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Abstract
We formulate the method of Iterative Prescription Refinement (IPR)

for inverse planning in any fully-discretized model of radiation therapy.
The method starts out from an ideal dose prescription and repeatedly
refines it into a refined dose prescription. This is done computation-
ally without human interaction until a prespecified stopping rule is
met, at which point the refined dose vector and the accompanying
beamlet intensities vector are evaluated and presented to the planner.
The algorithmic regime is general enough to encompass various physi-
cal models that may use different particles (photons, protons, etc.) It
is formulated for a general inversion operator thus different objective
functions or approaches to the optimization problem (such as DVH,
gEUD, or TCP and NTCP cost functions) may all be applied. Al-
though not limited to this model, we demonstrate that the approach
at all works on two exemplary cases from photon intensity-modulated
radiation therapy (IMRT).
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1 Introduction and Problem Definition

Radiation therapy treatment planning (RTTP) is basically an inverse prob-
lem but of a nature that sets it apart from other inverse problems in science
and technology. Many inverse problems are data-inversion problems. By
this we mean that there is a relation of the form Qx = b where b is a
vector of measured data, which cannot be changed once the measurements
have been performed, the vector x is the object that needs to be recovered,
and Q is an operator that represents our knowledge of the physics of the
situation that relates the measurements to the object that was measured.
There are some fundamental deviations from this in the inverse problem of
RTTP. First, in RTTP the right-hand side b is not fixed throughout like in
a data-inversion problem but is a prescription vector that might be modified
if the planner does not like to accept, for some reason, the recovered object
x. This property justifies us in dubbing the inverse problem of RTTP as
a prescription-inversion problem. Secondly, the operator Q cannot be in-
verted mathematically, without major compromise on its realism, therefore,
a fully-discretized approach must be taken and not a continuous model of the
physical situation. For a discussion of this matter, see, e.g., [3, 4]. General
review and tutorial papers on RTTP from various aspects are abound. Some
of the more mathematically algorithmically oriented reviews are [19, 17, 9, 2].
There is yet another important aspect to the prescription-inversion prob-

lem in RTTP that sets it apart from conventional data-inversion inverse
problems. The inversion method itself requires information-input from the
planner, which will, in turn, affect the resulting recovered object x. Let us
agree, for the purpose of this paper, to use the term “inversion method” as
an overall term that consists of the union of the following ingredients: (1)
the chosen mathematical model, (2) the chosen objective (cost) function (if
an optimization model is used), (3) the choice of algorithm employed, and
(4) the specification of all parameters necessary to run the algorithm on the
chosen cost function for the chosen model. Now, if the “inversion method”
is applied to some prescribed right-hand side vector b and if the resulting
recovered object x (e.g., beamlets intensities in IMRT) does not satisfy the
planners goals then the planner is confronted with a dilemma. He can either
“revise” his original prescribed right-hand side vector b or insist on that b as
originally prescribed. In the latter case some changes must be made to the
information-input for the “inversion method” itself before running it again,
because otherwise (i.e., same b and no changes to the “inversion method”)
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there will be no new alternative recovered object x obtained for the planner’s
assessment.
Just to make the above more concrete, think — by way of example only —

about an inversion method in which a weighted sum of several cost functions,
associated with specific organs, has to be minimized via some optimization
algorithm or package. An example of changing the information-input to the
“inversion method” might be changes to the coefficients (weights of impor-
tance) given in the weighted sum cost function. The difficulty is manyfold: It
is not simple or clear how such changes should be made, they might be done
repeatedly several times, and, most importantly, they require the planner’s
human involvement.
Our goal in this paper is propose a methodology to handle the above

