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Abstract

We propose the split common fixed point problem that requires
to find a common fixed point of a family of operators in one space
whose image under a linear transformation is a common fixed point
of another family of operators in the image space. We formulate and
analyze a parallel algorithm for solving this split common fixed point
problem for the class of directed operators and note how it unifies and
generalizes previously discussed problems and algorithms.

1 Introduction

In this paper we propose a new problem, called the split common fixed point
problem (SCFPP), and study it for the class of directed operators T such
that T−I is closed at the origin. These operators were introduced and inves-
tigated by Bauschke and Combettes in [3, Definition 2.2] and by Combettes
in [16], although not called by this name. We present a unified framework
for the study of this problem and class of operators and propose iterative al-
gorithms and study their convergence. The SCFPP is a generalization of the
split feasibility problem (SFP) and of the convex feasibility problem (CFP).
The class of directed operators is an important class since it includes the
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orthogonal projections and the subgradient projectors, and we also supply
an additional operator from this class.
The split common fixed point problem (SCFPP) requires to find a common

fixed point of a family of operators in one space such that its image under a
linear transformation is a common fixed point of another family of operators
in the image space. This generalizes the convex feasibility problem (CFP), the
two-sets split feasibility problem (SFP) and the multiple sets split feasibility
problem (MSSFP).

Problem 1 The split common fixed point problem.
Given operators Ui : RN → RN , i = 1, 2, . . . , p, and Tj : RM → RM ,
j = 1, 2, . . . , r, with nonempty fixed points sets Ci, i = 1, 2, . . . , p and Qj, j =
1, 2, . . . , r, respectively. The split common fixed point problem (SCFPP)
is

find a vector x∗ ∈ C := ∩pi=1Ci such that Ax∗ ∈ Q := ∩ri=1Qj. (1)

Such problems arise in the field of intensity-modulated radiation therapy
(IMRT) when one attempts to describe physical dose constraints and equiv-
alent uniform dose (EUD) constraints within a single model, see [10]. The
problem with only a single pair of sets C in RN and Q in RM was first intro-
duced by Censor and Elfving [11] and was called the split feasibility problem
(SFP). They used their simultaneous multiprojections algorithm (see also
[15, Subsection 5.9.2]) to obtain iterative algorithms to solve the SFP. Their
algorithms, as well as others, see, e.g., Byrne [6], involve matrix inversion at
each iterative step. Calculating inverses of matrices is very time-consuming,
particularly if the dimensions are large. Therefore, a new algorithm for solv-
ing the SFP was devised by Byrne [7], called the CQ-algorithm, with the
following iterative step

xk+1 = PC
¡
xk + γAt(PQ − I)Axk

¢
, (2)

where xk and xk+1 are the current and the next iteration vectors, respectively,
γ ∈ (0, 2/L) where L is the largest eigenvalue of the matrix AtA (t stands
for matrix transposition), I is the unit matrix or operator and PC and PQ
denote the orthogonal projections onto C and Q, respectively.
The CQ-algorithm converges to a solution of the SFP, for any starting

vector x0 ∈ RN , whenever the SFP has a solution. When the SFP has no so-
lutions, the CQ-algorithm converges to a minimizer of kPQ(Ac)−Ack , over
all c ∈ C, whenever such a minimizer exists. A block-iterative CQ-algorithm,
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called the BICQ-method, is also available in [7], see also Byrne [8] and his re-
cent book [9]. The MSSFP, posed and studied in [12], was handled, for both
the feasible and the infeasible cases, with a proximity function minimization
approach, namely, if the MSSFP problem is consistent then unconstrained
minimization of the proximity function yields the value 0, otherwise, in the
inconsistent case, it finds a point which is least violating the feasibility by
being “closest” to all sets, as “measured” by the proximity function. Masad
and Reich [19] is a recent sequel to [12] where they prove weak and strong
convergence theorems for an algorithm that solves the multiple-set split con-
vex feasibility problem in Hilbert space.
In the case of nonlinear constraints sets, orthogonal projections may de-

