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TREATMENT PLANNING: CONTINUOUS INVERSION

VERSUS FULL DISCRETIZATION AND OPTIMIZATION

VERSUS FEASIBILITY
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Abstract. A mathematical formulation of the radiation therapy problem consists
of a pair of forward and inverse problems. The inverse problem is to determine external
radiation beams, along with their locations, pro�les, and intensities, that will provide a
given dose distribution within the irradiated object. We discuss the inverse problem in
its fully discretized formulation.

1. Introduction. This paper deals with radiation teletherapy where
beams of penetrating radiation are directed at the lesion (tumor) from an
external source. The other radiation delivery mode which involves direct
implantation of radioactive sources inside the lesion, called brachytherapy,
is not included in our discussion. Chapter 11 of the book by Censor and
Zenios [9] and Brahme's special issue [6] and references therein, as well as
the tutorial review of Altschuler, Censor, and Powlis [2], can be used as
introductory material to this area.

Based on understanding of the physics and biology of the situation,
there are two principal aspects of radiation teletherapy that call for math-
ematical modelling. The �rst is the calculation of the radiation dose which
is a measure of the actual energy absorbed per unit mass everywhere in the
irradiated tissue. In dose calculation, termed dosimetry, the relevant phys-
ical and biological characteristics of the irradiated object and the relevant
information about the radiation source (geometry, physical nature, inten-
sity, etc.) serve as input data. The result (output) of the calculation is a
dose function whose values are the dose absorbed as a function of location
inside the irradiated body.

The second aspect is the mathematical inverse problem of the �rst. In
addition to all physical and biological parameters of the irradiated object
we assume here that the relevant information about the capabilities and
speci�cations of the available treatment machine (i.e., radiation source) is
given. Based on medical diagnosis, knowledge, and experience, the physi-
cian prescribes a desired dose function to the case. The output of this prob-
lem should be a radiation intensity function whose values are the radiation
intensity at the source as a function of source location, that would result
in a dose function which is identical to the desired one. To be of practical
value, this resulting radiation intensity function must be implementable, in
a clinically acceptable form, on the available treatment machine.
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In what follows we discuss, from a mathematician's point of view, two
main modelling dilemmas: (i) continuous inversion versus full discretiza-
tion, and (ii) optimization versus feasibility.

Much of current radiation therapy treatment planning (RTTP) is still
done in two dimensions where only a single plane through the center of the
target is considered. RTTP is also still done mostly in a trial-and-error
fashion by picking a machine setup that gives rise to a certain external
radiation intensity �eld (function) and then using a forward-problem-solver
software package to determine the resulting dose function, see Figure 1. If
the discrepancy between this dose function and the prescribed dose function
is unacceptable then some changes are made to the machine setup and the
process is repeated until the physician and dosimetrist are satis�ed with the
resulting dose function. Only then actual patient treatment is performed.
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Fig. 1. 2D{RTTP, an external radiation �eld �(u;w) results in a dose distribution

D(r; �).

Such 2D{RTTP has achieved success due to accumulated experience
and also because of the ever increasing quality and speed of forward-
problem-solvers.
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Automated solution of the inverse problem of RTTP should be useful
in handling di�cult planning cases, particularly in 3D{RTTP, see Figure 2.
There, it would be much more di�cult to reach an acceptable plan by trial-
and-error because of the multitude of potential directions from which the
3D object can be irradiated. Nonetheless, even a 2D discussion, as given
here, is enough to expose the nature of the dilemmas that we consider.

Organ 3D external
radiation field

3D cross-section

Target

3D dose distribution level
contours

Fig. 2. 3D{RTTP, fully 3D cross section, external radiation �eld and dose distri-

bution.

In addition to the references given in the sequel we recommend also
Mackie et al. [16], Raphael [18], Webb [19], and Xing and Chen [20].

