xki
kaik22

aij , (4.4)

for all j = 1, 2, . . . , n. To formalize this consider a set {Gi}mi=1 of real
diagonal n × n matrices Gi = diag(gi1, gi2, . . . , gin) with gij ≥ 0, for
all i = 1, 2, . . . ,m and j = 1, 2, . . . , n, such that

Pm
i=1Gi = I, where
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I is the unit matrix. Referring to the sparsity pattern of A one needs the
following definition [37].

DEFINITION 4.1. A family {Gi}mi=1 of real diagonal n× n matrices
with all diagonal elements gij ≥ 0 and such that

Pm
i=1Gi = I is called

sparsity pattern oriented (SPO, for short) with respect to anm×nmatrix
A if, for every i = 1, 2, . . . ,m, gij = 0 if and only if aij = 0.

The Component Averaging (CAV) algorithm combines three features:
(i) Each orthogonal projection onto Hi in is replaced by a generalized
oblique projection with respect to Gi, denoted below by PGiHi . (ii) The
scalar weights {wi} in (4.3) are replaced by the diagonal weighting ma-
trices {Gi}. (iii) The actual weights are set to be inversely proportional
to the number of nonzero elements in each column, as motivated by the
discussion preceding Equation (4.2). The iterative step resulting from the
first two features has the form

xk+1 = xk + λk

mX
i=1

Gi

³
PGiHi (x

k)− xk
´
. (4.5)

Recent work by Censor, Elfving, Herman and Nikazad [36] shows
that component averaging is valid (i.e., generates convergent iterative se-
quences) even when orthogonal projections are used and not generalized
oblique ones as described above.

4.1. Seminorm-induced oblique projections for sparse nonlinear
convex feasibility problems. The component averaging ideas can be ex-
tended to a convex feasibility problem with nonlinear convex sets. An
attempt to answer this question was made in [33]. However, when ap-
plying seminorm-induced oblique projections in a simultaneous algorith-
mic scheme for general (not necessarily linear) convex sets, the approach
used in [33] mandated a certain relationship between the matrixG and the
(nonlinear) convex set Q onto which the seminorm-induced projection is
made, namely, that the set will be directionally affine with respect to G,
see [33, Definitions 2.3 and 2.4]. In spite of the actual generalization
obtained in this way, its scope is limited due to this extra condition.

4.2. BICAV: Block-iterative component averaging. A recent mem-
ber of the powerful family of block-iterative projection algorithms is the
block-iterative component averaging (BICAV) algorithm of Censor, Gor-
don and Gordon [38] which was applied to a problem of image recon-
struction from projections. The BICAV algorithm is a block-iterative
companion to the [37].
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The basic idea of the BICAV algorithm is to break up the system
Ax = b into “blocks” of equations and treat each block according to the
CAV methodology, passing cyclically over all the blocks. Throughout
the following, T will be the number of blocks and, for t = 1, 2, . . . , T,
let the block of indices Bt ⊆ {1, 2, . . . ,m}, be an ordered subset of the
form Bt = {it1, it2, . . . , itm(t)}, where m(t) is the number of elements in
Bt, such that every element of {1, 2, . . . ,m} appears in at least one of the
sets Bt. For t = 1, 2, . . . , T , let At denote the matrix formed by taking
all the rows of A whose indices belong to the block of indices Bt, i.e.,

At :=

⎛⎜⎜⎜⎜⎜⎝
ai
t
1

ai
t
2

...

a
itm(t)

⎞⎟⎟⎟⎟⎟⎠ , t = 1, 2, . . . , T. (4.6)

The iterative step of the BICAV algorithm, developed and experimentally
tested in [38], uses, for every block index t = 1, 2, . . . , T, generalized
oblique projections with respect to a family {Gti}mi=1 of diagonal matri-
ces which are SPO with respect to At. The same family is also used to
perform the diagonal weighting. The resulting iterative step has the form

xk+1 = xk + λk
X

i∈Bt(k)
G
t(k)
i

µ
P
G
t(k)
i

Hi
(xk)− xk

¶
, (4.7)

where {t(k)}k≥0 is a control sequence according to which the t(k)-th
block is chosen by the algorithm to be acted upon at the k-th iteration,
thus, 1 ≤ t(k) ≤ T , for all k ≥ 0. The real numbers {λk}k≥0 are
user-chosen relaxation parameters. Finally, in order to achieve the ac-
celeration, the diagonal matrices {Gti}mi=1 are constructed with respect to
each At. Let stj be the number of nonzero elements aij 6= 0 in the j-th
column of At and define

gtij :=

⎧⎪⎨⎪⎩
1
stj
, if aij 6= 0,

0 , if aij = 0.
(4.8)

