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Abstract. Aperture-based inverse planning (ABIP) for intensity modulated radiation therapy (IMRT) treat-
ment planning starts with external radiation fields (beams) that fully conform to the target(s) and then su-
perimposes sub-fields called segments to achieve complex shaping of 3D dose distributions. The segments’
intensities are determined by solving a feasibility problem. The least-intensity feasible (LIF) solution, pro-
posed and studied here, seeks a feasible solution closest to the origin, thus being of least intensity or least
energy. We present a new iterative, primal–dual, algorithm for finding the LIF solution and explain our
experimental observation that Cimmino’s algorithm for feasibility actually converges to a close approxima-
tion of the LIF solution. Comparison with linear programming shows that Cimmino’s algorithm has the
additional advantage of generating much smoother solutions.

1. Introduction

A recently proposed technique for intensity modulated radiation therapy (IMRT) treat-
ment planning has been investigated by Xiao et al. in [45]. This is a rule-based method
that starts by choosing beams that conform to the entire target or set of targets. The
orientation or direction of the beams are user-selected as are any beam modifiers such as
wedges that can slant the dose distribution relative to a perpendicular entry surface.

The rules add sub-fields (called segments) to these fully conformal beams to create
dose distributions that follow irregular surfaces of a target and allow for different dose
levels for a combination of targets. Successful implementation of this approach requires
solving the inverse problem to determine the intensities of these segments. (We inten-
tionally use here the term “intensity” instead of “weight”, which is commonly used in
this field, because “weights of importance” appear later on, with a different meaning,
in our algorithms.) This approach, which we call here aperture-based inverse plan-
ning (ABIP), simplifies the computational burden associated with the inverse problem
of a fully discretized model where the radiation field is represented by beamlets (i.e.,
pencil-beams or rays resulting from the disceretization of beams). The inverse problem
of a fully discretized model in IMRT has been formulated and solved as a mathematical
feasibility problem by Altschuler and Censor [2] and further developed by Altschuler,
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Censor and Powlis in [4,15,16,20,41] and [42]. See also [3], Censor [14] and Censor
and Zenios [21, chapter 11]. For a recent review see, e.g., Shepard et al. [43].

The ABIP approach ameliorates many of the shortcomings of the inverse planning
with a fully discretized model and may well satisfy the critics who claim that beamlets
models are unrealistic, that the computational burden of inverse planning is too severe,
or that the number of beams required is too great. The encouraging results with the
ABIP problem, presented in this paper, constitute an advance toward clinical acceptance
of inverse planning.

In either ABIP or the fully discretized model the situation is modelled as a prob-
lem of solving a system of linear interval inequalities, referred to as the linear interval
feasibility problem. One approach to finding a solution of such systems, that has been
proven efficacious in solving the fully discretized inverse problem of radiation therapy
treatment planning (RTTP), is to use iterative projection algorithms, preferably of the
simultaneous type, to generate a sequence of approximate vectors of intensities converg-
ing to a solution of the system, e.g., Censor, Altschuler and Powlis [15,16], Lee et al.
[38], Cho and Marks II [22], see also Censor and Zenios [21, chapter 11] and references
therein.

In this paper we investigate algorithms for finding the least-intensity feasible (LIF)
solution of the linear interval feasibility problem, i.e., a solution of the model’s linear
interval constraints which has the least possible intensities of the segments, in the sense
of being as close as possible to the origin in the intensity vectors’ space. While aiming
at such a solution is, from the mathematical point of view, a mathematical optimization
problem, the feasibility approach flavor is preserved because no exogenous merit (cost)
function – whose merit might be debateable – is imposed on the constraints. Rather
we are just doing the very reasonable thing of searching for a feasible solution for the
model’s constraints with least possible intensities because there is really no reason to
settle for an arbitrary feasible solution if there is one available which uses less intensities
for the segments.

It turns out that on the algorithmic side such a least-intensity feasible (LIF) solu-
tion can be achieved with a simultaneous projections algorithm whose computational
demands are not much higher then those of the well-known Cimmino algorithm which
finds an arbitrary feasible solution. We present this newly developed algorithm and dis-
cuss its origins and merits. Then we demonstrate the viability of all the proposed ingre-
dients: (i) the aperture-based inverse planning method, (ii) the linear interval feasibility
problem modeling, and (iii) the new algorithm for finding a LIF solution.

