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Summary. We investigate the behavior of Kaczmarz’s method with relax-
ation for inconsistent systems. We show that when the relaxation parameter
goes to zero, the limits of the cyclic subsequences generated by the method
approach a weighted least squares solution of the system. This point
minimizes the sum of the squares of the Euclidean distances to the hyper-
planes of the system. If the starting point is chosen properly, then the limits
approach the minimum norm weighted least squares solution. The proof is
given for a block-Kaczmarz method.

Subject Classifications: AMS (MOS): 65 F 10; CR: 5.14

1. Introduction
In this paper we study the solution of the linear system of equations
Ax=b, (1.1)

by Kaczmarz’s method with relaxation. In particular, we consider what hap-
pens if the relaxation parameter is very small (strong underrelaxation).
Kaczmarz’s method for solving (1.1) is as follows. Let AeIR™*" (the space of m
x n real matrices) and let af be the 'th row of 4. A vector x°cIR" (the real n-
dimensional Euclidean space) is chosen arbitrarily, and is iteratively improved
by the iteration process

xk+1=xk+Akal;2—ai, (1.2)
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where i=kmodm+1. The A, are relaxation parameters. It is no loss of gene-
rality to assume that the a; are non-zero. Kaczmarz [7] proved that the se-
quence {x*} converges to the solution of (1.1) in the absence of relaxation, i.e.,
A.=1 for all k, assuming that A is square and non-singular. In this case, al-
gorithm (1.2) performs successive orthogonal projections onto the hyperplanes

alx=b,. (1.3)

Herman et al. [6] proved convergence with arbitrary relaxation parameters
satisfying

0<lim inf A, < lim sup 4, <2, (1.4)
k— o0 k— oo
assuming (1.1) is consistent only (so 4 need not be non-singular and square).
See also Censor [2] for some further comments and references.
In some significant practical cases, the method (1.2) is applied to inconsis-
tent systems. In this case algorithm (1.2) cannot converge, but Tanabe [8]
showed that in the absence of relaxation the subsequences

{ka“}kgo, 0sism-—1, (1.5)

called cyclic subsequences, are convergent. This result of Tanabe was recently
extended by Eggermont et al. [3]. A special case of their results shows that the
cyclic subsequences converge in the inconsistent case if the relaxation parame-
ters are periodic, i.e., 4, =4,_,, k=0, and satisfy (1.4), [3, Theorem 1.1].

The use of relaxation parameters is important in practice. In the area of
image reconstruction from projections it was demonstrated experimentally that
small relaxation parameters significantly improve the practical performance of
the algorithm (1.2), see Herman [5, Chap. 11.4-5], and in particular compare
Figs. 11.4 and 11.5 against Figs. 11.2 and 11.3. So far, this phenomenon has not
received a satisfactory explanation; the use of small relaxation parameters is
still listed under the heading “Tricks” in [5]. We refer to the use of small re-
laxation parameters as “strong underrelaxation.”

Inspired by this, we were led to investigate the effect of strong underrela-
xation on Kaczmarz’s method for inconsistent systems. We arrived at the fol-
lowing interesting mathematical result: as the relaxation parameters go to zero,
the limits of the cyclic subsequences all approach the minimum norm (weight-
ed) least squares solution of (1.1). The weighting matrix is presented.
Geometrically, this particular weighted least squares solution minimizes the
sum of the squares of the (Euclidean) distances to the hyperplanes determined
by the equations.

We now summarize the paper. In Sect. 2 the matrix representation of a
simple block-version of Kaczmarz’s method is given. This simple version covers
some important cases of the general block-Kaczmarz method of Eggermont et
al. [3, Sect.1]. In Sect.3 we give sufficient conditions for the cyclic sub-
sequences generated by this method to converge and derive a useful expression
for their limits. We then investigate the behavior of the limits as the relaxation
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parameter goes to zero. In Sect.4 we discuss the implications of this result to
the Kaczmarz algorithm (1.2).