It is easy to verify that, for each t = 1, 2, . . . , T,
Pm
i=1G

t
i = I holds for

these matrices. With these particular SPO families of Gti’s one obtains
the following block-iterative algorithm:

ALGORITHM 4.2. BICAV
Initialization: x0 ∈ Rn is arbitrary.
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Iterative Step: Given xk, compute xk+1 by using, for j = 1, 2, . . . , n,
the formula:

xk+1j = xkj + λk
X

i∈Bt(k)

bi − hai, xkiPn
l=1 s

t(k)
l (ail)

2
aij , (4.9)

where λk are relaxation parameters, {stl}nl=1 are as defined above, and
the control sequence is cyclic, i.e., t(k) = kmodT + 1, for all k ≥ 0.

Full mathematical analysis of these methods, as well as their com-
panion algorithms for linear inequalities, was presented by Censor and
Elfving [32] and by Jiang and Wang [72]. Our recent [36] extends this by
presenting the diagonally-relaxed orthogonal projections (DROP) algo-
rithmic scheme. DROP is a block-iterative scheme which allows com-
ponent averaging without having to resort to sparsity pattern oriented

oblique projections PG
t(k)
i

Hi
mentioned above.

5. Subgradient projections and perturbed projections for the
multiple-sets split feasibility problem

In this section we review the multiple-sets split feasibility problem
(1.3) that requires to find a point closest to a family of closed convex
sets in one space such that its image under a linear transformation will be
closest to another family of closed convex sets in the image space. The
problem with only a single set C in Rn and a single set Q in Rm was
introduced by Censor and Elfving [31] and was called the split feasibility
problem (SFP). They used their simultaneous multiprojections algorithm
(see also [47]) to obtain iterative algorithms for the SFP. Their algorithms,
as well as others, see, e.g., Byrne [23], involve matrix inversion at each
iterative step, which is time-consuming, particularly if the dimensions are
large. Therefore, Byrne [24] devised the CQ-algorithm with the iterative
step:

xk+1 = PC

³
xk + γAT (PQ − I)(Axk)

´
, (5.1)

where xk and xk+1 are the current and the next iteration vectors, respec-
tively, γ ∈ (0, 2/λ) where λ is the spectral radius (in our case, the largest
eigenvalue) of the matrix ATA (T stands for matrix transposition), I is
the unit matrix or operator and PC and PQ denote the orthogonal projec-
tions onto C and Q, respectively.

The CQ-algorithm converges to a solution of the two-sets-SFP, for
any starting vector x0 ∈ Rn, whenever the two-sets-SFP has a solution.
When the two-sets-SFP has no solutions, the CQ-algorithm converges
to a minimizer of kPQ(Ax)−Axk over all x ∈ C, whenever such a
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minimizer exists. The multiple-sets split feasibility problem, posed and
studied in [35], was handled, for both the feasible and the infeasible cases,
with a proximity function minimization approach where the proximity
function p(x) is

p(x) = (1/2)
tX
i=1

αi kPCi(x)− xk2+(1/2)
rX
j=1

βj
°°PQj (Ax)−Ax°°2 ,

(5.2)
For convenience reasons yet another set was introduced as follows.

DEFINITION 5.1. [35] Given an additional closed convex set Ω ⊆
Rn, the constrained multiple-sets split feasibility problem (CMSSFP) is
to find an x∗ ∈ Ω such that x∗ solves (1.3).

If the CMSSFP problem is consistent then unconstrained minimiza-
tion of the proximity function yields the value 0, otherwise, in the in-
consistent case, it finds a point which is least violating the feasibility by
being “closest” to all sets, as “measured” by the proximity function.