situation. The proposed approach and procedure are not limited to IMRT
or to the specific objective function used in the examples, but is applicable
to ANY fully-discretized model of prescription-inversion. The mathematical
background and connection with another method from medical imaging, of-
fered here, puts the whole approach on more secure foundations (in spite of
the admitted, still remaining, questions even in the math of the procedure).
The case examples are presented to only demonstrate that the approach and
method "work" at all. More efforts might be needed in any specific area
where this will be employed to fine-tune the method to reach computational
advantages. To these ends we formulate a method, that we call Iterative
Prescription Refinement (IPR), for inverse planning in any model of radia-
tion therapy treatment planning that is fully-discretized. IPR is not limited
to IMRT or to a specific choice of objective functions for optimization. It
is a general principle that is applicable to any fully-discretized model of an
inversion problem that might occur in radiation therapy treatment planning
(RTTP), or even in prescription-inversion problems outside RTTP. It puts
forward and identifies an approach, not considered hitherto, that replaces
the currently commonly used sequence of steps in RTTP by a different one
which attacks the problem from a different angle. The method should start
out from an ideal dose prescription (ideal in the sense that it is most probably
not deliverable) and repeatedly refines this prescription into a refined dose
prescription. This is done computationally without human interaction until
a pre-specified stopping rule is met, at which point the refined dose vector is
ready to be evaluated by the planner. The purpose is to circumvent in this
way the inevitable “imperfections” of the inversion operator that is employed
in the solution process of the inverse problem. This will be further clarified
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below.
The algorithmic regime is general enough to encompass various physical

models that may use different particles (photons, protons, etc.) and/or model
the problem mathematically in one of several possible different ways.

1.1 The fully-discretized model

We consider the following fully-discretized model in RTTPwhich has its early
roots in [3]. There are J voxels in total in the cross-section. A dose vector
is d = (dj)Jj=1 where dj is dose in voxel j. (observe the “notational rule” to
use superscripts to count vectors and subscript to count vector components).
There are N recognized organs (counting both targets and organs at risk
(OARs)) in the cross-section, denoted by their voxel sets O1, O2, · · · , ON . A
dose vector d is partitioned accordingly into subvectors

d =

⎛⎜⎜⎜⎝
d1

d2

...
dN

⎞⎟⎟⎟⎠ (1)

where di = (dij)j∈Oi is a subvector of d that contains the doses in only the
voxels of organ Oi.
There are T external radiation beamlets, counted by t = 1, 2, . . . , T, in

total, and x = (xt)Tt=1 is a vector of beamlet intensities such that xt is the
intensity of beamlet t.We partition the J ×T dose matrix A accordingly, so
that,

Ax =

⎛⎜⎜⎜⎝
A1
A2
...
AN

⎞⎟⎟⎟⎠x =
⎛⎜⎜⎜⎝
d1

d2

...
dN

⎞⎟⎟⎟⎠ , (2)

namely, Aix = di for all i = 1, 2, . . . , N. The dimensionality of the submatrix
Ai is | Oi | ×T where | Oi | is the cardinality of Oi, i.e., the number of voxels
in organ Oi. The, now classical, see, e.g., [4], inverse problem of radiation
therapy treatment planning is to find an intensities vector x that will deliver
to the patient’s cross-section a prescribed dose vector d, for a given patient
data and for a given particle model and available treatment machine setup.
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1.2 The Problem

We assume that R is an operator that represents some given “inversion
method” as an overall term that consists of the union of the following ingre-
dients: (1) the chosen mathematical model, (2) the chosen objective (cost)
function (if an optimization model is used), (3) the choice of algorithm em-
ployed, and (4) the specification of all parameters necessary to run the al-
gorithm on the chosen cost function for the chosen model, for the inverse
problem of a fully-discretized radiation therapy treatment planning prob-
lem, such as, but not necessarily only, photon IMRT. By this we mean that
R : RJ → RT (i.e., it maps the J-dimensional Euclidean space RJ into RT ).
This operator takes a dose vector d ∈ RJ and outputs an intensity vector
x = R(d) that supposedly will create the dose distribution d when applied in
the clinic to the treatment case whose parameters were used in the inversion
with R. Therefore, we call R an inversion operator.
We further assume that D : RT → RJ is a “state-of-the-art” forward

dose calculation package that is available to us. It takes any intensity vector
x ∈ RT and outputs a dose vector d = D(x) that supposedly will be created
by that x, when applied in the clinic to the treatment case whose parameters
were used in the inversion withR. Therefore, we call D a dose operator. The
difficulties associated with both the forward and inverse problems in IMRT
stem from the fact that to this date there exists no, realistically adequate,
closed-form analytic representation of the dose operator D. Although the
interaction between radiation and tissue is measured and understood at the
atomic level, the situation is so complex that, to solve the forward problem
in practice, a state-of-the-art computer program (i.e., a sufficiently accurate
dose calculation engine), which represents a computational approximation of
the operator D, must be used.
Denote by dpres a vector of prescribed doses to voxels, for a given treat-

ment case. If R and D were perfect (ideal), i.e., representing the model
perfectly, applying the inversion method without any errors (numerical or
others), and performing a perfect forward dose calculation, respectively, then
the composition of the ideal inversion operatorR and the ideal dose operator
D should return the input, i.e.,