2. Problem de�nition and the continuous model. Let D(r; �) be
a real-valued nonnegative function, of the polar coordinates r and �, whose
value is the dose absorbed at a point in the patient's planar cross-section
coincident with the plane of the machine's gantry motion. This is the dose

function, or dose distribution. A ray is a directed line along which radiated
energy travels away from the source, i.e., the teletherapy source. Rays are
parametrized by variables u and w in some well-de�ned way and the real-
valued nonnegative function �(u;w) represents the radiation intensity along
the ray (u;w) due to a point source on the gantry circle. The continuous
forward problem of RTTP is the following. Assume that the cross section 

of the patient and its radiation absorption characteristics are known. Given
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a radiation intensity function �(u;w) for 0 � u < 2� and �W � w � W ,
�nd the dose function D(r; �) for all (r; �) 2 
 from the formula

D(r; �) = �[�(u;w)](r; �);(2.1)

where � is the dose operator. This operator relates the dose function to
the radiation intensity function. See, e.g., [8] or [9, Chapter 11], for a
description of the speci�c coordinate system.

In other words, the forward problem amounts to the calculation of the
total dose absorbed at each point of a patient section when all parameters of
each radiation beam are speci�ed and the description of the patient section
is known. The di�culties associated with the forward problem stem from
the fact that there exists no closed-form analytic representation of the dose
operator � that will enable us to use equation (2.1) for the calculation of
D(r; �). Although the interaction between radiation and tissue is measured
and understood at the atomic level, the situation is so complex that, to
solve the forward problem in practice, a good state-of-the-art computer
program, which represents a computational approximation of the operator
� and which enables reasonably good dose calculations, must be used.

Let us elaborate on what we mean by stating \there exists no close-
form analytic representation of the dose operator �." We actually mean the
following: If drastically simplifying assumptions are made about the physics
of the model as well as the particulars of the desired dose distribution,
then it is sometimes possible to express the dose operator in a closed-form
analytic formula. This has been done �rst by Brahme, Roos and Lax [4]
and extended by Cormack and co-workers, consult the review paper of
Cormack and Quinto [12] for further references. See also Brahme's recent
review [5] and Goitein's editorial [13].

In current practice of RTTP, when dose calculations are performed to
verify the dose that will result from a proposed treatment plan, the goal is
to obtain results that are as accurate as possible. To achieve this, various
empirical data, which are often condensed in look-up tables, are incorpo-
rated into the forward calculation. Thus, the true forward calculation, or
true dose operator, is not represented by a closed-form analytic relation be-
tween the radiation intensity function �(u;w) and the dose functionD(r; �),
but by a software package that calculates D(r; �) from �(u;w). Thus, what
we really mean by saying that there is no closed-form analytic expression
for � is that we choose to adhere to the software representation rather
than compromise by allowing simplifying assumptions that might lead to
a closed-form analytic mathematical formula.

The inverse problem of radiation therapy is the treatment planning
problem:

Given a description of the patient section, the dose prescribed for the
target, and the maximum permissible doses to the target, critical organs,
and other tissues, calculate the external con�guration and relative inten-
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sities of radiation sources (i.e., the radiation �eld) that will deliver the
speci�ed radiation doses (or some acceptable approximation thereof).

Assuming that the cross section 
 of the patient and its radiation
absorption characteristics are known, and given a prescribed dose function
D(r; �), the problem is to �nd a radiation intensity function �(u;w) such
that equation (2.1) holds, or �(u;w) = ��1[D(r; �)] where ��1 is the
inverse operator of �. This is the inversion problem that we want to
solve, in a computationally tractable way, although no closed-form analytic
mathematical representation is available for the dose operator �. The dose
at (r; �) is the sum of the dose contributions from the sources at all the
di�erent gantry angles. Thus

D(r; �) =

SX
i=1

yiDi(r; �);(2.2)

where, for each i = 1; 2; : : : ; S, the value Di(r; �) is the dose deposited at
point (r; �) by a beam of unit intensity from the ith source, and yi is the
time the ith beam is kept on.

It will be assumed here that the dose Di(r; �) can be calculated ac-
curately once the beam parameters and patient section information are
speci�ed. That is, we assume that we can solve the forward problem and
calculate D(r; �) accurately from (2.2). This assumption is con�rmed by
innumerable direct measurements in water and tissue-equivalent phantoms.