ALGORITHM 5.2. [35, Algorithm 1]
Initialization: Let x0 be arbitrary.
Iterative step: For k ≥ 0 let

xk+1 = PΩ

Ã
xk + γ

Ã
tX
i=1

αi

³
PCi(x

k)− xk
´

+
rX
j=1

βjA
T
³
PQj (Ax

k)−Axk
´⎞⎠⎞⎠ , (5.3)

where γ ∈ (0, 2/L), L = Pt
i=1 αi + λ

Pr
j=1 βj and λ is the spectral

radius of the matrix ATA.

5.1. A subgradient projection method. In some cases, notably when
the convex sets are not linear, the exact computation of the orthogonal
projections calls for the solution of a separate optimization problem for
each projection. In such cases the efficiency of methods that use orthog-
onal projections is seriously reduced. Yang [90] proposed a relaxed CQ-
algorithm where orthogonal projections onto convex sets are replaced
by subgradient projections. The latter are orthogonal projections onto,
well-defined and easily derived, half-spaces that contain the convex sets,
and are, therefore, easily executed. In [43] the following simultaneous
subgradient algorithm for the multiple-sets split feasibility problem was
introduced. Assume, without loss of generality, that the sets Ci and Qj
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are expressed as

Ci = {x ∈ Rn | ci(x) ≤ 0} and Qj = {y ∈ Rm | qj(y) ≤ 0} , (5.4)

where ci : Rn → R, and qj : Rm → R are convex functions for all
i = 1, 2, . . . , t, and all j = 1, 2, . . . , r, respectively.

ALGORITHM 5.3.
Initialization: Let x0 be arbitrary.
Iterative step: For k ≥ 0 let

xk+1 = xk + γ

Ã
tX
i=1

αi

³
PCi,k(x

k)− xk
´

+
rX
j=1

βjA
T
³
PQj,k(Ax

k)−Axk
´⎞⎠ . (5.5)

Here γ ∈ (0, 2/L), with L =
Pt
i=1 αi + λ

Pr
j=1 βj , where λ is the

spectral radius of ATA, the constants αi > 0, for i = 1, 2, . . . , t, and
βj > 0, for j = 1, 2, . . . , r, are arbitrary, and

Ci,k =
n
x ∈ Rn | ci(xk) +

D
ξi,k, x− xk

E
≤ 0

o
, (5.6)

where ξi,k ∈ ∂ci(x
k) is a subgradient of ci at the point xk, and

Qj,k =
n
x ∈ Rm | qj(xk) +

D
ηj,k, y −Axk

E
≤ 0

o
, (5.7)

where ηj,k ∈ ∂qj(Ax
k).

5.2. A perturbed projection method. In this subsection we survey
a perturbed projection method for the multiple-sets split feasibility prob-
lem. This method [43] is based on Santos and Scheimberg [84] who
suggested replacing each nonempty closed convex set of the convex fea-
sibility problem by a convergent sequence of supersets. If such supersets
can be constructed with reasonable efforts and if projecting onto them
is simpler then projecting onto the original convex sets then a perturbed
algorithm becomes useful. The following notion of convergence of se-
quences of sets in Rn is called Mosco-convergence (see, e.g., [4]). This
notion was also used in [42].

DEFINITION 5.4. Let C and {Ck}∞k=0 be a subset and a sequence of
subsets of Rn, respectively. The sequence {Ck}∞k=0 is said to be Mosco-
convergent to C, denoted by Ck

M→ C, if
(i) for every x ∈ C, there exists a sequence {xk}∞k=0 with xk ∈ Ck

for all k = 0, 1, 2, . . ., such that, limk→∞ xk = x, and
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(ii) for every subsequence
©
xkj
ª∞
j=0

with xkj ∈ Ckj for all j =
0, 1, 2, . . ., such that limj→∞ xkj = x one has x ∈ C.