DR(dpres ) = dpres . (3)

In this case x̃ = R(dpres ) would be an intensity vector that will deposit
precisely dpres as prescribed, see Box “A” in Figure 1. Let us call such R
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and D ideal operators and note that if (3) holds for all dpres then DR = I,
where I stands for the identity operator that leaves any vector to which it is
applied unchanged.
In the real world we have at our disposal only approximations of the

ideal operators R and D, lets denote them by R̂ and D̂ and call them actual
inversion and actual dose operators, respectively. So, in the real world,
applying the composition of operators D̂R̂ to a dose vector does not return
the vector to which it is applied, namely,

D̂R̂(dpres ) = d̂ , (4)

meaning that the dose vector d̂ deposited by the intensity vector x̂ = R̂(dpres )
will differ from the prescribed dose vector dpres .
It is our purpose in this study to address only imperfections of the actual

inversion operator R̂ (and not of the actual dose operator D̂). Therefore, we
assume from this point onward that D̂ = D is an ideal dose operator which
is also actual, thus available to us.

1.3 The usual approach

The usual approach to cope with the discrepancy between the prescribed
dose dpres and the actually deliverable dose d̂, obtained from (4), consists
basically of the following actions performed in the given order: (1) perform
the inverse planning with the actual inversion operator R̂ (according to some
given model and solution method), (2) apply the dose operator and show the
resulting dose vector and its various derivatives (e.g., isodose map, dose-
volume histogram (DVH), etc.) to the planner, (3) if the results do not
satisfy the planner’s clinical goals, change parameters in the actual inversion
operator R̂ and repeat the process (i.e., go back to (1) above). For example,
if R̂ represents a minimization of a linear combination of some individual
cost functions for various organs, then a commonly used “change of para-
meters” is to change the coefficients in the linear combination of individual
cost functions that is being minimized. These coefficients reflect the relative
importance attributed by the planner to minimizing the individual cost func-
tions, each of which is usually related to one organ (target or OAR). Then
the, so revised, actual inversion operator R̂ is applied again and the new
resulting actually deliverable dose d̂ is evaluated for the case at hand, say,
via observation of the dose-volume histograms. This process demands con-
tinuous and repeated involvement of the treatment planner and it is stopped
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only when the latter accepts a clinically acceptable treatment plan presented
to him, even if it sometimes deviates from the original prescription that he
gave initially.
The main difficulty with this approach seems to lie not so much in the

repetitious application of the actual inversion operator R̂. This repetitious
application is a technical problem that can be addressed by hardware accel-
eration via more powerful computer and/or parallel computations such as on
general purpose graphics processing units (GP-GPUs). The main difficulties
with this approach are twofold: (i) the need to repeatedly and manually eval-
uate the resulting actual dose d̂ and, even more fundamentally, (ii) since the
overall process is a “search process” and the options for changing parameters
in the actual inversion operator R̂ are numerous, it is far from clear or sim-
ple how to change the parameters each time the resulting dose distribution
d̂ does not yet meet the clinical requirements.

2 The Iterative Prescription Refinement (IPR)
Method

To circumvent the difficulties mentioned above, we examine here, instead of
the traditional approach, an iterative process by which the final refined dose d̂
is reached by iteratively refining and steering a given ideal dose prescription
vector. Repeated applications of the operator R̂ are still used but instead
of doing parameter changes inside R̂ that require manual intervention and
are not always known how to perform, R̂ is used without changes and the
method itself keeps reducing the discrepancy between the current refinement
of the dose vector and the original ideal prescription.

2.1 The method

The method, which we call Iterative Prescription Refinement (IPR), iterates
on dose vectors. The procedure is outlines in Figure 1. Box “A” depicts the
not achievable situation of (3). If we had (i.e., if we knew and could imple-
ment) the ideal inversion operator R we could have calculated the desired
intensity vector x̃. This not being the case, we propose to resort to the IPR
procedure depicted on the right-hand side of Figure 1. The aim is to generate
a sequence of intensity vectors {x̂k}∞k=0 such that the dose vectors deposited
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by them d̂k = D(x̂k) get closer, or as close as possible, to dpres . As we show
below, this aim can be achieved by the IPR procedure.
No work needs to be done to implement what is in Box “B” because, by

DR = I, its input and output are identical. The right-hand side within Box
“C” uses the actual inversion operator R̂ to generate x̂k = R̂(dk), from which
d̂k is obtained by d̂k = D(x̂k). The discrepancy vector ∆k = dk − µd̂k is then
added to µdpres , where µ is a user-chosen relaxation parameter, to generate
the next refined dose vector dk+1 and so on, until some pre-defined stopping
rule applies, see the algorithm below.