We use the following notations. I denotes the identity matrix, whose dimen-
sions should be clear from the context. || - || denotes the Euclidean norm of vec-
tors, in any real Euclidean vector space as well as the induced matrix norm
(spectral norm). The Moore-Penrose inverse and transpose of a matrix A are
denoted by A" and A”. #'(4) and %#(A4) denote the nullspace and range of A.
Finally, if f(4) is a matrix function depending on /4, and g is a nonnegative
real function, then we write

f(A)=0(g#), (“4-0) (1.6)

to indicate that there exists a constant K such that for all A small enough and
positive,

If (DIl =Kg(4). (1.7

2. Matrix Representation of the Block-Kaczmarz Method

In this section we present a simplified version of the block-Kaczmarz method,
and give a matrix representation for a complete cycle of the iteration. At the
end of this section we show that in most cases of interest, the simplified block-
Kaczmarz method covers the general block-Kaczmarz method with relaxation
matrices if we assume that the system has been scaled appropriately. '

We consider the system

Ax=b 2.1)

where AeRR™™*N and belR™™. We partition 4 and b as

A, b, \
A = -IZ!.‘Z‘“ ) b = _13.'2. s (22)
Ay by

with 4,eRY*¥ b.eR% We consider the following block-Kaczmarz method to
solve (2.1), cf. [3, Sect. 1].

x%eR¥,  arbitrary,
XK+ = xk 4 ) AT (b, — A, X, (2.3)
i=kmod M +1.

In the special case L=1, and if the rows of 4 are scaled to have length one,
this is Kaczmarz’s algorithm with constant relaxation. Vasil’chenko and Svet-
lakov [9] study an orthogonal projections version of (2.3), ie. AAT replaced by
A}, for a nonsingular system of equations.
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Block-iterative methods of the Jacobi and SOR types for consistent and
inconsistent systems of linear equations were carefully studied recently by
Elfving [4].

Now we derive the matrix representation of one complete cycle of the al-
gorithm (2.3), following closely Tanabe [8], cf. Elfving [4] and Eggermont et
al. [3]. Writing the iterative step in (2.3) as

x**1=Pxk+AATb, (2.4)
with
P=I-JATA, (2.5)

and i=kmod M + 1, we obtain, by induction, that

xb+DM=QxkM L Rb, k20, (2.6)
where
Q=PyPy_,... P, (2.7)
M
Rb=4Y P,..P, ATb, (2.8)
i=1

Here, for i=M, Py, ... P, is taken as I.
From (2.6) we have, again by induction, that

k

x(k+1)M= Z Q’Rb+Q"+1x°. (29)

=0

This formula is the starting point for our analysis of strong underrelaxation.
Similar formulas hold for the other cyclic subsequences {x*¥*+1} . 1<i<M—1.

We finish this section by discussing the generality of the iteration process
(2.3). In Eggermont et al. [3], the convergence of the following block-Kacz-
marz method is studied.

x%eRY,  arbitrary,
Xkt 1= xk 4 AT 50(h. — 4, x¥), (2.10)
i=kmod M +1.

It is shown that a sufficient condition for convergence in case the system 4x=»b
is consistent is that

lim sup [| A} 4,(I— ATZW A)| <1. 2.11)
k— oo

In case the system Ax=b is inconsistent and if the method (2.10) is periodic,
ie.,

0= 3i-1) (2.12)

where i=kmod M + 1, then (2.11) is a sufficient condition for the convergence
of the cyclic subsequences {x"M”}kgo, 0sisM-1.
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Numerically, the method (2.10) was used with the Z¢~1) equal to a positive
diagonal matrix, [3, Eq. (2.18)]. In this case, and other cases as well, 2¢~ 1 may
be written as

-Y=0TQ,, (2.13)
and the iterative step in (2.10) is of the form
x**1=x* 4 BY(b,— B, x"), _ (2.14)

where B;=Q;A;. In other words, if (2.12-13) hold, then the algorithm (2.10) is
of the same form as algorithm (2.3). By applying algorithm (2.3) to the scaled
system

QAx=0Qb, (1.15)

where Q is the block-diagonal matrix with blocks Q,, Q,, ..., 2,,, we obtain al-
gorithm (2.10, 12, 13) applied to the original system (2.1). So it is no great loss
of generality to study (2.3) rather that (2.10).