Using the notation NCCS(Rn) for the family of nonempty closed con-
vex subsets of Rn, let Ωk and Ω be sets in NCCS(Rn), such that, Ωk

M→
Ω as k → ∞. Let Ci and Ci,k be sets in NCCS(Rn), for i = 1, 2, . . . , t
and Qj and Q

j,k
be sets in NCCS(Rm), for j = 1, 2, . . . , r, such that,

Ci,k
M→ Ci, and Q

j,k

M→ Qj as k →∞. Define the operators

N(x) := PΩ

(
x+ s

Ã
tX
i=1

αi(PCi(x)− x)

+
rX
j=1

βjA
T (PQj (Ax)−Ax)

⎞⎠⎫⎬⎭ , (5.8)

Nk(x) := PΩk

(
x+ s

Ã
tX
i=1

αi(PCi,k(x)− x)

+
rX
j=1

βjA
T (PQj,k(Ax)−Ax)

⎞⎠⎫⎬⎭ , (5.9)

and let {εk}∞k=0 be a sequence in (0, 1) satisfying
∞X
k=0

εk(1− εk) = +∞. (5.10)

Then the following algorithm for the CMSSFP generates, under reason-
able conditions [43], convergent iteration sequences.

ALGORITHM 5.5. The perturbed projection algorithm for CMSSFP
Initialization: Let x0 ∈ Rn be arbitrary.
Iterative step: For k ≥ 0, given the current iterate xk, calculate the

next iterate xk+1 by

xk+1 = (1− εk)x
k + εkNk(x

k), (5.11)

where Nk and εk are as defined above.

6. Algorithms for the quasiconvex feasibility problem

Since a quasiconvex feasibility problem (QFP) is a generalization of
the convex feasibility problem, it is natural to ask whether the algorith-
mic schemes used for solution of the convex feasibility problem can be
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utilized for solving a QFP. In [45] Censor and Segal investigated the pos-
sibilities of modifying and adapting some of these algorithmic schemes
so that they become applicable to the QFP. In particular, the following
algorithmic schemes were considered: the cyclic subgradient projections
(CSP) (Censor and Lent [41]), parallel subgradient projections (PSP)
(Santos [85, 86]) and Eremin’s algorithmic scheme [64]. The common
idea of all these algorithms is to employ projections of different types,
with respect to the individual level sets of the functions, to generate a
sequence of points that converges to a solution. When the functions on
the left-hand side of the inequalities are quasiconvex the situation is more
complicated because such functions lack separation properties that con-
vex functions have. Given a function f and a point z, the subdifferential
of f at z is defined by

∂f(z) := {t ∈ Rn | ht, x− zi ≤ f(x)− f(z), for all x ∈ Rn} . (6.1)

Sometimes it is called the Fenchel-Moreau (FM) subdifferential. Straight-
forward generalizations of the aforementioned algorithms are not pos-
sible because the subdifferential of Fenchel-Moreau might be empty at
some points, thus, inapplicable to quasiconvex functions.

We first recall the notion of a quasiconvex function.

DEFINITION 6.1. Let f : C → R, where C is a nonempty convex
set in Rn. The function f is said to be quasiconvex if, for all x, y ∈ C,
the following inequality holds

f(θx+ (1− θ)y) ≤ max {f(x), f(y)} , for all θ ∈ (0, 1). (6.2)

Quasiconvexity has a geometrical interpretation. For any a ∈ R the
level (respectively, strict level) set of f, corresponding to a, is the set

levf (a) = {x ∈ Rn | f(x) ≤ a}, (6.3)

respectively,
lev<f (a) = {x ∈ Rn | f(x) < a}. (6.4)

Indeed f is quasiconvex if and only if its level sets levf (a) are convex
for all a ∈ R which, in turn, is true if and only if its strict level sets
lev<f (a) are convex for all a ∈ R. Convex functions have convex level
sets, and, therefore, are quasiconvex, but the converse is not true (e.g.,
the function log x on (0,+∞)). Applications of quasiconvex functions
which are not convex can be found in approximation theory (fractional
programming), see, e.g., Bajona-Xandri and Martinez-Legaz [2], Bon-
compte and Martinez-Legaz [12], Stancu-Minasian [88], location theory,
see, e.g., Gromicho [67], microeconomic theory (utility functions), see,
e.g., Mas-Colell, Whinston and Green [79].