Our computational experimental work revealed a surprise which went unnoticed in
the literature about the use of Cimmino’s algorithm in RTTP until now. Namely, that
the well-known iterative algorithm of Cimmino, when initialized at the origin, yields a
solution which repeatedly is very close to a LIF solution. We give a mathematical jus-
tification for this phenomenon in the appendix. Finally, comparing the results obtained
by Cimmino’s algorithm with those obtained with the SIMPLEX method of Linear Pro-
gramming (LP) shows the greater smoothness of the results obtained by Cimmino’s al-
gorithm.
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The paper is laid out as follows. The ABIP method for IMRT is presented in sec-
tion 2. Section 3 is a brief introductory overview on projection algorithms in general
while in section 4 the linear feasibility model for the ABIP approach is formulated and
the fully simultaneous Cimmino algorithm for its solution is given. The LIF solution
and the new primal–dual algorithm for finding it are presented in section 5. Representa-
tive results from our experimental computational work are given in section 6 and some
concluding remarks are contained in section 7. At the end we give an appendix where
the similar behavior of Cimmino’s and the LIF algorithms is mathematically explained.

2. Aperture-based inverse planning (ABIP) for IMRT

The basic difference between the inverse problem of a fully discretized model and the
aperture-based inverse planning approaches in IMRT lies in the way the external ra-
diation is accounted for in the model. In the fully discretized approach many small
elemental beams (called beamlets) projecting to various points covering the target(s) are
considered in the model. In fact, for the beam directions (different treatment unit orienta-
tions) and elemental beam size chosen to solve the problem, all beamlets that completely
or partially impinge on the target(s) are included in the model. The model attaches an
unknown value xi to the intensity of each beamlet and, because of the dense coverage
of beams and their fine discretization into beamlets, the total number I of unknowns is
very large.

In contrast, ABIP restricts the number of total beams used for the intensity opti-
mization by first considering a single aperture that conforms to all the targets as a single
beam. This is done for each orientation of the treatment unit and results in just a few
fields (about 4–12). A relatively small number of additional aperture shapes are se-
lected to define field segments of reduced size that superimpose on the fields defined by
the initial conformal apertures. This is done in a non-automatic manner in which hu-
man judgement is involved to place the beams and define the segments. The feasibility
or optimization problem then becomes one of finding the intensities of the conformal
fields and the superimposed segments. This approach significantly reduces the size of
the intensities vector x compared to the fully discretized method. It also simplifies the
overall problem since a second step must be added to the beamlet-based approach. This
involves consolidation of beamlets of various intensities into a smaller number of deliv-
erable apertures of larger size. The radiation field segments are defined according to the
following guidelines.

Definition 1. Guidelines for segment selection in ABIP:

1. Select a field that conforms to the combined outline of all targets projected back to
the radiation point source, and repeat for all orientations of the treatment unit.

2. Select a field that conforms to the projection of the boost volume back to the
radiation point source, and repeat for all orientations of the treatment unit. The boost
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Figure 1. A six beams arrangement for treatment of prostate cancer.

volume is the portion of the target that is to receive a higher dose compared to regions
of the target taken to the lowest dose.

3. Repeat step 2 for regions of the target that are to receive the next higher level of dose.

4. For every critical structure lying in the path of the conformal beam of the complete
target, select a field segment that conforms to the target but fully shields the critical
structure.

5. Repeat the previous step for the field segments that encompass each of the volumes
receiving higher dose.

6. Select, for the complete target, extra segments to adjust for the dose inhomogeneity
that results from shielding critical structures that do not run along the whole length
of the target.

The first step in the procedure produces a number of apertures that is equal to the
number of pre-selected beam orientations. This is also true for steps 2 and 3. The fourth
step adds many more field segments. This number is at least equal to the number of
orientations of the treatment unit multiplied by the number of critical structures falling
within the aperture and requiring protection. Other factors can increase this number
even more. For treatment planning of an oropharyngeal cancer case, with two critical
structures (the right parotid, and the spinal cord), the number of segments we obtained
by using the guidelines of definition 1 was 99, i.e., 9 superimposed segments per each
of the pre-chosen 11 gantry angles, see Galvin et al. [31]. This number of segments was
needed because the computer driven device used to define field shapes (called multileaf



VTEX(P) PIPS No:5115484 artty:res (Kluwer BO v.2002/10/03)

a5115484.tex; 24/02/2003; 16:03; p. 5

LEAST-INTENSITY FEASIBLE SOLUTION 187

Figure 2. Dose distribution represented by isodose curves for treatment of prostate cancer case, as calculated
by using the ABIP model and Cimmino’s algorithm.

collimator, MLC) was limited in its ability to adapt to some aperture shapes. For treat-
ment plans of prostate cancer, with bladder and rectum as the critical organs that have to
be avoided, the total number of segments is usually in the range of 50–60.

We use here a case of prostate cancer treatment as an illustration of the complete
process. We start with six beam angles at 45◦, 90◦, 135◦, 225◦, 270◦, and 315◦, as shown
in figure 1. The tumor that needs to be treated is in the prostate (center organ) and the
seminal vesicles (the two protruding structures on left and right sides). The organs to
be avoided are the rectum (underneath) and the bladder (above). For each of the beam
angles, beam apertures are chosen by applying the guidelines of definition 1. The dose
distribution due to a unit intensity radiation from each segment is calculated by a state-
of-the-art dose calculation algorithm and the segment’s intensity is computed by the
various optimization techniques described in this study. The aim is to create treatment
plans that conform to the tumor yet spare critical structures as much as possible. Figure 2
shows a CT (Computed Tomography) cross-section with the resulting isodose curves
superimposed. Notice the concavity of the isodose that closely avoids the rectum from
underneath.