Algorithm 1 Iterative Prescription Refinement (IPR)
Initialization: Choose d0, a very reasonable choice is d0 = dpres and

choose a relaxation parameter real number µ.
Iterative Step: Given the current prescription dose vector iterate dk,

k = 0, 1, 2, . . . ,
(1) Calculate the k-th intensity vector x̂k by applying the actual inversion

operator
x̂k = R̂(dk), (5)

(2) Calculate the dose vector d̂k that will be obtained from x̂k by applying
the dose operator D

d̂k = D(x̂k), (6)

(3) Calculate the dose discrepancy vector ∆k

∆k = dk − µd̂k, (7)

(5) Calculate the next prescription dose vector iterate dk+1 by

dk+1 = µdpres +∆k. (8)

Stopping Rule: Stop the process by applying some stopping rule.

2.2 Analysis of the IPR procedure

The IPRmethod can be mathematically identified (with appropriate nonessen-
tial changes of notations dictated by the problem at hand here) with the
Iterative Data Refinement (IDR) method of [5], see also [6, Section 10.5] and
[11, pp. 90 and 99]. This method has been developed in medical imaging
to cope with difficulties stemming from discrepancies between idealized and
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actual measuring devices in models of image reconstruction from projections.
It has been found useful for beam hardening correction in computerized to-
mography, for attenuation correction in single photon emission computed to-
mography (SPECT) and in image reconstruction with incomplete data, see [5,
Section 2]. It was further used for magnetic resonance imaging, see [12, 18].
Recently it has been used for transfer function restoration in 3D electron mi-
croscopy by Sorzano et al. [20], and in positron emission tomography (PET)
by Crepaldi and De Pierro [8].
Comparing IDR with the IPR outline proposed here the necessary adjust-

ments to the IDR which yield the IPR and the identification of quantities
can be observed as follows. The “idealized measuring device” and the “actual
measuring device” that appear in the IDR scheme are of no use here because
what is there the measurement vector y is here a prescription vector d that
is not at all measured, but prescribed. IPR aims to overcome imperfections
of the inversion operator (not of the measuring device, as in the IDR). The
correspondence between quantities in each of the two procedures is given in
the next table.

Iterative Data Refinement
(IDR) notations in [5]

Iterative Prescription Refinement
(IPR) notations in this paper

data vectors y(k) dose vectors dk

relaxation parameter µ relaxation parameter µ
actual ỹ
ideal ŷ

assumed ỹ = ŷ = dpres

the product operator AS the identity operator I
the product operator BS the product operator DR̂

U = (A− µB)S U = I − µDR̂

Exploiting this homomorphism enables us to “translate” some statements
and thus shed light on the algorithmic behavior of IPR. This can be done in
the following manner.

Definition 2 Iterative Prescription Refinement (IPR) associates with every
4-tuple (dpres, d0,U,µ) where U : RT → RT is an operator that maps dose
vectors onto dose vectors, µ is a real number, and dpres and d0 are vectors in
RT , a sequence {dk}∞k=0 generated by

dk+1 = µdpres + U(dk). (9)
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The quantities and notations identifications in the table show that IPR is
indeed a special case of IDR, and, in particular, that our (9) coincides with
(1) of [5]. Specifically, focusing on the IPR process depicted in Figure 1 and
described by Algorithm 1, we actually use the operator