Whereas a dose distribution that solves the forward problem is al-
ways obtained for a speci�ed radiation intensity �eld, the inverse problem
may have no solution at all, since some prescribed dose functions may be
unobtainable from any radiation �eld.

3. Discretization of the problem. In the approach presented here,
we adhere to the computerized calculation of the dose operator �. Full
discretization of the problem at the outset is used to circumvent the dif-
�culties associated with the inversion of �. We also neglect the e�ect of
scatter. The patient's cross section 
 is discretized into a grid of points
represented by f(rj ; �j) j j = 1; 2; : : : ; Jg. De�ne �j [�] by

�j [�] = [��](rj ; �j)(3.1)

and call �j a dose functional, for every j = 1; 2; : : : ; J . Acting on a radia-
tion intensity function �(u;w), the functional �j provides �j [�], which is
the dose absorbed at the jth grid point of the patient's cross section 
 due
to the radiation intensity �eld �.

In continuing the discretization process of the problem it is assumed
that a set of I basis radiation intensity �elds is �xed and that their non-
negative linear combinations can give adequate approximations to any ra-
diation intensity �eld we wish to specify. This is done by discretizing the
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region 0 � u < 2�, �W � w �W in the (u;w)-plane into a grid of points
given by f(ui; wi) j i = 1; 2; : : : ; Ig. A radiation intensity function

�i(u;w) =

(
1; if (u;w) = (ui; wi);

0; otherwise;
(3.2)

is a unit intensity ray and serves as a member of the set of basis intensity
�elds, i = 1; 2; : : : ; I . A desired radiation intensity function � that solves
the inverse problem is approximated by

b�(u;w) = IX
i=1

xi�i(u;w);(3.3)

where xi is the intensity of the ith ray, and it is required that xi � 0, for
all i = 1; 2; : : : ; I . Once the grid points are �xed, any radiation intensity
function b� that can be presented as a nonnegative linear combination of the
rays is uniquely determined by the coe�cients xi, 1 � i � I . The vector
x = (xi), in the I-dimensional Euclidean space RI , is referred to as the
radiation vector or basic solution.

Further, assume that the dose functionals �j are linear and continu-
ous. This assumption cannot be mathematically veri�ed due to the absence
of an analytic representation of � or �j , but it is a reasonable assumption
based on the empirical knowledge of �j . Using linearity and continuity of

all �j 's, we can write �j [�] ' �j [b� ] = IX
i=1

xi�j [�i]. For j = 1; 2; : : : ; J ,

and i = 1; 2; : : : ; I , denote by

aij = �j [�i](3.4)

the dose deposited at the jth point (rj ; �j) in the patient's cross section 

due to a unit intensity ray �i(u;w). The fully discretized inverse problem

of RTTP then becomes to �nd a radiation vector x 2 RI such that

ATx = b ; x � 0 ;(3.5)

where A = (aij) is the I � J matrix with elements as in (3.4) and b =
(bj) 2 R

J is the discretized desired dose vector.
This fully discretized model calls for the quantities aij which can be

precalculated with any state-of-the-art forward-problem-solver. If the lat-
ter is beam-driven the apportionment of beam dose per unit intensity
among all rays, into which the beam has been discretized, is necessary,
see Censor, Altshuler and Powlis [8], Powlis et al. [17]. Numerous iterative
techniques are available for the solution of (3.5), both in the consistent
case, see, e.g., the recent review of Bauschke and Borwein [3], and the
inconsistent case, e.g., Combettes [11], Byrne and Censor [7].
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The tendency to make the discretization �ner results in very large val-
ues of I and J . As long as the available treatment machines cannot deliver
such �nely discretized radiation intensity �elds, we need an additional com-
putational step after a solution vector x� (or approximation thereof) of the
system (3.5) has been obtained. This is a \consolidation" step in which a
clinically acceptable machine setup, usually at few (up to 5{6) beam po-
sitions, is derived from the fully discretized solution vector x�, see [17].
To sum up, the fully discretized model is not di�culties-free, but it o�ers
a route of circumventing the inversion problem of the computational dose
operator � without compromising on any of the heuristics and empiricism
involved in it.