mand a great amount of work of solving a nonlinear optimization problem
to minimize the distance between the point and the constraint set. How-
ever, it can easily be estimated by linear approximation using the current
constraint violation and the subgradient at the current point. This was done
by Yang, in his recent paper [21], where he proposed a relaxed version of the
CQ-algorithm in which orthogonal projections are replaced by subgradient
projections, which are easily executed when the sets C and Q are given as
lower level sets of convex functions, see also [23]. In [13] Censor, Motova and
Segal formulated a simultaneous subgradient projections algorithm for the
MSSFP.
Many common types of operators arising in convex optimization belong

to the class of directed operators. These operators were introduced and in-
vestigated by Bauschke and Combettes in [3] (denoted there as T-class) and
by Combettes in [16]. Using the notion of directed operators we develop
algorithms for the SCFPP. In Section 2 we present preliminary material on
the directed operators and discuss some particular cases. In Section 3 we
formulate the two operators split fixed point problem and study our algo-
rithm for it. In Section 4 we present our parallel algorithm for the SCFPP
and establish its convergence and, in Section 5, we note how it unifies and
generalizes previously discussed problems and algorithms.

2 Directed operators

The class T of operators was introduced and investigated by Bauschke and
Combettes in [3, Definition 2.2] and by Combettes in [16]. Operators in this
class were named directed operators in Zaknoon [22] and further employed
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under this name in [14]. We recall definitions and results on directed opera-
tors and their properties as they appear in [3, Proposition 2.4] and [16], which
are also sources for references on the subject. Let RN be the N-dimensional
Euclidean space with hx, yi and kxk as the Euclidean inner product and
norm, respectively.
Given x, y ∈ RN we denote

H(x, y) :=
©
u ∈ RN | hu− y, x− yi ≤ 0ª . (3)

Definition 2 An operator T : RN → RN is called a directed operator, if

FixT ⊆ H(x, T (x)) for all x ∈ RN , (4)

where FixT is the fixed points set of T , equivalently,

if q ∈ FixT then hT (x)− x, T (x)− qi ≤ 0 for all x ∈ RN . (5)

The class of directed operators is denoted by T, i.e.

T :=
©
T : RN → RN | FixT ⊆ H(x, T (x)) for all x ∈ RNª . (6)

Bauschke and Combettes [3] showed the following:
(i) That the set of all fixed points of a directed operator with nonempty

FixT is closed and convex because

FixT = ∩x∈RNH (x, T (x)) . (7)

(ii) That, denoting by I the unit operator,

If T ∈ T then I + λ(T − I) ∈ T for all λ ∈ [0, 1]. (8)

This class of operators is fundamental because many common types of oper-
ators arising in convex optimization belong to the class and because it allows
a complete characterization of Fejér-monotonicity [3, Proposition2.7]. The
localization of fixed points is discussed in [18, pages 43-44]. In particular,
it is shown there that a firmly nonexpansive operator, namely, an operator
Ω : Rn → Rn that fulfills

kΩ(x)− Ω(y)k2 ≤ hΩ(x)− Ω(y), x− yi , for all x, y ∈ Rn, (9)

satisfies (7) and is, therefore, a directed operator. The class of directed oper-
ators, includes additionally, according to [3, Proposition 2.3], among others,

4



the resolvents of a maximal monotone operators, the orthogonal projections
and the subgradient projectors (see Example 5 below). Note that every di-
rected operator belongs to the class of operators F0, defined by Crombez [17,
p. 161],

F0 := {T : Rn → Rn | kTx− qk ≤ kx− qk for all q ∈ FixT and x ∈ Rn} ,
(10)

whose elements are called elsewhere quasi-nonexpansive or paracontracting
operators.
The following definition of a closed operator originated in Browder [5]

(see, e.g., [16]) and will be required in the sequel.

Definition 3 An operator T : RN → RN is said to be closed at a point
y ∈ RN if for every x ∈ RN and every sequence ©xkª∞

k=0
in RN , such that,

limk→∞ xk = x and limk→∞ Txk = y, we have Tx = y.

For instance, the orthogonal projection onto a closed convex set is a closed
operator everywhere, due to its continuity.