3. Projection algorithms: A brief overview

As an introduction to the algorithmic part of this paper we give a brief overview of
projection algorithms for the convex feasibility problem. Projection algorithms employ
projections onto convex sets in various ways. They may use different kinds of projections
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and, sometimes, even use different projections within the same algorithm. They serve to
solve a variety of problems which are either of the feasibility or the optimization types.
They have different algorithmic structures, of which some are particularly suitable for
parallel computing, and they demonstrate nice convergence properties and/or good initial
behavior patterns. This class of algorithms has witnessed great progress in recent years
and its member algorithms have been applied with success to fully discretized models of
problems in image reconstruction and image processing, see, e.g., Stark and Yang [44]
and Censor and Zenios [21].

The convex feasibility problem is to find a point (any point) in the non-empty inter-
section C := ⋂m

i=1 Ci �= ∅ of a family of closed convex subsets Ci ⊆ Rn, 1 � i � m, of
the n-dimensional Euclidean space. It is a fundamental problem in many areas of math-
ematics and the physical sciences, see, e.g., Combettes [24,26] and references therein.
It has been used to model significant real-world problems in image reconstruction from
projections, see, e.g., Herman [33], in radiation therapy treatment planning, see Censor,
Altschuler and Powlis [16] and Censor [14], and in crystallography, see Marks, Sinkler
and Landree [40], to name but a few, and has been used under additional names such
as set theoretic estimation or the feasible set approach. A common approach to such
problems is to use projection algorithms, see, e.g., Bauschke and Borwein [6], which
employ orthogonal projections (i.e., nearest point mappings) onto the individual sets Ci.

The orthogonal projection P�(z) of a point z ∈ Rn onto a closed convex set � ⊆ Rn is
defined by

P�(z) := argmin
{‖z − x‖2 | x ∈ �

}
, (1)

where ‖·‖2 is the Euclidean norm in Rn. Frequently a relaxation parameter is introduced
so that

P�,λ(z) := (1 − λ)z + λP�(z) (2)

is the relaxed projection of z onto � with relaxation λ.
Another problem that is related to the convex feasibility problem is the best approx-

imation problem of finding the projection of a given point y ∈ Rn onto the non-empty in-
tersection C := ⋂m

i=1 Ci �= ∅ of a family of closed convex subsets Ci ⊆ Rn, 1 � i � m,

see, e.g., Deutsch’s recent book [27]. In both problems the convex sets {Ci}mi=1 represent
mathematical constraints obtained from the modeling of the real-world problem. In the
convex feasibility approach any point in the intersection is an acceptable solution to the
real-world problem whereas the best approximation formulation is usually appropriate
if some point y ∈ Rn is given and one wishes to find the point in the intersection of the
convex sets which is closest to the point y.

Iterative projection algorithms for finding a projection of a point onto the intersec-
tion of sets are more complicated then algorithms for finding just any feasible point in
the intersection. This is so because they must have, in their iterative steps, some built-in
“memory” mechanism to remember the original point whose projection is sought af-
ter. The sequential or parallel algorithms of Dykstra, see, e.g., Bregman, Censor and
Reich [11], Haugazeau, see, e.g., Bauschke and Combettes [8], Bauschke [5] and others
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and their modifications employ different such memory mechanisms. We will not deal
with these algorithms here although many of them share the same algorithmic structural
features described below.

Projection algorithmic schemes for the convex feasibility problem or for the best
approximation problem are, in general, either sequential or simultaneous or block-
iterative (see, e.g., Censor and Zenios [21] for a classification of projection algorithms
into such classes, and the review paper of Bauschke and Borwein [6] for a variety of
specific algorithms of these kinds). In the following subsections we explain and demon-
strate these structures along with the recently proposed string-averaging structure. The
philosophy behind these algorithms is that it is easier to calculate projections onto the
individual sets Ci then onto the whole intersection of sets. Thus, these algorithms call
for projections onto individual sets as they proceed sequentially, simultaneously or in
the block-iterative or the string-averaging algorithmic modes.