ITERATIVE PROJECTION METHODS IN BIOMEDICAL INVERSE PROBLEMS 21

For generalization of gradient methods to nondifferentiable quasi-
convex functions a broader notion than the FM-subdifferential is needed
because the FM-subdifferential might be empty even for a differentiable
nonconvex function on Rn, e.g., the real-valued single variable function
y = x3 at x = 0. For functions that are not convex, concave and are
not differentiable, several notions of subdifferentials have been proposed
in the literature. In the last thirty years there have been several attempts
to define an appropriate notion of subdifferential for quasiconvex func-
tions. One of them that is used in [45] is the star-subdifferential which is
defined as follows.

DEFINITION 6.2. Given a function f and a point z, the-star subdif-
ferential of f at z, is defined by

∂?f(z) :=

½ {t ∈ Rn\{0} | ht, x− zi > 0 =⇒ f(x) ≥ f(z)}, z /∈ Γ,
Rn, z ∈ Γ,

(6.5)
where Γ is the set of minimizers of f .

If f is quasiconvex on Rn and finite at z, then ∂?f(z) 6= ∅ , see,
e.g., the review paper of Penot [81, Proposition 22]. Note that (6.5) is
equivalent to

∂?f(z) = {t ∈ Rn\{0} | f(x) < f(z) =⇒ ht, x− zi ≤ 0}. (6.6)

Plastria [82] introduced and explored properties of his lower subdifferen-
tial.

DEFINITION 6.3. Given a function f and a point z, the Plastria (P)
lower subdifferential of f at z (denoted in [82] as ∂−f ), is defined by

∂P f(z) = {t ∈ Rn | f(x) < f(z) =⇒ hx− z, ti ≤ f(x)− f(z)}.
(6.7)

A function f is called lower subdifferentiable (lsd) on K ⊆ Rn if
it admits at least one P-lower subgradient at each point. Every convex
function is lsd, since ∂f(z) ⊆ ∂fP (z), but not conversely.

Consider a family of sets

Di = {x ∈ Rn | fi(x) ≤ 0} for i = 1, 2, . . . ,m, (6.8)

where all fi are continuous and quasiconvex and let

D = ∩mi=1Di (6.9)

represent a quasiconvex feasibility problem. The algorithms presented in
[45] deal with quasiconvex functions satisfying a Hölder condition.
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DEFINITION 6.4. A function f : Rn → R is said to satisfy the
Hölder condition with degree β at a point z on a set C ⊆ Rn if there
exists a number L <∞ and a β ∈ (0, 1] such that

|f(y)− f(z)| ≤ L ky − zkβ , for all y ∈ C. (6.10)

A Hölder condition can be verified by estimating the growth behavior
of a function. Note that if a function satisfies a Hölder condition then it is
uniformly continuous and, therefore, continuous. The Hölder condition
with degree 1 is called the Lipschitz condition.

Denote by g+(x) the positive part g+(x) := max {0, g(x)}. Next an
iterative algorithm for solving the QFP is presented. Denote by S(0, 1) =
{z ∈ Rn | kzk = 1} the unit sphere.

ALGORITHM 6.5.
Initialization: x0 ∈ Rn is arbitrary.
Iterative step: Given the current iterate xk, calculate the next iterate

xk+1 by

xk+1 = xk − λk

Ã
f+i(k)(x

k)

Li(k)

!1/βi(k)
tk, (6.11)

where tk ∈ S(0, 1) ∩ ∂?fi(k)(x
k) and βi(k) and Li(k) are the Hölder

constant and degree, respectively, of fi(k).
Relaxation parameters: {λk}∞k=0 are confined to the interval ε1 ≤

λk ≤ 2− ε2, for all k ≥ 0, with some arbitrarily small ε1, ε2 > 0.
Control: Most violated constraint control or almost cyclic control

(see, e.g., [47, Definition 5.1.1]).

The convergence of this algorithm is secured by following theorem.

THEOREM 6.6. [45] Let the following assumptions hold: (i) the func-
tions fi(x) are quasiconvex on Rn, (ii) the problem (6.9) is consistent,
i.e., D 6= ∅, and (iii) the functions fi satisfy, for every i, Hölder con-
ditions with constants Li and degrees βi, for all x ∈ D, respectively,
on Rn. Under these assumptions any sequence {xk}∞k=0, generated by
Algorithm 6.5, converges to a solution of the problem (6.9).

A companion parallel algorithm for solving the QFP can be formu-
lated as follows.