Remark 4 [16] If T : RN → RN is nonexpansive then T − I is closed on
RN .

In the next example and lemma we recall the notion of the subgradient
projector ΠF (y) and show that ΠF (y)− I is closed at 0.

Example 5 Let f : RN → R be a convex function such that the level set
F :=

©
x ∈ RN | f(x) ≤ 0ª is nonempty. The operator

ΠF (y) :=

⎧⎨⎩ y − f(y)kqk2 q, if f(y) > 0,

y, if f(y) ≤ 0,
(11)

where q is a selection from the subdifferential set ∂f(y) of f at y, is called a
subgradient projector relative to f.

Lemma 6 Let f : RN → R be a convex function, let y ∈ RN and assume
that the level set F 6= ∅. For any q ∈ ∂f(y), define the closed convex set

L = Lf(y, q) := {x ∈ RN | f(y) + hq, x− yi ≤ 0}. (12)
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Then the following hold:
(i) F ⊆ L. If q 6= 0 then L is a half-space, otherwise L = Rn.
(ii) Denoting by PL(y) the orthogonal projection of y onto L,

PL(y) = ΠF (y). (13)

(iii) PL − I is closed at 0.
Proof. For (i) and (ii) see, e.g., [2, Lemma 7.3]. (iii) DenoteΨ := PL−I.

Take any x ∈ RN and any sequence ©xkª∞
k=0

in RN , such that, limk→∞ xk = x

and limk→∞Ψ(xk) = 0. Define f+(y) = max{f(y), 0}. Then Ψ(y) =
f+(y)

kqk2 q,
q ∈ ∂f(y). Since f+ is convex, its subdifferential is uniformly bounded on
bounded sets, see, e.g., [2, Corollary 7.9]. Using this and the continuity of
f+ we obtain that f+(x) = 0, and, therefore, Ψ(x) = 0.
Influenced by the framework established in Bregman et al. [4], and by

Aharoni, Berman and Censor’s (δ, η)-Algorithm [1] for solving convex feasi-
bility problems, we define next another type of operators which we call “E-δ
operators”. We need first the following setup. Let E ⊂ RN be a nonempty
closed convex set. We assume, without loss of generality, that E is expressed
as

E =
©
x ∈ RN | e(x) ≤ 0ª , (14)

where e : RN → R is a convex function. Given a point z ∈ RN , a real number
δ, 0 < δ ≤ 1, we define for z /∈ E the ball

B(z, δe(z)) :=
©
x ∈ RN | kx− zk ≤ δe(z)

ª
. (15)

For all pairs (y, t) ∈ RN ×RN we look at the half-spaces of the form
S(y, t) :=

©
u ∈ RN | hu, ti ≤ hy, tiª , (16)

and define

Aδ(e(z)) :=
©
(y, t) ∈ RN ×RN | E ⊆ S(y, t) and intB(z, δe(z)) ∩ S(y, t) = ∅ª .

(17)
We also need to impose the following condition.

Condition 7 Given a set E ⊂ RN , described as in (14), it is true that for
every z /∈ E

B(z, δe(z)) ∩ E = ∅. (18)
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Every convex set E can be described by (14) with e(z) = d(z, E), the dis-
tance function between the point z and the set E, and in this case Condition
7 always holds.

Definition 8 Given a set E =
©
x ∈ RN | e(x) ≤ 0ª where e : RN → R is a

convex function and a real number δ, 0 < δ ≤ 1, such that Condition 7 holds,
we define the operator TE,δ for any z ∈ RN , by

TE,δ(z) :=

½
PS(y,t)(z), if z /∈ E,
z, if z ∈ E, (19)

where (y, t) is any selection from Aδ(e(z)), and call it an E-δ operator.

The fact that any E-δ operator is a directed operator follows from its
definition.

Lemma 9 If TE,δ is an E-δ operator then TE,δ − I is closed at 0.