3.1. Sequential projections

The well-known “Projections Onto Convex Sets” (POCS) algorithm for the convex fea-
sibility problem is a sequential projection algorithm, see Bregman [9], Gubin, Polyak
and Raik [32], Youla [46] and the review papers by Combettes [24,26]. Starting from an
arbitrary initial point x0 ∈ Rn, the POCS algorithm’s iterative step is

xk+1 = xk + λk
(
PCi(k)

(
xk
)− xk

)
, (3)

where {λk}k�0 are relaxation parameters and {i(k)}k�0 is a control sequence, 1 �
i(k) � m, for all k � 0, which determines the individual set Ci(k) onto which the
current iterate xk is projected. A commonly used control is the cyclic control in which
i(k) = k mod(m + 1), but other controls are also available [21]. Bregman’s projection
algorithm [10], allowed originally only unrelaxed projections, i.e., its iterative step is of
the form

xk+1 = PCi(k)

(
xk
)
, for all k � 0. (4)

For unity relaxation, i.e., when λk = 1, for all k � 0, (4) coincides with (3).

3.2. The string averaging algorithmic structure

The string-averaging algorithmic scheme was proposed by Censor, Elfving and Herman
[17], from where the contents of this subsection is taken. For t = 1, 2, . . . ,M, let the
string It be an ordered subset of {1, 2, . . . , m} of the form

It = (
it1, i

t
2, . . . , i

t
m(t)

)
, (5)

with m(t) denoting the number of elements in It . Suppose that there is a set S ⊆ Rn

such that there are operators R1, R2, . . . , Rm mapping S into S and an operator R which
maps SM = S × S × · · · × S (M times) into S. Initializing the algorithm at an arbitrary
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x0 ∈ S, the iterative step of the string-averaging algorithmic scheme is as follows. Given
the current iterate xk , calculate, for all t = 1, 2, . . . ,M,

Ttx
k = Rit

m(t)
· · ·Rit2

Rit1
xk, (6)

and then calculate

xk+1 = R
(
T1x

k, T2x
k, . . . , TMxk

)
. (7)

For every t = 1, 2, . . . ,M, this algorithmic scheme applies to xk successively the
operators whose indices belong to the t th string. This can be done in parallel for all
strings and then the operator R maps all end-points onto the next iterate xk+1. This
is indeed an algorithm provided that the operators {Ri}mi=1 and R all have algorithmic
implementations. In this framework we get a sequential algorithm by the choice M = 1
and I1 = (1, 2, . . . , m) and a simultaneous algorithm by the choice M = m and It =
(t), t = 1, 2, . . . ,M.

We demonstrate the underlying idea of the string-averaging algorithmic scheme
with the aid of the drawings in table 1. For simplicity, we take the convex sets to be
hyperplanes, denoted by H1,H2,H3,H4,H5, and H6, and assume all operators Ri to
be orthogonal projections onto the hyperplanes. The operator R is taken as a convex
combination

R
(
x1, x2, . . . , xM

) =
M∑
t=1

ωtx
t , (8)

with ωt > 0, for all t = 1, 2, . . . ,M, and
∑M

t=1 ωt = 1.
Table 1 contains four figures that help to explain the different methods. Table 1(a)

depicts the purely sequential algorithm. This is the so-called POCS (Projections Onto
Convex Sets) algorithm which coincides, for the case of hyperplanes, with the Kaczmarz
algorithm, see, e.g., algorithms 5.2.1 and 5.4.3, respectively, in [21]. The fully simulta-
neous algorithm appears in table 1(b). With orthogonal reflections instead of orthogonal
projections it was first proposed, by Cimmino [23], for solving linear equations. Here
the current iterate xk is projected on all sets simultaneously and the next iterate xk+1

is a convex combination of the projected points. In table 1(c) we show how a simple
averaging of successive projections (as opposed to averaging of parallel projections in
table 1(b)) works. In this case M = m and It = (1, 2, . . . , t), for t = 1, 2, . . . ,M.
This scheme, appearing in Bauschke and Borwein [6], inspired the formulation of the
general string-averaging algorithmic scheme whose action is demonstrated in table 1(d).
It averages, via convex combinations, the end-points obtained from strings of sequential
projections and in this figure the strings are I1 = (1, 3, 5, 6), I2 = (2), I3 = (6, 4).
Such schemes offer a variety of options for steering the iterates towards a solution of
the convex feasibility problem. It is an inherently parallel scheme in that its mathemat-
ical formulation is parallel (like the fully simultaneous method mentioned above). We
use this term to contrast such algorithms with others which are sequential in their math-
ematical formulation but can, sometimes, be implemented in a parallel fashion based
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Table 1
(a) Sequential projections. (b) Fully simultaneous projections. (c) Averaging of sequential projections.

(d) String-averaging. (Reproduced from Censor, Elfving and Herman [17].)

(a) (b)

(c) (d)

on appropriate model decomposition (i.e., depending on the structure of the underlying
problem). Being inherently parallel, this algorithmic scheme enables flexibility in the
actual manner of implementation on a parallel machine. At the extremes of the “spec-
trum” of possible specific algorithms, derivable from the string-averaging algorithmic
scheme, are the generically sequential method, which uses one set at a time, and the
fully simultaneous algorithm, which employs all sets at each iteration.