3. The Effect of Strong Underrelaxation

In this section we investigate the effect of strong underrelaxation on the limits
of the cyclic subsequencs generated by the block-Kaczmarz algorithm (2.3). As
mentioned before, we consider only the cyclic subsequence {x*™},. ,.A similar
analysis applies to the other subsequences. We prove the following result.

Theorem 1. For all A small enough,

x*(A)= lim x*M 3.1
k— o0
exists, and
lim x*(1)=ATb+(I — AT 4)x°. (3.2)

A-0

We divide the proof into a number of lemmas. Lemmas 1 and 2 follow
closely Tanabe [8], cf. [3].
First we recall some results from [3].

Lemma 1. Let
Ao= min 2|4;AT|". (3.3)
1SisM
Then, for all A€(0, A,),
(i) Q is a contractive mapping of R(AT) into itself;
(ii) lim Q¥=I1—-A%4;
k— o0
(i) Z2UI—-Q)=R(I—-QT)=R(A").
Proof. We show that if 1e(0, 1), then

AT A1 - AA] 4)] <1 (-4
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for all 1 i< M. This is condition (2.11) for the case
I0=21 k=0,
so that we then may appeal to the results of [3]. To show (3.4), let
A=UAVT (35

be the singular value decomposition of A;, with A; a square, nonsingular ma-
trix. Then
AiT = VlAzT UiT
and so
AT AU —2AT Al =1~ AAZ].
The condition
II-aA2| <1, 1SiSM,

is readily verified to be equivalent to 1€(0, 4,).
Now (i) follows from [3, Lemma 5.4] and (ii) from [3, Theorem 5.5]. Also,
from [3, Lemma 5.4],

N (I —=Q)=AN(A), (3.6)
hence
R(I—-0N)=R(A"). 3.7

Since QT is the iteration matrix if in algorithm (2.3) we use the blocks A, in re-
verse order, we have, similarly to (3.6),

N (I=QT)=H(4),
hence
R(I—-Q)=R(A").

Together with (3.7), this proves (iii). []

Now we are ready to derive the convergence of {x*}, ., as well as a use-
ful expression for its limit.
Lemma 2. Let A€(0, 4,), with 1, given by (3.3). Then

x*(A)= lim x*M
k- o0
exists and

x*(A)=(I—-Q)' Rb+(I—A'A)x°. (3.9

Proof. From (2.8) we see that R;, the i'th block of R where R is partitioned in
the same way as A7, is given by

R,=AP, ... P

i+1

AT
hence for an arbitrary vector xe R™ we may write with the aid of (2.5),

Rx=Y Rx,=Y Ax(I-AATA,) ... I—1AT, A, ) AT,
i=1

i=1



Kaczmarz's Method for Inconsistent Systems 89

The right hand side of the last equation is some linear combination of blocks
of A7, thus

R(R) = R(AT),
hence
R=A"AR. (3.10)

By Lemma 1 (i) we have then that
QATA=A"40A4%4 (3.11)
sO

O0=A'404%'4 (3.12)
has norm less that one. Also, by (3.10-12),

k
fj Q’R=Y O’R.
=0 £=0

Since the series on the right converges when k— o0, so does the series on the
left. Hence, from (2.9)

lim ka=§0 G/Rb+ lim 041
Since |0 <1 the series on the right equals
(I-0)~'Rb,
and the limit on the right equals
(I—ATA)x°,
by Lemma 1 (ii). So, for 1€(0, 4,),
x*(A)=I—0)"'Rb+(I— A" A)x°. (3.13)
The final step of the proof is to show that
(I-0)'R=(I-Q)'R.
Since Z(R)<= Z(A"), it suffices to show that
I=0) 1 AT=(I-Q)'4".
For arbitrary y, consider the equation
(I-Q)x=A"y.

