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Algorithms for Satisfying Dose-Volume Constraints
in Intensity-Modulated Radiation Therapy

Wei Chen, Gabor T. Herman, and Yair Censor

ABSTRACT. In intensity-modulated radiation therapy (IMRT) we
need to deliver a sufficient dose to target volumes (e.g., cancerous
tumors) to destroy them, but at the same time we have to be careful
that we do not destroy sensitive essential organs. These dual require-
ments can be expressed by a system of linear inequalities, in which
the unknowns are the intensities to be delivered in the beamlets of
the IMRT device (assuming that the dose delivered to any point in
the body depends linearly on the unknowns).

It is often the case that the system of inequalities that results
from an ideal plan (one in which all target locations get a dose suf-
ficient for destruction and yet all locations within an organ at risk
receive an absolutely safe dose) cannot be satisfied. In such a case, it
is reasonable to relax the conditions so that a specified percent of the
volume of an organ at risk may receive a dose in excess of what is
absolutely safe, but still not more dose than a specified higher thresh-
old for safety. Finding a solution to a problem that involves such
dose-volume constraints is inherently more complex than finding a
solution for a feasible ideal plan.

In this paper we discuss two approaches for solving problems
with dose-volume constraints: one involves linear programming and
the other is an adaptation of a projection method for solving feasi-
ble systems of linear inequalities. The two approaches are experi-
mentally compared according to their ability to find a solution when
there is one and according to their computational speed in case both
of them succeed to find a solution.
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1. Introduction

Intensity-modulated radiation therapy (IMRT) is now widely used as
a medical technique to treat cancer by radiation. The multileaf collimator
was invented to generate radiation intensity patterns, with many degrees
of freedom, to achieve a dose distribution in the patient’s body, in which
the target cells receive a sufficient dose to get killed but critical structures
are spared by receiving a relatively safe dose.

The process is based on a full discretization of the volume of the pa-
tient’s body. In practice this is done in 3D (three dimensions), but for
the purpose of the algorithm comparison in this paper we use only 2D,
which does not make an essential change to the mathematical nature of
the problem. Because of the 3D nature of the practical problem, we con-
sider the region into which radiation is delivered as divided into voxels
(volume elements) rather than pixels (picture elements).

Assume that the number of radiation beamlets used is I and the
number of voxels is J . The total radiation dose delivered to voxel j
(1 ≤ j ≤ J) is determined by the unknown intensity xi (1 ≤ i ≤ I)
of each beamlet i and aj

i , the dose delivered to voxel j by the ith radi-
ation beamlet with unit intensity. Formally, it is

∑I
i=1 aj

ixi. (Here it is
assumed that the dose delivered to any voxel in the body depends linearly
on the intensities of the radiation beamlets.)

Initially, the desired doses may be expressed by inequalities, giving a
lower bound lj (1 ≤ j ≤ J) to the dose of voxels in planning target vol-
umes (PTVs) and an upper bound uj (1 ≤ j ≤ J) to the dose of voxels
in organs at risk (OARs). An x = (x1, x2, . . . , xI)T , with all compo-
nents nonnegative, for which the total doses

∑I
i=1 aj

ixi satisfy the linear
inequality constraints is a solution to the IMRT inverse problem. How-
ever, the competing desires to destroy PTVs and not to harm OARs are
likely to cause the initially given constraints to be inconsistent (the solu-
tion set of the IMRT problem is empty). A methodology in the presence
of such infeasibility is provided by dose-volume constraints (DVCs) [1],
which allow the lower bound (or upper bound) on a portion of the PTV
(or OAR) to be lowered (or raised) by a certain amount. For example, the
constraints for the OAR that consists of voxels whose indices are from
the set B may be changed from

I∑

i=1

aj
ixi ≤ u, for j ∈ B, (1.1)

to
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I∑

i=1

aj
ixi ≤ (1 + β)u, for j ∈ B, (1.2)

and

|{j ∈ B|
I∑

i=1

aj
ixi > u}| ≤ α|B|, (1.3)

where |B| stands for the cardinality (number of elements) of the set B.
This amounts to allowing a specific portion (α) of the original inequal-
ities to be violated, but only up to a specific fraction (β). If α and β
are small enough, then delivering such doses to the voxels of this OAR
should allow it to keep performing its function.