The “block-iterative projections” (BIP) scheme of Aharoni and Censor [1] also
has the sequential and the fully simultaneous methods as its extremes in terms of block
structures (see also Butnariu and Censor [12], Bauschke and Borwein [6], Bauschke,
Borwein and Lewis [7], Elfving [30] and Eggermont, Herman and Lent [29]). The
string-averaging algorithmic structure gives users a tool to design many new inherently
parallel computational schemes.

The behavior of the string-averaging algorithmic scheme, or special instances of
it, in the inconsistent case when the intersection C = ⋂m

i=1Ci is empty is not known at
this time. For results on the behavior of the fully simultaneous algorithm with orthogonal
projections in the inconsistent case see, e.g., Combettes [25] or Iusem and De Pierro [36].
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4. The linear feasibility model and projection algorithms for ABIP

We describe next how the aperture-based inverse problem leads to a linear feasibility
problem and review the formulations of the sequential row-action relaxation method
of Agmon, Motzkin and Schoenberg, called the AMS method, and the simultaneous
projections method of Cimmino, called the CIM method, see, e.g., Censor [14] or Censor
and Zenios [21, chapter 11]. Assume that the three-dimensional (3D) volume of interest
includes Q pre-identified target regions, denoted by {Tq | q = 1, 2, . . . ,Q}, for radiation
treatment and that the lower bounds for the required dose to be deposited in target region
Tq is tq . The volume of interest also includes S pre-identified critical organs, denoted by
{Cs | s = 1, 2, . . . , S}, that should be spared by observing upper bounds of permissible
doses cs in organs Cs . The reminder of the volume constitutes the complimentary tissue,
denoted by M, which is allowed to absorb not more then m dose units. This volume
of interest is discretized into a Cartesian grid of J voxels (pixels – in two-dimensions)
and the voxels are numbered (in an agreed manner) by j = 1, 2, . . . , J . Depending on
whether a voxel is inside a target (tumor) or inside a critical organ the total dose absorbed
in it must lie above or below the lower or upper prescribed dose bounds, respectively.

The modelling also assumes that the radiation, delivered from outside sources,
propagates along lines and that the whole volume of interest is covered by I segments,
from which radiation emanates, chosen according to the guidelines, as explained in sec-
tion 2. The segments are indexed (in an agreed manner) by i = 1, 2, . . . , I , and their
intensities xi , arranged in a vector x = (xi)

I
i=1 ∈ RI in the I -dimensional Euclidean

space RI , are the unknowns of the problem. Next we assume that a state-of-the-art for-
ward calculation program is available which calculates, based on the geometry of the
segments and on the known geometry and biology of the structures in the volume of
interest, for each segment i and every voxel j , the quantity aij which is the dose ab-
sorbed (uniformly) in voxel j due to radiation of unit intensity emanating from the ith
segment.

Then the basic linear feasibility problem associated with recovering the segments
intensities vector x = (xi)

I
i=1 is

I∑
i=1

aij xi � cs, for all j ∈ Cs, s = 1, 2, . . . , S, (9)

tq �
I∑

i=1

aij xi, for all j ∈ Tq, q = 1, 2, . . . ,Q, (10)

I∑
i=1

aij xi � m, for all j ∈ M, (11)

xi � 0, for all i = 1, 2, . . . , I. (12)
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Such a linear feasibility problem can be rearranged to the general form

I∑
i=1

aij xi � dj , for all j = 1, 2, . . . , J, (13)

which can also be rewritten as〈
aj , x

〉
� dj , for all j = 1, 2, . . . , J, (14)

where aj = (aij )
I
i=1 ∈ RI is an I -dimensional vector and 〈aj , x〉 := ∑I

i=1 aij xi is the
inner product in RI . The nonnegativity constraints (12) can be either subsumed in the
system (14) or handled separately by any iterative projections algorithm applied to the
problem.

The sequential iterative projections method of AMS for this problem (14) is as
follows, see, e.g., [21, algorithm 5.4.2]. It can be viewed also as a special case (for
half-spaces) of the well-known method of Projections Onto Convex Sets (POCS) (see,
e.g., Stark and Yang [44]) which was used in RTTP by Censor, Altschuler and Powlis
[15] and by Lee et al. [38]. The POCS method is in itself a sequential realization of the
block-iterative projection (BIP) method of Aharoni and Censor [1] which allows variable
blocks of constraints to be processed as the algorithm proceeds.

Algorithm 1. The AMS algorithm.