4. Optimization versus feasibility.

4.1. Feasibility. The feasibility formulation relaxes the equality
(2.1). Let D = D(r; �) and D = D(r; �) be two dose functions whose
values represent upper and lower bounds, respectively, on the permitted
and required dose inside the patient's cross section. A radiation therapist
de�nes D and D for each given case and will accept as a solution to the
RTTP problem any radiation intensity function �(u;w) that satis�es

D(r; �) � �[�(u;w)](r; �) � D(r; �); for all (r; �) 2 
:(4.1)

In target regions (tumors) the lower bound D is usually the important
factor because the dose there should exceed some given value. In critical
organs and other healthy tissues D(r; �) = 0, so that D(r; �) is the dose
that cannot be exceeded. Any solution �(u;w) that ful�lls (4.1), for given
D and D, is a feasible solution to the RTTP problem. In order to discretize
(4.1) we must specify the dose functions D and D at the grid points by
giving, for all j = 1; 2; : : : ; J ,

D(rj ; �j) = Dj ; D(rj ; �j) = Dj ;(4.2)

thus converting (4.1) into a �nite system of interval inequalities

Dj � �j [�] � Dj ; j = 1; 2; : : : ; J:(4.3)

Denoting hereafter by D (D) the J-dimensional column vector whose jth
element is Dj (Dj), the inverse problem of RTTP is restated as follows:

Given vectors D and D of permitted and required doses at J grid
points in the patient's cross section 
, �nd a radiation intensity distribution
� = �(u;w) such that (4.3) holds. The fully discretized feasibility inverse

problem of RTTP then becomes the linear interval feasibility problem of
�nding a vector x 2 RI such that

Dj �

IX
i=1

xidij � Dj ; j = 1; 2; : : : ; J;

xi � 0; i = 1; 2; : : : ; I:

(4.4)
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Let the set of pixels in the discretized patient cross section be denoted
by N = f1; 2; : : : ; Jg. Organs within the patient section are then de�ned as
subsets of N . The subsets Bk � N , where k = 1; 2; : : : ;K denoteK critical
organs to be spared from excessive radiation. Let the values bk denote the
corresponding upper bounds on the dose permitted in each critical organ.
The subsets Tq � N , where q = 1; 2; : : : ; Q, denote Q target regions. Let
the values tq denote the corresponding prescribed lower bounds for the
absorbed dose in each. All the Bk and Tq are pairwise disjoint. The set
of pixels inside the patient section that are not in any Bk or Tq are called
the complement, denoted as the subset C � N , and c is the upper bound
for the total permitted dose there. It is assumed that the de�nition of all
subsets Bk; Tk, and C and the prescription of all bk; tq, and c are given
by the radiotherapist as input data for the discretized treatment planning
problem.

Problem (4.4) then becomes the following system of linear inequalities,
which we call the basic model:

IX
i=1

dijxi � bk; for all j 2 Bk; k = 1; 2; : : : ;K;(4.5)

tq �

IX
i=1

aijxi; for all j 2 Tq ; q = 1; 2; : : : ; Q;(4.6)

IX
i=1

aijxi � c; for all j 2 C;(4.7)

xi � 0; for all i = 1; 2; : : : ; I:(4.8)

With bk; tq , and c given and the aij 's calculated from (3.4), the math-
ematical question represented by the basic model (4.5){(4.8) is to �nd a
nonnegative solution vector x� = (x�i ) for a system of linear inequalities.
The remarks about clinical acceptability of x� from the end of the last
section apply also here.

We �rst proposed this fully discretized feasibility inverse problem in
Altschuler and Censor [1], see also [9, Section 11.7] for a brief review of
other approaches and references.