Mathematically speaking, any method that can solve the problem
with constraints of type (1.1) can be used to solve the problem with con-
straints of type (1.2) and (1.3). One by one we can select subsets C of B
of size not greater than α|B|, and use inequalities of type (1.2) for j ∈ C
and of type (1.1) for j ∈ B\C (the elements of B that are not in C).
However, the number of ways of selecting C can become enormous and
so this approach is not useful in practice.

A practical algorithm using linear programming, without resorting to
mixed integer programming (MIP), see, e.g., Langer et al. [4], for solving
the IMRT problem with dose-volume constraints (however one that is
not guaranteed to find a solution, even when there is one) was proposed
by Censor et al. [3]. In this paper we compare that algorithm with a
new approach that is based on a fast sequential projection method called
ART3+ [7]. This new method is also not guaranteed to find a solution,
even if there is one.

The two algorithms are compared on a set of experiments based on
two anthropomorphic phantoms. Both the ability of finding a solution
when there is one and the computation time when both methods find a
solution are reported.

We describe the algorithms in Section 2. The experiments and their
outcomes are presented in Section 3 and a discussion of the results is
given in Section 4.

2. Algorithms

It is mathematically simpler to consider each PTV and each OAR
simply as a subvolume. Suppose that there are S such subvolumes and
Bs (for s = 1, 2, . . . , S) is the index set of the voxels in subvolume s.
We assume that, for some 1 ≤ s ≤ S, Bs is an OAR and that it is the
only subvolume for which we have dose-volume constraints. We assume
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throughout this paper that the discretization of the body into voxels and
the discretization of the external radiation beams into beamlets, are done
ahead of time. Also, all index sets of voxels that describe the subvolumes
have been identified and are given to us. In a real-world situation, these
numbers would be given to a dose-calculation program, which would
then calculate for us the aj

i . Here we calculate them as explained in Sec-
tion 3 below. Upper and lower bounds on permitted and required doses
in subvolumes are prescribed by the radiation oncologist, thus known to
us, and so are the numbers α and β for the DVC.

Under these assumptions the IMRT inverse problem requires finding
an x = (x1, x2, . . . , xI)T such that

ls ≤
I∑

i=1

aj
ixi ≤ (1 + β)us, for j ∈ Bs, (2.1)

|{j ∈ Bs|
I∑

i=1

aj
ixi > us}| ≤ α|Bs|, (2.2)

ls ≤
I∑

i=1

aj
ixi ≤ us, for all j ∈ Bs, for s 6= s, 1 ≤ s ≤ S, (2.3)

0 ≤ xi ≤ u, for i = 1, 2, . . . , I. (2.4)

2.1. Linear Programming. The linear programming (LP) method
of [3] introduces, for each inequality j of the OAR Bs, an auxiliary vari-
able tj that controls the amount by which the right-hand side of (2.1) goes
above its initially prescribed upper bound us. The LP task is formulated
as follows:

minimize
∑

j∈Bs

tj , (2.5)

subject to ls ≤
I∑

i=1

aj
ixi ≤ tjus, for j ∈ Bs, (2.6)

1 ≤ tj ≤ 1 + β, for j ∈ Bs, (2.7)
∑

j∈Bs

tj ≤ (1 + αβ)|Bs|, (2.8)

ls ≤
I∑

i=1

aj
ixi ≤ us, for all j ∈ Bs, for s 6= s, 1 ≤ s ≤ S, (2.9)
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0 ≤ xi ≤ u, for i = 1, 2, . . . , I. (2.10)

The solution x of this LP problem will satisfy (2.1) (because it satis-
fies (2.6) and (2.7)), (2.3) and (2.4) (because these are the same as (2.9)
and (2.10)). Given (2.6) and (2.7), (2.8) can be derived from (2.1) and
(2.2) (by letting at most a fraction α of the tj to be 1 + β and the remain-
ing tj to be 1). The justification of the optimization goal (2.5) is that it
pushes the solution set of the linear constraints (2.6)-(2.10) towards the
solution set of (2.1)-(2.4).