Proof. Let
©
zk
ª∞
k=0

be a sequence with zk /∈ E for all k ≥ 0, such
that limk→∞

°°zk°° = q ∈ RN and limk→∞
°°TE,δ(zk)− zk°° = 0. For every

k = 0, 1, 2, . . . we have °°TE,δ(zk)− zk°° ≥ δe(zk). (20)

Taking limits on both sides of the last inequality we obtain

lim
k→∞

e(zk) = 0, (21)

and from the continuity of e(z) follows that e(q) = 0 and, therefore, q ∈
FixTE,δ.
Next we show that the subgradient projector of Example 5 is a TE,δ

operator. To show that an operator is a TE,δ operator one needs to guarantee
(among other things) that, given a set E, the intersection B(z, δe(z)) ∩E is
empty for all z /∈ E, for some choice of a real number δ, 0 < δ ≤ 1. This is
done in the next lemma.

Lemma 10 Let e : Rn → R be a convex function such that the level set
E :=

©
x ∈ RN | e(x) ≤ 0ª is nonempty. Then there exists a real number δ,

0 < δ ≤ 1, such that the subgradient projector ΠE(z) of Example 5 is a TE,δ
operator.

7



Proof. If e(z) ≤ 0 then z ∈ E and, by definition, ΠE(z) = z. If e(z) > 0
then, using the setup of (14)—(17), let

Le(z, t) = {x ∈ RN | e(z) + ht, x− zi ≤ 0}, (22)

where t ∈ ∂e(z). By Lemma 6 we have that E ⊆ Le(z, t). Now we need to
show that intB(z, δe(z)) ∩ Le(z, t) = ∅. Denoting w = ΠE(z) ∈ Le(z, t), it
follows from (22) that

e(z) ≤ ht, z − wi ≤ ktk kw − zk . (23)

By [2, Corollary 7.9] the subdifferential ∂e(z) is uniformly bounded on bounded
sets, i.e., there exists aK > 0, such that, ktk ≤ K, hence, e(z) ≤ K kw − zk .
Taking any δ < 1/K we obtain

δe(z) ≤ kw − zk , (24)

which implies that
intB(z, δe(z)) ∩ Le(z, t) = ∅. (25)

Aside from theoretical interest, the extension (of subgradient projectors)
to TE,δ operators can lead to algorithms useful in practice, provided that the
computational efforts of finding hyperplanes S(y, t) are reasonable. Another
special case (besides the subgradient hyperplane) is obtained by constructing
the S(y, t) via an interior point in the convex set (using the assumption that
in each set we know an point in its interior), see [15, Algorithm 5.5.2].

3 The two-operators split common fixed point
problem

The split common fixed point problem for a single pair of directed operators
is obtained from Problem 1 with p = r = 1.

Definition 11 Let A be a real M × N matrix and let U : RN → RN and
T : RM → RM be operators with nonempty FixU = C and FixT = Q. The
two-operators split common fixed point problem is to find x∗ ∈ C such that
Ax∗ ∈ Q.

8



Denoting the solution set of the two-operators SCFPP by

Γ ≡ Γ(U, T ) := {y ∈ C | Ay ∈ Q} , (26)

the following algorithm is designed to solve it.

Algorithm 12
Initialization: Let x0 ∈ RN be arbitrary.
Iterative step: For k ≥ 0 let

xk+1 = U
¡
xk + γAt(T − I)(Axk)¢ , (27)

where γ ∈ (0, 2/L), L is the largest eigenvalue of the matrix AtA and I is
the unit operator.

We recall the definition of Fejér-monotone sequences, which will be useful
for our further analysis.

Definition 13 A sequence {xk}∞k=0 is called Fejér-monotone with respect
to a given nonempty set S ⊆ RN if for every x ∈ S,°°xk+1 − x°° ≤ °°xk − x°° , for all k ≥ 0. (28)

To prove convergence of Algorithm 12 we need the following lemma.

Lemma 14 Given a real M × N matrix A, let U : RN → RN and T :
RM → RM be directed operators with nonempty FixU = C and FixT = Q.
Any sequence

©
xk
ª∞
k=0
, generated by Algorithm 12, is Fejér-monotone with

respect to the solution set Γ.