By Lemma 1 (iii), this is a consistent system of equations, so its minimum
norm least squares solution

x=(1-Q)'A"y



90 + Y.Censor et al.

is an exact solution. By Lemma 1 (iii), it follows that XeZ(4T)=2%(AA4) so X
=A'Ax, and also that (I—Q)%¥=A'A(I—-Q)% Combining these two obser-
vations, we obtain

(I-Q)x=A'A(I-Q)A' A%
=(I-A'AQAtA)x.
So,
(I-Qx=ATy=(I-0)x.

Since I —Q is invertible, % is also given by
£=(I1-0)"'ATy,
and we are done. [J

Now we are at the point where we can look what happens to x*(1) as
4 — 0. The dependence of x*(A) on 4 is only in (I — Q)'Rb. It is readily verified,
by inspection of (2.8), that

Rb=AATb+0(A?), (L—0), (3.14)
and that
I-Q=AATA+0(1?), (A—0) (3.15)

From (3.15) it is seen that we need to investigate perturbations of Moore-Pen-
rose inverses. The following lemma is compiled from Ben-Israel and Greville
[1, pp. 184-185].

Lemma 3. If m x n matrices F and E satisfy

R(E)S R(F), RET)=R(FT) (3.16)
and
|IFTE|| <1 (3.17)
then
IFYE| || F'|
F+Ef—Ft|gs———1—1 )
(F+E)'—F'| = TZIFE (3.18)

With this lemma in hand, we are ready to prove the following.

Lemma 4.
II-Q)f=A~1 (AT =0(1), (A-0).

Proof. Define the matrix E by
I—-Q=A(ATA+E). (3.19)
From (3.15) we have
IEI=0(4), (A-0).
From Lemma 1 (iii) we obtain that

R(E)=R(ET)=R(AT A). (3.20)



Kaczmarz’'s Method for Inconsistent Systems 91

Also
I(ATA)'E|=0(%), (A—0), (3.21)

since (AT A)" does not depend on 4, so this is certainly less than one for A small
enough. Conditions (3.20-21) now allow us to conclude from Lemma 3 that

1(ATA+E)—(ATA) | =0(1), (4A—0). (3.22)
From (3.19) we finally have
(I-Q)'=A"1(ATA+E)",
so that (3.22) proves the lemma. [

The proof of Theorem 1 now follows from the above analysis. We must
show that

lim (I-Q)'Rb=A"h. (3.23)
A-0
We have

(I-Q)'Rb=[A~1(4ATA)' + O(1)][AAT +0(A?)]b
=(ATA)' ATb+0()).

whence (3.23) follows. [

4. Discussion

In this section we discuss the effect of the (implicit) scaling in Kaczmarz’s al-
gorithm (1.2) and the block-Kaczmarz method (2.3).

It is easily seen that algorithm (1.2) is a special case of algorithm (2.3), with
L=1, assuming that the rows of A have been scaled to have length one. In-
stead of system (1.1) we have the system

DAx=Db (4.1)
where D is a diagonal matrix with
D, ;=la)~"', 1ZiZm, (4.2)

cf. the discussion at the end of Sect. 2. Now Theorem 1 says that z*=lim x*(1)
equals -0

z*=(DA)' Db+ (I —(DA)" (D A))x°. 4.3)
It follows that
ATD?Az*=ATD?b, (4.4)

ie., z* is a weighted least squares solution of the system Ax=>b. From (4.2) it is
seen that z* minimizes the sum of the squares of the (Euclidean) distances to
the hyperplanes determined by the equations of the system.
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Observe that since D is nonsingular #(A” D)=2R(A"), so if x°e#(47), e.g.,

x°=0, then (4.3) is equivalent to
z*=(DA)' Db, 4.5)

and z* is the minimum norm weighted least squares solution.
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