ALGORITHM 6.7.
Initialization: x0 ∈ Rn is arbitrary.
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Iterative step: Given the current iterate xk, calculate the next iterate
xk+1 by

xk+1 = xk − λk

mX
i=1

αi

µ
f+i (x

k)

Li

¶1/βi
ti,k, (6.12)

where ti,k ∈ S(0, 1) ∩ ∂?fi(x
k), and 0 < αi < 1, for all i, andPm

i=1 αi = 1. The βi and Li are the Hölder constants and degrees,
respectively, of fi.

Relaxation parameters: {λk}∞k=0 are confined to the interval ε1 ≤
λk ≤ 2− ε2, for all k ≥ 0 with some arbitrary small ε1, ε2 > 0.

THEOREM 6.8. [45] Under the assumptions of Theorem 6.6, any se-
quence {xk}∞k=0, generated by Algorithm 6.7, converges to a solution of
the problem (6.9).

6.1. Algorithms for solving systems of inequalities with quasi-
convex Lipschitz continuous functions in the left-hand side. Eremin’s
algorithms for the convex feasibility problem can be generalized for solv-
ing systems of inequalities with quasiconvex Lipschitz continuous func-
tions {fi}mi=1 on the left-hand side. Assume that {Ki}mi=1 is a set of real
positive numbers and let I(x) = {j | max{fi(x) | i = 1, 2, . . . ,m} =
fj(x)} and s(x) = {i | fi(x) > 0}. The following definition was given
by Eremin [64].

DEFINITION 6.9. Let D ⊆ Rn be a closed convex set, let d(x)
be a continuous real-valued function, defined on Rn, that satisfies {x |
d(x) ≤ 0} = D. Let e(x) be a vector-valued function that is defined and
nowhere equal to zero on Rn\D. Assume also that e(x) is bounded on
any bounded set. Such a pair of functions d(x) and e(x) is said to have
the d-e property if for arbitrary z /∈ D the half-space

Ω = {x ∈ Rn | he(z), x− zi+ d(z) ≤ 0} (6.13)

contains D.

ALGORITHM 6.10. (Eremin’s algorithmic scheme)
Initialization: x0 ∈ Rn is arbitrary.
Iterative step: Given xk, calculate the next iterate xk+1 from

xk+1 =

⎧⎨⎩ xk − λk
d(xk)

k e(xk) k2 e(x
k), if d(xk) > 0,

xk, if d(xk) ≤ 0,
(6.14)

where the pair d(x) and e(x) are user-chosen functions that have the d-e
property.
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Relaxation parameters: {λk}∞k=0 are confined to the interval ε1 ≤
λk ≤ 2− ε2, for all k ≥ 0 with some arbitrary small ε1, ε2 > 0.

While Eremin discussed this algorithmic scheme only for convex and
differentiable functions, in [45] the scope of convergence was extended,
as the following theorem shows.

THEOREM 6.11. Let the following assumptions hold
(i) the functions fi(x) are quasiconvex and Lipschitz continuous with

Lipschitz constants Li on Rn, for all i ∈ {1, 2, . . . ,m},
(ii) the problem (6.9) is consistent, i.e.,D 6= ∅,
Then any sequence {xk}∞k=0, generated by Algorithm 6.10, converges

to a point x∗ ∈ D, if the pairs of functions d(x) and e(x) are chosen by
one of the following methods.

Method 1:

d(x) = fj(x) and e(x) = Lj
tj

k tj k , (6.15)

where tj ∈ ∂Pfj(x) and j is any index from I(x).
Method 2:

d(x) =

½ P
i∈s(x)Kifi(x), if s(x) 6= ∅,

0, if s(x) = ∅, (6.16)

and

e(x) =
X
i∈s(x)

KiLi
ti

k ti k , (6.17)

where ti ∈ ∂P fi(x) for all i ∈ {1, 2, . . . ,m}.
Method 3:

d(x) =

½ P
i∈s(x) f

2
i (x), if s(x) 6= ∅,

0, if s(x) = ∅, (6.18)

and

e(x) =
X
i∈s(x)

Lifi(x)
ti

k ti k , (6.19)

where ti ∈ ∂P fi(x) for all i ∈ {1, 2, . . . ,m}.
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