Proof. Taking y ∈ Γ we use (10) to obtain°°xk+1 − y°°2 = °°U ¡xk + γAt(T − I)(Axk)¢− y°°2
≤ °°xk + γAt(T − I)Axk − y°°2
=
°°xk − y°°2 + γ2

°°At(T − I)(Axk)°°2
+ 2γ

­
xk − y,At(T − I)(Axk)®

=
°°xk − y°°2 + γ2

­
(T − I)(Axk), AAt(T − I)(Axk)®

+ 2γ
­
xk − y,At(T − I)(Axk)® . (29)
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From the definition of L follows

γ2
­
(T − I)(Axk), AAt(T − I)(Axk)® ≤ Lγ2 ­(T − I)(Axk), (T − I)(Axk)®

= Lγ2
°°(T − I)(Axk)°°2 . (30)

Denoting Θ := 2γ
­
xk − y,At(T − I)(Axk)® and using (5) we obtain

Θ = 2γ
­
A(xk − y), (T − I)(Axk)®

= 2γ
­
A(xk − y) + (T − I)(Axk)− (T − I)(Axk), (T − I)(Axk)®

= 2γ
³­
T (Axk)−Ay, (T − I)(Axk)®− °°(T − I)(Axk)°°2´

≤ −2γ °°(T − I)(Axk)°°2 . (31)

From (29) and by using (30) and (31) follows°°xk+1 − y°°2 ≤ °°xk − y°°2 + γ(Lγ − 2)°°(T − I)(Axk)°°2 . (32)

Then, from the definition of γ, we obtain°°xk+1 − y°°2 ≤ °°xk − y°°2 , (33)

from which the Fejér-monotonicity with respect to Γ follows.
The next lemma describes a property of directed operators that will be

used in our convergence analysis.

Lemma 15 Let T : RN → RN be a directed operator with FixT 6= ∅. For
any q ∈ FixT and any x ∈ RN ,

kT (x)− qk2 ≤ kx− qk2 − kT (x)− xk2 . (34)

Proof. Since T is directed, we use (5) to obtain

kx− qk2 = kT (x)− x− (T (x)− q)k2
= kT (x)− xk2 + kT (x)− qk2 − 2 hT (x)− x, T (x)− qi
≥ kT (x)− xk2 + kT (x)− qk2 , (35)

from which the proof follows.
Now we present the convergence result for Algorithm 12.
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Theorem 16 Given a real M × N matrix, let U : RN → RN and T :
RM → RM be directed operators with nonempty FixU = C and FixT = Q.
Assume that (U−I) and (T−I) are closed at 0. If Γ 6= ∅, i.e., the problem is
consistent, then any sequence

©
xk
ª∞
k=0
, generated by Algorithm 12, converges

to a split common fixed point x∗ ∈ Γ.

Proof. From (32) we obtain that the sequence
©°°xk − y°°ª∞

k=0
is monoton-

ically decreasing. Therefore,

lim
k→∞

°°(T − I)(Axk)°° = 0. (36)

From the Fejér-monotonicity of
©
xk
ª∞
k=0

follows that the sequence is bounded.
Denoting by x∗ a cluster point of

©
xk
ª∞
k=0
, let ` = 0, 1, 2, . . . be the sequence

of indices, such that
lim
`→∞

xk` = x∗. (37)

Then, from (36) and closedness of (T − I) at 0 we obtain,
T (Ax∗) = Ax∗, (38)

from which Ax∗ ∈ Q follows. Denote
uk := xk + γAt(T − I)(Axk). (39)

Then
uk` = xk` + γAt(T − I)(Axk`) (40)

and, from (36) and (37), it follows that

lim
`→∞

uk` = x∗. (41)

Next we show that x∗ ∈ C. Assume, by negation, that x∗ /∈ C, i.e., that
Ux∗ 6= x∗. Then from closedness of the operator (U − I) at 0 follows that

lim
`→∞

°°U(uk`)− uk`°° 6= 0. (42)

Therefore, there exists an ε > 0 and a subsequence
©
uk`s

ª∞
s=0

of the sequence©
uk`
ª∞
`=0
, such that °°U(uk`s )− uk`s°° > ε, s = 0, 1, . . . . (43)
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Since U is directed, for any z ∈ Γ we have, by virtue of Lemma 15, that for
s = 1, 2, . . . , °°U(uk`s )− z°°2 ≤ °°uk`s − z°°2 − °°U(uk`s )− uk`s°°2