U = I − µDR̂ (10)

thus, U(dk) = ∆k. Now that the connection between IPR and IDR is estab-
lished, the results of the mathematical analysis of [5] are applicable. The
interested reader is referred to [5] for this mathematical contents. In par-
ticular, Proposition 8 in [5] (consult also [6, Section 10.5]) translated to the
IPR procedure, guarantees, generally speaking, that under the conditions set
forth there, one of the following two possibilities must happen:
(i) Asymptotic convergence of the sequence of refined dose vectors dk to

the prescribed dose vector dpres , as k goes to infinity, i.e., limk→∞ dk = dpres ,
or
(ii) There exists an index k0 such that d0, d1, d2, . . . , dk0 are all in a certain

set (denoted Gβ in [5]), and°°dk0+1 − dpres °° < distd0β , (11)

where distd
0

β is the distance from d
pres of the point in Gd

0

β which is nearest to
dpres . Gd

0

β is the component of Gβ which contains d0. For practical reasons
(explained in [5, p. 116]) it seems that the convergence option (i) is unlikely
and the most that we could hope for is (ii). The meaning is that, provided
that d0 ∈ Gβ, improvement is guaranteed by (11) all along and up to a
certain iteration index k0. Not having a constructive way of finding this index
ahead of time, one must rely on experiments to demonstrate that this initial
improvement actually occurs. The situation (ii) is not uncommon for ill-
posed problems. The phenomenon is often referred to as semi-convergence,
see, e.g., [10].

3 A Demonstration of IPR in Photon IMRT

To illustrate the IPR method, we have generated IMRT treatment plans for
two clinical head and neck cases in the following manner. We emphasize
that the case examples are presented to only demonstrate that the approach
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and method “work” at all. More details about the experimental work that
leads to the following can be found in [15]. Further efforts might be needed
in any specific area where this will be employed to fine-tune the method to
reach computational advantages. First, we have calculated the dose matrix
A from a patient’s CT scan using CERR (Computational Environment for
Radiotherapy Research) [7] and the VMC++Monte Carlo package optimized
for radiation treatment planning [21] in MATLAB on a PC with 2.66 Core
2 Duo CPU and 3.25 GB of RAM. To reduce computational time we have
down sampled the original CT voxel size by a factor of 4 in the xy plane. No
downsampling in the z direction was used. Next, we have obtained an opti-
mal fluency map x̂ as a solution of the inversion problem x̂ = R̂(dpres). This
was done in MATLAB using MOSEK [1] optimization software [16]. The
MOSEK Optimization Software is designed to solve large-scale mathemati-
cal optimization problems. It provides specialized solvers for linear problems,
conic quadratic problems, convex quadratic problems, general convex prob-
lems, and mixed integer problems. No specific regularization is used in the
MOSEK package. However, it may happen that some optimization problem
with regularization can be reformulated as a quadratic programming problem
(see, e.g., Appendix A of Zhu et al. [23]) or the problem mentioned above.
The reformulated problem may then be efficiently solved using MOSEK. The
resultant fluency map was converted into a 3D dose distribution using the
dose matrix A. To characterize and compare different dose distributions we
have calculated corresponding dose-volume histograms (DVHs) and isodose
curves.
To demonstrate that the IPR method works we have generated two plans

for each clinical case. The first plan is a standard plan, without iterative
prescription refinement, with the prescription set to its ideal values — 100%
to the target and 0% to organs at risk. The second plan is a realization of
the proposed iterative prescription refinement method with the number of
model iterations set to 5. The plans were compared using DVHs and 3D
dose distributions plotted in MATLAB using CERR package.
The iterative calculation has two parts here: First, for a given set of

prescription, the optimization finds the corresponding solution via an iter-
ative process and this typically takes 20~30 iterations. Secondly, after the
above iterative calculation is done, we modify the prescription in such a way
that the dose inhomogeneity in the PTV and the high doses in the sensitive
structures can be reduced. After the prescription is changed, the optimiza-
tion described above (inner-loop optimization) is performed again. We found
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that after 4~5 changes of the prescription, the final solution saturates and
any further change of the prescription does not improve the quality of the
treatment plan any more. Considering the inner-loop optimization, the total
number of iteration for 5 sets of prescription is roughly 100~150. The com-
putational time for 150 iterations on a PC with 3GHz CPU is roughly 10~15
min.
In this work, the beamlet kernels for unit beamlet intensity were pre-

computed by using the Voxel-based Monte Carlo (VMC) algorithm (see
Kawrakow [14]) after the treatment beam configuration was determined. The
total dose at a point is a sum of all the contributing beamlets weighted by
appropriate intensities resulted from the optimization.