In spite of this, there is still no guarantee that x satisfies (2.2); check-
ing the solution x against (2.2) is thus required in the algorithm. However,
the experiments show that, most of the time, solving the LP task gives us
a solution that satisfies also (2.2). It turns out in our experiments that
the optimization is not necessary most of the time and the LP problem
can be solved much more efficiently without the optimization goal (2.5).
In the experiments, our strategy is to solve the LP task first without the
optimization goal and check if the solution satisfies (2.2); if not, then we
solve the LP task again with the optimization goal and check again.

Our experiments use the COIN-OR Linear Program (CLP) Solver [5]
to solve the LP task.

2.2. ART3+ Algorithm. This algorithm is designed to find a com-
mon point in the intersection of hyperslabs, determined by interval in-
equalities of the form (2.9) and (2.10). It may start anywhere, usually
at the origin (the zero vector). In each iteration, the algorithm picks one
interval inequality and moves the current point into the hyperslab. In the
ART3 algorithm [6] the hyperslabs are picked in a repetitive cyclic order.
If a point is within the hyperslab, then it is not moved. If the current
point is outside the hyperslab but sufficiently near it, then the next point
is obtained by reflection in the nearest face of the hyperslab. Otherwise,
the current point is projected onto the center hyperplane of the hyperslab.
It is proved in [6] that, if the solution set is full-dimensional (i.e., has a
nonempty interior), then ART3 finds a point in it within a finite number
of steps. The newly developed ART3+ algorithm [7] differs from ART3
by using a more sophisticated ordering of the hyperslabs. It retains the
finite convergence property of ART3 and it usually finds a solution at a
lesser computational cost.

Since ART3+ requires the solution set to be full-dimensional, we use
it in the following manner to search a solution of (2.1)-(2.4). We generate
a sequence of real numbers β[k] ∈ (0, β], for k = 0, 1, . . .. We then use
ART3+ to attempt to solve
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FIGURE 1. A typical curve of α[k] plotted against β[k]
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ls ≤
I∑

i=1

aj
ixi ≤ (1 + β[k])us, for j ∈ Bs, (2.11)

ls ≤
I∑

i=1

aj
ixi ≤ us, for all j ∈ Bs, for s 6= s, 1 ≤ s ≤ S, (2.12)

0 ≤ xi ≤ u, for i = 1, 2, . . . , I. (2.13)

If ART3+ does not terminate within a pre-specified number of steps, then
we set α[k] = +∞. Otherwise we calculate and set

α[k] = |{j ∈ Bs|us <
I∑

i=1

aj
ixi ≤ (1 + β[k])us}|/|Bs|. (2.14)

If α[k] ≤ α then the solution of (2.11)-(2.13) is also a solution of (2.1)-
(2.4) and we are done. Otherwise we repeat the process for β[k + 1].

This strategy does not guarantee that we find a solution to (2.1)-(2.4),
even if there is one. However, the curve of α[k] plotted against β[k] is
typically “∪-shaped” (see Figure 1) and hopefully the minimal α[k] we
can find is smaller than the required α.

In the experiments, we use for ART3+ a simple recursive search strat-
egy. The starting search range is set to be [0, β]. We then divide the search
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FIGURE 2. Searching for solution with α = 0.2, β =
0.4. For β[k] = 0.1, ART3+ failed to converge. The
search order for β[k] is 0.4, 0.2, 0.1, 0.3, 0.15.
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range into half, pick as β[k] that value of β that gives smallest α[k] among
the middle point and the two endpoints, change the search range to the
neighborhood of that β[k] with half of the previous length. An example
of the pairs (α[k], β[k]) generated by this strategy is illustrated in Figure
2.

Another trick we use is that, for a given β[k], once the algorithm
have been running for a much longer time than a typical run, we save the
current result and go to the next β[k]. We may go back to continue this
saved run, if we do not get a good solution for the other β[k] we tried.

We implemented the ART3+ algorithm within the programming sys-
tem SNARK05 [2].

3. Experiments

In the experiments, we use two two-dimensional anthropomorphic
phantoms provided by the Radiological Physics Center (RPC) [8]. One
is the head and neck phantom (Figure 3), the other is the prostate phantom
(Figure 4).