Initialization: x0 ∈ RI is arbitrary.
Iterative step: Given xk, calculate the next iterate xk+1 by the formula

xk+1 = xk + σka
j (k), (15)

where

σk = min

(
0, λk

dj (k) − 〈aj(k), xk〉
‖aj(k)‖2

)
, (16)

and go back to the beginning of the Iterative step.
Relaxation parameters: λk are real numbers such that ε � λk � 2 − ε, for all k � 0,

with some arbitrarily small but fixed ε > 0.
Control sequence: The sequence of indices {j (k)}k�0 is cyclic, meaning that

j (k) = k mod(J + 1), for all k � 0.

The simultaneous projections method of Cimmino for problem (14) is as follows,
see, e.g., Bauschke and Borwein [6, example 6.30], or consult [21, algorithm 5.6.2].

Algorithm 2. Cimmino’s algorithm (CIM).

Initialization: x0 ∈ RI is arbitrary.
Weights of importance: These are user-chosen positive real numbers ωj > 0, for all

j = 1, 2, . . . , J, with
∑J

j=1 ωj = 1.
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Iterative step: Given xk, calculate the next iterate xk+1 by the formula

xk+1 = xk + λk

J∑
j=1

ωjσj
(
xk
)
aj , (17)

where

σj
(
xk
) = min

(
0,

dj − 〈aj , xk〉
‖aj‖2

)
, (18)

and go back to the beginning of the Iterative step.
Relaxation parameters: λk are real numbers such that ε � λk � 2 − ε, for all k � 0,

with some arbitrarily small but fixed ε > 0.

The main advantage of Cimmino’s algorithm (CIM) over the sequential AMS
method is that it converges regardless of the consistency of the system of inequali-
ties (14). In the inconsistent case, when there is no solution to the system, the CIM algo-
rithm still generates convergent sequences {xk}k�0 of segment intensities which converge
to a minimum value of a proximity function which measures the weighted (according to
the chosen weights of importance) sum of the squares of the distances to all violated
inequalities of the system. In addition, CIM is an inherently parallel algorithm, see,
e.g., Butnariu, Censor and Reich [13], whose operations can be performed on a parallel
computer. Acceleration of CIM can also be achieved by using its recent modification
called Component Averaging (CAV) of Censor, Gordon and Gordon [18], see also [19].

5. The algorithm for the least-intensity feasible (LIF) solution

A single linear inequality in (14) (related to a single voxel in the cross-section) defines a
set of points in the space RI of all segments intensities vectors, namely, the half-space

Lj = {
x | 〈aj , x〉 � dj

}
(19)

and equation (14) calls for finding a feasible point in the intersection L = ⋂J
j=1 Lj .

We propose to steer the solution process of the linear feasibility problem not to just
any feasible point but to a feasible point which is closest to the origin of the space.
This means that while not imposing an exogenous merit function, whose use might be
debateable, we want to find a feasible vector x of segments’ intensities whose Euclidean
norm ‖x‖ will be the smallest possible from amongst all feasible vectors. The physical
meaning is that the segments’ intensities (energies) will be the smallest possible – subject
to the constraints of the problem, and we call such a vector the least-intensity feasible
(LIF) solution of the problem. A graphical illustration of such a vector is depicted in
figure 3.

We reformulate the problem slightly and put equations (9)–(12) in the form of an
interval linear feasibility problem

lj �
〈
aj , x

〉
� uj , for all j = 1, 2, . . . , J, (20)
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Figure 3. Graphical illustration of the least-intensity feasible (LIF) solution.

where lj and uj are lower and upper bounds on the value of the j th inner product (i.e.,
on the dose absorbed in the j th voxel). We propose to use a novel development of the
primal–dual simultaneous Hildreth projections method which we now describe. Along
with the segments intensities vectors {xk}k�0 the proposed algorithm keeps track and
updates a sequence of dual vectors {zk}k�0, where zk = (zkj )

J
j=1 ∈ RJ . Before stating

the algorithm we define an operation called “mid”. Given any triplet of real numbers
a, b and c, their mid is that member of the triplet which lies in-between the other two,
i.e.,

mid(a, b, c) :=


a, if b � a � c, or if c � a � b,

b, if a � b � c, or if c � b � a,

c, if a � c � b, or if b � c � a.

(21)

Algorithm 3. The primal–dual algorithm for the LIF solution (LIF).

Initialization: x0 ∈ RI is arbitrary and z0 = 0 is the zero vector in RJ .
Weights of importance: These are user-chosen positive real numbers ωj > 0, for all

j = 1, 2, . . . , J , with
∑J

j=1 ωj = 1.
Iterative step: Given xk and zk, calculate the next primal iterate xk+1 and the next dual

iterate zk+1 by doing the following two steps:

(i) Correction factor calculation:
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For all j = 1, 2, . . . , J , compute the numbers

αk
j = uj − 〈aj , xk〉

‖aj‖2
, (22)

βk
j = lj − 〈aj , xk〉

‖aj‖2
, (23)

and

γ k
j = mid

(
zkj

ωj

, αk
j , β

k
j

)
. (24)

(ii) Update of primal and dual vectors:

xk+1 = xk + λk

J∑
j=1

ωjγ
k
j a

j , (25)

zk+1
j = zkj − ωjγ

k
j , for all j = 1, 2, . . . , J, (26)

and go back to the beginning of the Iterative step.