4.2. Optimization. When it comes to discussing an optimization ap-
proach to RTTP we must distinguish between two di�erent kinds of opti-
mization problems depending on the space in which they are formulated.
One possibility is to de�ne an objective function f : RI ! R, i.e., over
the space of radiation intensity vectors x and use either the system (3.5)
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or the constraints (4.5){(4.8) as the feasible set. For example, choosing

f(x) =
1

2
kxk2 (k � k stands for the Euclidean norm) and solving a mini-

mization problem will lead to a minimum-norm solution vector x�. I.e., a
feasible vector closest to the origin so that the total radiation intensity is
smallest possible in the Euclidean norm sense. A special-purpose iterative
minimization method such as Hildreth's algorithm, see, e.g., [9], applies in
this case.

Regardless of the speci�c choice of f , in this approach the interval-
constrained optimization problem

minf(x)

s.t. � � ATx � �;(4.9)

x � 0;

is still aiming at solution of the fully discretized formulation of the inverse
problem. A solution vector x� will represent a radiation �eld that will
deliver a dose which is both feasible (i.e., adheres to the upper and lower
doses imposed by the physician) and is optimal in the sense of the objective
function f . This approach of optimization in the space of radiation intensity
vectors will be called henceforth radiation intensity optimization.

The second possibility for introducing an optimization problem in
RTTP is to use (3.5) or (4.5){(4.8) as constraints but choose an objective
function g : RJ ! R de�ned over the space of dose vectors. Such ob-
jective functions may be either biological, or physical. Biological objective
functions represent knowledge (statistical or other) about various biological
mechanisms that a�ect our ability to control the disease. An example is
the conditional probability of having tumor control without severe injury,
denoted in RTTP literature by P+. Physical objective functions aggregate
physical features which are important for tumor control and prevention of
normal tissue complications, such as dose variance over target volume or
peak dose to organs at risk. A thorough discussion of biological and phys-
ical objective functions can be found in Brahme [5]. Let us call this kind
of optimization, over the space of dose vectors, dose optimization.

5. Discussion. The trade-o� between the continuous model and full
discretization has already been explained in Section 3. Brahme reaches
also a conclusion in favor of full discretization and says [5, p. 216]: \: : :
In either case it is very useful to transform the relevant integral equation
into an algebraic form by discretizing the transport quantities along the
coordinates of the free variables."

The question of feasibility versus optimization is not crucial if only ra-
diation intensity optimization (as de�ned above) is considered. This is so
because both the feasibility formulation and the optimization formulation
(regardless of the particular choice of the objective function f(x)) occur in
the same space (of radiation intensity vectors) and, thus, aim at a solution
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of the discretized inverse problem. Therefore, the di�erence between these
two formulations is, from the mathematical point of view, only technical.
Recently, Cho et al. [10] reported on the advantage of the feasibility ap-
proach over a global optimization model solved by simulated annealing.
In contrast, the dose optimization (as de�ned above) approach leads to a
problem of the form

ming(ATx)

s.t. � � ATx � �;(5.1)

x � 0:

If a set of dose vectors b` 2 RJ , for ` = 1; 2; : : : ; L, each of which represents
a deliverable treatment plan, are given, then the values of a biological or
physical dose objective function g(b`) can be calculated for each and com-
pared. Choosing the plan with lowest g(b`) in such circumstances means
that we are merely doing a comparison (among rival plans) which are given
(i.e., constructed in some way prior to the comparison).

In case when the composite function g(ATx) is simple enough (the
approach of (5.1) can still be e�ciently used for solving directly the (dis-
cretized) inverse problem in its full generality. Otherwise, the inversion
problem has to be abandoned and the optimization can be performed with
respect to only few parameters of the external radiation �eld. See, for ex-
ample, Gustafsson [14] and Gustafsson, Lind and Brahme [15]. This is done
while other important parameters are left out of the optimization problem
and must be given as input to the process, see also the discussion in [9,
Section 11.7].

The question whether to adhere to the mathematical inverse problem
(and possibly confront a di�culty when translating a radiation intensity
solution vector x� into an implementable and clinically acceptable treat-
ment plan) or to use biological or physical objective functions in the space
of dose vectors (and thereby possibly compromise on the full generality of
the inverse problem)|remains unsettled.
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