For our experiments, the square region into which the phantoms are
embedded is subdivided into 101× 101 voxels of size 16 mm2, i.e., J =
10, 201.
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FIGURE 3. The head and neck phantom (s=1: bright
moon-shaped region, a PTV; s=2: small disk on the left,
a PTV; s=3: small disk on the right, an OAR; s=4: rest
of the voxels within the body, normal tissue.)

We always use the same five beam directions: 0◦, 72◦, 144◦, 216◦,
288◦. For each direction, there are 103 beamlets of width 4 mm, with
the center of the center beamlet going through the center of the square
region. Therefore the total number of beamlets is I = 515. The intensity
of the radiation beamlets xi (1 ≤ i ≤ I) is nonnegative and has an upper
bound 100, i.e., u = 100 in (2.4).

For 1 ≤ i ≤ I and 1 ≤ j ≤ J , aj
i = 1 if the center of ith voxel

is within the jth beamlet and is zero otherwise. (This is not a realistic
model for IMRT, but it is reasonable enough for an evaluation of the
relative performance of the two algorithms.)

3.1. Head and neck. In Figure 3, on the right the bright moon-
shaped region is the primary PTV. The small disk under the primary PTV
is the only OAR. The left disk is the secondary PTV. The rest of the vox-
els are considered to be in normal tissue that form the fourth subvolume.
The ls, us, α and β are presented in Table 1.

3.2. Prostate. In Figure 4, the bright moon-shaped region is an OAR
(the bladder), under it is a PTV (the prostate), and under that is another
OAR (the rectum). The two symmetric disks on the left and right are both
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TABLE 1. The prescription for the subvolumes in the
head and neck phantom.

s ls us (α, β)
1 66 127.5

2 54 127.5

3=s 0 20 (0.200, 0.400)

4 0 73.6

FIGURE 4. The prostate phantom (s=1: center disk, a
PTV; s=2: bright moon-shaped region, an OAR; s=3:
bottom disk, an OAR; s=4: side disks, two OARs; s=5:
rest of the voxels within the body, normal tissue.)

OARs (the femoral heads). The ls, us, α and β are presented in Table 2.
There are eight tasks to be run.

3.3. Results. The experiments were conducted using an Intel Xeon
1.7MHz processor, 1G RAM workstation. The total computation times
(the duration of the algorithm until it finds a solution) needed by the two
algorithms for each of the experiments are shown in Table 3. In the LP
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TABLE 2. Prescriptions for the subvolumes in the
prostate phantom. DVCs are applied to the bladder in
the upper table and to the rectum to the lower table.

s ls us (α, β)
1 60 127.5

2=s 0 49 (0.070, 0.347)
(0.075, 0.276)
(0.080, 0.225)
(0.085, 0.164)

3 0 49

4 0 49

5 0 49

s ls us(α, β)
1 60 127.5

2 0 55

3=s 0 35 (0.200, 0.286)
(0.250, 0.225)
(0.300, 0.164)
(0.350, 0.103)

4 0 49

5 0 49

time column, “3.452+194.032 (No solution)” means that the time LP runs
without optimization is 3.452 seconds, but the solution it returns fails to
satisfy (2.2) and so we run the LP again with optimization, and the time
for this run is 194.032 seconds, but the solution it gives still fails to satisfy
(2.2).
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TABLE 3. Timings (in seconds) for finding solutions
with the two algorithms.

Algorithm LP time (s) ART3+ time (s)
Head and Neck 20.285+200.437 3.472

Prostate 1 3.452+194.032 (No solution) 9.324 (No solution)
Prostate 2 3.488+172.999 (No solution) 1.700
Prostate 3 3.360 2.776
Prostate 4 3.548 1.056
Prostate 5 2.296 6.532
Prostate 6 2.332 3.728
Prostate 7 2.372 2.336
Prostate 8 2.300 1.196

4. Discussion

We can see from Table 3 that generally ART3+ works a little bit
faster than LP does when we do not need to run the LP again with the
optimization goal. Otherwise, ART3+ is much faster. Also, there was a
case for which ART3+ found a solution, but LP did not. However, more
experiments need to be done to arrive at a solid conclusion. Experiments
with real data need to be conducted to test whether the algorithms can be
extended and will be fast enough for practical (3D) IMRT planning with
multiple dose-volume constraints.
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