<
°°uk`s − z°°2 − ε2. (44)

It can be shown, following the same lines as in the proof of Lemma 14, that
for any z ∈ Γ, we have°°¡xk + γAt(T − I)(Axk)¢− z°° ≤ °°xk − z°° . (45)

Since xk+1 = U(uk), k = 0, 1, . . ., (10) implies that°°xk+1 − z°° ≤ °°uk − z°° . (46)

Then (45) and (46) indicate that the sequence {x1, u1, x2, u2, . . .} is Fejér-
monotone with respect to Γ. Since U(uk`s ) = xk`s+1, we obtain, using (44),
that the sequence

©
uk`s

ª∞
s=0

is also Fejér-monotone with respect to Γ. More-
over, °°uk`s+1 − z°°2 < °°uk`s − z°°2 − ε2, for s = 1, 2, . . . . (47)

and this cannot be true for infinitely many vectors uk`s . Hence x∗ ∈ C and,
therefore, x∗ ∈ Γ.
Replacing y by x∗ in (32) we obtain that

©°°xk − x∗°°ª∞
k=0

monotoni-
cally decreasing and its subsequence

©°°xk` − x∗°°ª∞
`=0

converges to 0. Hence
limk→∞ xk = x∗.

4 A parallel algorithm for the SCFPP

We employ a product space formulation, originally due to Pierra [20], to
derive and analyze a simultaneous algorithm for the SCFPP of Problem 1.
Let Γ be the solution set of the SCFPP. We introduce the spaces V =RN

andW = RrN+pM , where r, p, N andM are as in Problem 1, and adopt the
notational convention that the product spaces and all objects in them are
represented in boldface type.
Define the following sets in the product spaces

C: = RN and (48)

Q: =

Ã
rY
i=1

√
αiCi

!
×
Ã

pY
j=1

p
βjQj

!
, (49)
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and the matrix

A : =
³√

α1I, . . . ,
√
αrI,

p
β1A

t, . . . ,
p

βpA
t
´t
, (50)

where αi > 0, for i = 1, 2, . . . , p, and βj > 0, for j = 1, 2, . . . , r, and t stands
for matrix transposition.
Let us define also the operator T :W→W by

T(y) =

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝U1

⎛⎜⎜⎜⎝
y1
y2
...
yN

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
t

,

⎛⎜⎜⎜⎝U2
⎛⎜⎜⎜⎝
yN+1
yN+2
...
y2N

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
t

, . . . ,

⎛⎜⎜⎜⎝Ur
⎛⎜⎜⎜⎝
yN(r−1)+1
yN(r−1)+2

...
yrN

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
t

,

⎛⎜⎜⎜⎝T1
⎛⎜⎜⎜⎝
yrN+1
yrN+2
...

yrN+M

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
t

,

⎛⎜⎜⎜⎝T2
⎛⎜⎜⎜⎝
yrN+M+1
yrN+M+2

...
yrN+2M

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
t

, . . . ,

⎛⎜⎜⎜⎝Tp
⎛⎜⎜⎜⎝
yrN+M(p−1)+1
yrN+M(p−1)+2

...
yrN+pM

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
t⎞⎟⎟⎟⎠

t

,

(51)

We have obtained a two-operators split common fixed point problem in the
product space, with sets C =RN , Q ⊆W, the matrix A, the identity oper-
ator I : C→ C and the operator T :W→W. This problem can be solved
using Algorithm 12. It is also easy to verify that the following equivalence
holds

x ∈ Γ if and only if Ax ∈ Q. (52)

Therefore, we may apply Algorithm 12

xk+1 = xk + γAt(T− I)(Axk), k ≥ 0, (53)

to the problem (48)—(51) in order to obtain a solution of the original SCFPP.
We translate the iterative step (53) to the original spaces RN and RM using
the relation

T(Ax) =
³√

α1U1(x), . . . ,
√
αrUr(x),

p
β1AT1(x), . . . ,

p
βtATp(x)

´t
(54)

and obtain the following algorithm,

Algorithm 17
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Initialization: Let x0 be arbitrary.
Iterative step: For k ≥ 0 let

xk+1 = xk + γ

Ã
pX
i=1

αi
¡
Ui(x

k)− xk¢+ rX
j=1

βjA
t
¡
Tj(Ax

k)−Axk¢! . (55)

Here γ ∈ (0, 2/L), with L =
Pp

i=1 αi + λ
Pr

j=1 βj, where λ is the largest
eigenvalue of the matrix AtA.