3.1 Case I

For the first clinical case we used treatment geometry with 7 beams at 0,
40, 80, 90, 120, 180 and 270 degree angles, represented by a total of 2,384
beamlets. The total number of voxels in all structures including all targets
is 256×256×224. We compare treatment plans by plotting corresponding
dose-volume histograms (DVHs). Our figure of merit is a plan with the fixed
ideal prescription. In Figure 2 we compare DVHs for the fixed and iterative
prescription refinement (after 5 iterations) plans for different structures. We
see that, while the target coverage is comparable for both plans, there is a
reduction in the delivered dose to the mandible and pharynx for the iterative
prescription plan. To run a more detailed comparison of the plans we have
plotted correspondent 3D dose distributions for a fixed slice of the patient’s
anatomy. The resultant color dose maps and organ outlines are depicted in
Figures 3 and 4.

3.2 Case II

For the second case we chose a slightly different beam geometry with 7 beams
at 30, 55, 95, 130, 150, 170 and 210 degrees, represented by a total of 3,490
beamlets. The total number of voxels in all structures is 169,050. As in
the previous case we compare a treatment plan generated with the iterative
prescription refinement method to a standard fixed prescription plan. Figure
5 shows the comparison for different structures. We observe that both plans
are identical in the PTV dose coverage for both the primary PTV and the
secondary PTV (50 Gy). PTV stands for Planning Target Volume, which
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is defined to select appropriate beam sizes and beam arrangements, taking
into consideration the net effect of all the possible geometrical variations and
inaccuracies in order to ensure that the prescribed dose is actually absorbed
in the Clinical Target Volume (CTV). Its size and shape depend on the CTV
but also on the treatment technique used, to compensate for the effects of
organ and patient movement, and inaccuracies in beam and patient setup, see
[13]. The cord, the pharynx and the oral cavity enjoy a slight dose reduction
in the case of the iterative prescription refinement plan.

4 Concluding Comments

The basic idea of Iterative Prescription Refinement (IPR) admittedly comes
from the earlier works [15, 22] with the current formulation (1) giving this
idea a new motivation, (2) putting it on sound theoretical ground, and (3)
being more general then in those papers which were limited to IMRT. Any
inverse problem, in RTTP or in another physics problem, that can be identi-
fied as a fully-discretized prescription-inversion problem can adopt and adapt
the IPR methodology. Experimental work in IMRT that implemented the
IPR methodology is reported in our recent [15] and in [22]. The methodology
of IPR is not specific to IMRT or to any specific inverse planning method
within IMRT. Any inverse planning situation modeled by full-discretization
can benefit from IPR. In this paper we identified the algorithmic nature of
IPR and validated it mathematically by showing that it is a special case of
the general iterative data refinement (IDR) paradigm. The mathematics of
IDR itself is limited, thus so is our current understanding of the foundation of
IPR. Therefore IPR needs to be further studied experimentally and mathe-
matically, raising a host of questions. Is the inverse problem at hand ill-posed,
e.g., is the matrix A in (2) ill-conditioned (or is the underlying continuous
operator compact in some reasonable topology?) It would be interesting to
see a plot of the singular values of A even for a small model problem. Even
for noise-free problems possible ill-posedness must be taken into account.
Otherwise, the computed solution can be corrupted by the noise necessarily
introduced in the computational procedure itself. How should a stopping
criterion be constructed in the IPR procedure? How should the relaxation
parameter µ be chosen?
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Figure 1: Outline of the IPR procedure.
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Figure 2: DVH comparison for the fixed ideal prescription and iterative pre-
scription refinement plans. Solid lines represent the fixed prescription dose
plan. Dashed lines correspond to the iterative prescription refinement plan.
The plans are normalized such that 95% of the PTV receives 100% of the
prescription dose (70 Gy)
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Figure 3: Dose map for the fixed prescription plan. Colors correspond to
different doses (left slider). The PTV is outlined with the green dotted line.
The cord, mandible, pharynx and oral cavity are outlined with the blue,
orange, light green and purple lines
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Figure 4: Dose map for the iterative prescription refinement plan. Colors
correspond to different doses (left slider). The PTV is outlined with the
green dotted line. The cord, mandible, pharynx and oral cavity are outlined
with the blue, orange, light green and purple lines
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Figure 5: DVH comparison for the fixed ideal prescription and iterative pre-
scription refinement plans. Solid lines represent the fixed prescription dose
plan. Dashed lines correspond to the iterative prescription refinement plan.
The plans are normalized such that 95% of the PTV receives 100% of the
prescription dose (54 Gy)
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