Relaxation parameters: λk are real numbers such that ε � λk � 2 − ε, for all k � 0,
with some arbitrarily small but fixed ε > 0.

This primal–dual algorithm, which we nickname LIF, is simultaneous in nature
(like Cimmino’s algorithm) and we construct it by merging together two algorithmic
structures. The first is the algorithmic structure of Iusem and De Pierro [37] for com-
puting projections on polyhedra which is basically a simultaneous version of Hildreth’s
sequential algorithm for norm minimization over linear inequalities, see Hildreth [35],
Lent and Censor [39] or Censor and Zenios [21, algorithm 6.5.2]. The second structure is
that of the sequential, norm-minimizing, image reconstruction algorithm of Herman and
Lent [34] called ART4 (Algebraic Reconstruction Technique 4) which handles in a spe-
cial effective manner interval inequalities. A formal proof of convergence of algorithm 4
will be published elsewhere.

6. Experimental results

We applied both LIF and CIM algorithms to several clinical problems, including treat-
ment planning of prostate cancer and head and neck cancer cases. All algorithmic runs
were initiated at zero intensities, i.e., x0 = 0. The total grid numbers for the prostate
case presented here are 487 points for the prostate PTV, 1558 and 153 for the adjacent
portions of bladder and rectum, respectively. The resolution for the dose calculation is
5 mm/grid. We found that both algorithms converge in approximately the same manner
as shown by the convergence plots of norm values versus iteration index. Figure 4 shows
the convergence patterns of the algorithms for a typical treatment plan of prostate cancer.
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Figure 4. Comparison of Euclidean norm values versus iteration number for the CIM and LIF algorithms
in a prostate cancer treatment planning with the ABIP model.

The resulting dose distributions for both algorithms are very similar and the small
differences seen are considered clinically insignificant. Figure 5 shows the cumulative
dose–volume histogram (% of the volume of a structure receiving a particular dose or
less) resulting from the treatment plans with the segments’ intensities obtained from
these algorithms. For target coverage listed as either the Gross Tumor Volume (GTV)
alone or the Planning Target Volume (PTV) that includes various margins to allow for
uncertainties in the location of disease and/or daily setup variations, the resulting curves
are basically superimposed. For critical healthy structures like the bladder and rectum
that are positioned near the target, the dose–volume histograms included in the figure
show that doses well below the target dose are achievable. This is the case for both of
the algorithms.

7. Conclusion

In this paper we have demonstrated the viability of the ABIP method for IMRT. By start-
ing with external radiation fields that fully conform to the targets and then superimpos-
ing some, carefully chosen, sub-fields, the method enables us to use iterative projection
algorithms to solve the resulting inverse problem. With such pre-set segments we do
not need to apply any further computational process such as is required when the fully
discretized beamlet oriented inverse planning approach is taken.

The connection between algorithm 4 and Cimmino’s algorithm reveals that the lat-
ter’s solution (if initialized at the zero vector) may be construed in terms of approaching
the intensity vector with the smallest norm (energy) if the problem is feasible. In the
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Figure 5. Dose–volume histograms (DVH) comparing LIF and CIM solutions for a treatment plan of a
prostate cancer case.

infeasible case the solution approaches the intensity vector with smallest norm amongst
the members of the set G of minimizers of the proximity function of (A.8). So, in a
way, the solution complies with a least intensity criterion that does not manifest itself
but remains hidden in the computations. It turns out that this feature is salutary for the
radiotherapy treatment planning problem since it reduces the total beam-on time, thus
reducing leakage radiation hazards. Another advantage of Cimmino’s algorithm is its
inherent parallelism that allows one to implement it on multi-processor systems either in
multithreaded environment or on computer clusters.

The modelling with the ABIP method allows the use of a relatively small number
of segments and this benefits the treatment itself by improving the accuracy and quality
of the treatment plan delivery.

Appendix: Cimmino’s algorithm as an approximate LIF solver

The discovery that Cimmino’s algorithm 2 always generated in our experimental compu-
tational work, when initialized at zero, solutions that were surprisingly good approxima-
tions of the LIF solution can be explained and put on firm mathematical ground. To do
so we need to look at a class of algorithms which find the projection of a given point onto
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the intersection of finitely many given closed and convex sets in the Euclidean space RI .
Such algorithms have recently attracted much attention, see, e.g., Bregman, Censor and
Reich [11] and references therein. Let us look at the algorithm studied by Combettes in
[25, theorem 5]. The projection of a point z ∈ RI onto the half-space Lj is given by

PLj
(z) = z + aj · min

(
0,

dj − 〈aj , z〉
‖aj‖2

)
. (A.1)

Letting the convex sets be half-spaces of the form (19) and rewriting the algorithm stud-
ied by Combettes in our notations yields the following algorithm.