The following convergence result follows from Theorem 16.

Theorem 18 Let Ui : RN → RN , i = 1, 2, . . . , p, and Tj : RN → RN ,
j = 1, 2, . . . , r, be directed operators with fixed points sets Ci, i = 1, 2, . . . , p
and Qj, j = 1, 2, . . . , r, respectively, and let A be an M × N real matrix.
Assume that (Ui − I), i = 1, 2, . . . , p and (Tj − I), j = 1, 2, . . . , r, are closed
at 0. If Γ 6= ∅ then every sequence, generated by Algorithm 17, converges to
x∗ ∈ Γ.

Proof. Applying Theorem 16 to the two operators split common fixed
point problem in the product space setting with U = I : RN → RN , FixU =
C and T = T :W→W, FixT = Q the proof follows.

5 Applications and special cases

In this section we review special cases of the split common fixed point problem
(SCFPP) described in Problem 1, and a real-world application of algorithms
for its solution. SCFPP generalizes the multiple-sets split feasibility problem
(MSSFP) which requires to find a point closest to a family of closed convex
sets in one space such that its image under a linear transformation will be
closest to another family of closed convex sets in the image space. It serves as
a model for real-world inverse problems where constraints are imposed on the
solutions in the domain of a linear operator as well as in the operator’s range.
MSSFP itself generalizes the convex feasibility problem (CFP) and the two-
sets split feasibility problem. Formally, given nonempty closed convex sets
Ci ⊆ RN , i = 1, 2, . . . , p, in the N-dimensional Euclidean space RN , and
nonempty closed convex sets Qj ⊆ RM , j = 1, 2, . . . , r, and an M ×N real
matrix A, the multiple-sets split feasibility problem (MSSFP) is

find a vector x∗ ∈ C := ∩pi=1Ci such that Ax∗ ∈ Q := ∩ri=1Qj. (56)
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The algorithm for solving the MSSFP, presented in [12], generalizes Byrne’s
CQ-algorithm [7] and involves orthogonal projections onto the sets Ci ⊆ RN ,
i = 1, 2, . . . , p, and the sets Qj ⊆ RM , j = 1, 2, . . . , r, and has the following
iterative step

xk+1 = xk+γ

Ã
pX
i=1

αi
¡
PCi(x

k)− xk¢+ rX
j=1

βjA
t
¡
PQj(Ax

k)−Axk¢! , (57)
where xk and xk+1 are the current and the next iteration vectors, respectively,
αi > 0, i = 1, 2, . . . , p, and βj > 0, j = 1, 2, . . . , r, are user-chosen parameters,
γ ∈ (0, 2/L), where L = Pp

i=1 αi + λ
Pr

j=1 βj and λ is the spectral radius
of the matrix AtA. The algorithm converges to a solution of the MSSFP, for
any starting vector x0 ∈ RN , whenever the MSSFP has a solution. In the
inconsistent case, it finds a point which is least violating the feasibility by
being “closest” to all sets, as “measured” by a proximity function. Since the
orthogonal projection P is a directed operator and P − I is closed at 0, the
algorithm (57) is a special case of our Algorithm 17.
Finding at each iterative step the orthogonal projections can be compu-

tationally intensive and may affect the algorithm’s efficiency. In the relaxed
CQ-algorithm for solving the two-sets split feasibility problem, Yang [21] as-
sumes, without loss of generality, that the sets C and Q are nonempty and
given by