Algorithm 4.

Initialization: x0 ∈ RI is arbitrary.
Weights of importance: These are user-chosen nonnegative real numbers ωj � 0, for

all j = 1, 2, . . . , J, with
∑J

j=1 ωj = 1.
Iterative step: Given xk, calculate the next iterate xk+1 by the formula

xk+1 = (1 − αk)x
0 + αk

(
λ

J∑
j=1

ωjσj
(
xk
)
aj + (1 − λ)xk

)
, (A.2)

where

σj
(
xk
) = min

(
0,

dj − 〈aj , xk〉
‖aj‖2

)
, (A.3)

and go back to the beginning of the Iterative step.
Relaxation parameter: λ is a real constant such that 0 < λ � 2, for all k � 0.
Steering parameters: αk are real numbers such that αk ∈ [0, 1) for all k � 0, for which

the following conditions hold:

lim
k→∞ αk = 1, (A.4)

∞∑
k=0

(1 − αk)= +∞, (A.5)

and

lim
k→∞

(αk+1 − αk)(1 − αk+1)
−2 = 0. (A.6)

We introduce here the term steering parameters for the elements of the sequence
{αk}k�0 (the term was not used in [25] or elsewhere in this context) to distinguish them
from the relaxation parameters and to reflect the effect of these parameters on the behav-
ior of the sequence of iterates {xk}k�0 generated by this algorithm. Although the user
is free to choose them in the interval [0, 1), they are not otherwise free (like relaxation
parameters are) but have to fulfill the three conditions (A.4)–(A.6). Condition (A.4), in
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Figure 6. Comparison of intensities for 9 segments (indexed from 1 to 9) of one beam obtained by Ciminno’s
algorithm, by the LIF algorithm and by a linear programming package demonstrate the greater smoothness

of Cimmino’s solution and the LIF solution.

particular, steers the next iterate further away from x0 as the iterations proceed. Algo-
rithm 4 is a simultaneous projection algorithm which, according to Combettes [25, the-
orem 5], has the property that every sequence {xk}k�0 generated by it converges (in RI )
to the projection of x0 onto the intersection

⋂J
j=1 Lj if this intersection is nonempty.

Otherwise, it converges to the projection of x0 onto the set

G = {
x | ,(x) � ,(y), for all y ∈ RI

}
, (A.7)

of minimizers of the proximity function

,(y) := 1

2

J∑
j=1

ωjd(y, Lj )
2 (A.8)

where the Euclidean distance between a point y and the half-space Lj is given by
d(y, Lj ) = ‖y − PLj

(y)‖ and ωj are the weights of importance used in the algorithm.
This set G is actually the set of all weighted least-squares solutions in case the intersec-
tion

⋂J
j=1 Lj is empty.

The technical condition in Combettes’ theorem 5 requiring that one of the closed
convex sets to which the algorithm is applied is bounded, is present only to guarantee
that G is not empty (see [25, proposition 7]). In our case of half-spaces no set is bounded
(by the very nature of half-spaces), so we have to assume that G is non-empty.
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The surprising fact that the well-known (and often-used in this field) iterative al-
gorithm of Cimmino generated in our experiments a solution that was repeatedly a very
close approximation to the LIF solution can be explained in the light of algorithm 4 as
follows. When we solve the fully-discretized model or the ABIP problem we invariably
initialize the algorithm with x0 = 0. Using this initial point in algorithm 4 and a relax-
ation parameter λ = 2, and applying algorithm 4 with any permissible sequence {αk}k�0

shows that in the iterative step (A.2) only the second summand remains (because x0 = 0)
and the closer αk gets to the value one (by (A.4)) the closer the whole expression of (A.2)
gets to the formula (17) of Cimmino’s algorithm 2. For the history of algorithm 4 and
further references consult Deutsch and Yamada [28].

The fact that Cimmino’s algorithm yields a good approximation of the least-
intensity feasible vector is a very desirable feature. Another desirable property is demon-
strated by the observation that the Cimmino algorithm also generates smooth intensity
distributions in the process of solving inverse planning problems. Irregularity of the
intensity vector, characterized by large variations of neighboring segments’ intensities
has the disadvantage of being generally more difficult to deliver in practice with suffi-
cient accuracy and that it is more vulnerable to patient positioning inaccuracy and other
positioning uncertainties. Smooth segments’ intensity patterns are closer to the conven-
tional open or wedged beams, therefore, more easily acceptable and implementable in
the clinical environment. Figure 6 shows the smooth pattern of the vector obtained from
Cimmino’s algorithm as compared with that from the SIMPLEX method of linear pro-
gramming approach using the “phase one” of the algorithm for finding a feasible point.
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