C =
©
x ∈ RN | c(x) ≤ 0ª , and Q = ©y ∈ RM | q(y) ≤ 0ª , (58)

where c : RN → R and q : RM → R are a convex functions, respectively.
And instead of orthogonal projections he uses the subgradient projectors. In
[13] we generalized Yang’s result by formulating the following simultaneous
subgradient projectors algorithm for the MSSFP, which is also a special case
of our Algorithm 17 (see Example 5 and Lemma 6). Assume, without loss of
generality, that the sets Ci and Qj are expressed as

Ci =
©
x ∈ RN | ci(x) ≤ 0

ª
and Qj =

©
y ∈ RM | qj(y) ≤ 0

ª
, (59)

where ci : RN → R, and qj : RM → R are convex functions for all i =
1, 2, . . . , p, and all i = 1, 2, . . . , r, respectively.

Algorithm 19 [13]
Initialization: Let x0 be arbitrary.
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Iterative step: For k ≥ 0 let

xk+1 = xk + γ

Ã
pX
i=1

αi
¡
PCi,k(x

k)− xk¢+ rX
j=1

βjA
t
¡
PQj,k(Ax

k)−Axk¢! .
(60)

Here γ ∈ (0, 2/L), with L = Pp
i=1 αi + λ

Pr
j=1 βj, where λ is the spectral

radius of AtA, and

Ci,k =
©
x ∈ Rn | ci(xk) +

­
ξi,k, x− xk® ≤ 0ª , (61)

where ξi,k ∈ ∂ci(x
k) is a subgradient of ci at the point xk, and

Qj,k =
©
x ∈ Rm | qj(xk) +

­
ηj,k, y −Axk® ≤ 0ª , (62)

where ηj,k ∈ ∂qj(Ax
k).

A new possibility that follows from our present work is to solve the
MSSFP with Algorithm 17 and using E-δ operators. We present this in the
framework of (14)—(17). Choosing parameters {δi}p+ri=1 , such that 0 < δi ≤ 1
for all i = 1, 2, . . . , p + r, define the directed operators TCi,δi and TQj ,δp+j as
in Definition 8.

Algorithm 20
Initialization: Let x0 be arbitrary.
Iterative step: For k ≥ 0 let

xk+1 = xk + γ

Ã
pX
i=1

αi
¡
TCi,δi(x

k)− xk¢+ rX
j=1

βjA
t
¡
TQj ,δp+j(Ax

k)−Axk¢! .
(63)

Here γ ∈ (0, 2/L), with L =
Pp

i=1 αi + λ
Pr

j=1 βj, where λ is the largest
eigenvalue of the matrix AtA.

Algorithm 19 is a special case of Algorithm 20 since, by Lemma 10, sub-
gradient projectors are TE,δ operators.
Finally, we mention that our work is related to significant real-world

applications. In a recent paper [10], the multiple-sets split feasibility problem
was applied to the inverse problem of intensity-modulated radiation therapy
(IMRT). In this field beams of penetrating radiation are directed at the
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lesion (tumor) from external sources in order to eradicate the tumor without
causing irreparable damage to surrounding healthy tissues, see, e.g., [12].
In addition to the physical and biological parameters of the irradiated

object that are assumed known for the dose calculation, information about
the capabilities and specifications of the available treatment machine (i.e.,
radiation source) is given. Based on medical diagnosis, knowledge, and expe-
rience, the physician prescribes desired upper and lower dose bounds to the
treatment planning case. The output of a solution method for the inverse
problem is a radiation intensity function (also called intensity map). Its
values are the radiation intensities at the sources, as a function of source lo-
cation, that would result in a dose function which agrees with the prescribed
dose bounds.
Recently the concept of equivalent uniform dose (EUD) was introduced

to describe dose distributions with a higher clinical relevance. These EUD
constraints are defined for tumors as the biological equivalent dose that, if
given uniformly, will lead to the same cell-kill in the tumor volume as the
actual non-uniform dose distribution. They could also be defined for normal
tissues. We developed in [10] a unified theory that enables treatment of
both EUD constraints and physical dose constraints. This model relies on
the multiple-sets split feasibility problem formulation and accommodates the
specific IMRT situation.
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