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Abstract

Simultaneous subgradient projection algorithms for the convex fea-
sibility problem use subgradient calculations and converge sometimes
even in the inconsistent case. We devise an algorithm that uses
seminorm-induced oblique projections onto super half-spaces of the
convex sets, which is advantageous when the subgradient-Jacobian is
a sparse matrix at many iteration points of the algorithm. Using gen-
eralized seminorm-induced oblique projections on hyperplanes defined
by subgradients at each iterative step, allows component-wise diago-
nal weighting which has been shown to be useful for early acceleration
in the sparse linear case. Convergence for the consistent case with
underrelaxation is established.

1 Introduction

The convez feasibility problem (CFP) is to find a point z* in the intersection
@) of m closed convex subsets Q)1,Qo,...,Q,, € R" of the n-dimensional



Euclidean space. Each (); is expressed as

Qi ={r € R"| fi(x) <0}, (1)

where f; : R" — R is a convex function, so the CFP requires a solution of
the system of convex inequalities

filz) <0, i=1,2,....,m. (2)

Many iterative projection algorithms for the CFP were developed, see Sub-
section 1.1 below, but we focus our attention here on simultaneous ones.
Such algorithms convexly combine the individual projections, thereby allow-
ing the user to assign weights (of importance) to the individual sets. Our
objective in the present paper is to propose and study a simultaneous projec-
tion method that enables component-wise weighting. This means that weights
assigned to the sets are not just set-dependent w;s but, at the same time, also
component-dependent, so that we have weights {w;;} for alli =1,2,...,m
and all j = 1,2,...,n. To the best of our knowledge, no other projection
method for the general (not necessarily linear) CFP exists that allows this
flexibility.

The origins of this idea lie in [8] where a simultaneous projection algo-
rithm, called component averaging (CAV), for systems of linear equations,
that uses component-wise weighting was proposed. Such weighting enables,
as shown and demonstrated experimentally on problems of image reconstruc-
tion from projections in [8], significant and valuable acceleration of the early
algorithmic iterations due to the high sparsity of the system matrix appear-
ing there. In [8] a notion of a generalized oblique projection onto a hyperplane
was introduced. Such a projection extends the common oblique projection
that uses an ellipsoidal norm ||z||¢ = (z, Gz)"/?, with a diagonal positive
definite matrix GG, to a generalized oblique projection with respect to a semi-
norm |x|G in which G may have zeros on its diagonal. In this way diagonal
weighting matrices were introduced in the simultaneous algorithmic scheme.
A block-iterative version of CAV, named BICAV, was introduced later in
[9]. Full mathematical analysis of these methods, as well as their companion
algorithms for linear inequalities, was presented by Censor and Elfving [6]
and by Jiang and Wang [25].

It is, therefore, natural to ask if and how these ideas can be extended to
a CFP with nonlinear convex sets. An attempt to answer this question was
made in [7]. However, when applying seminorm-induced oblique projections
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in a simultaneous algorithmic scheme for general (not necessarily linear) con-
vex sets, the approach used in [7] mandated a certain relationship between
the matrix G and the (nonlinear) convex set () onto which the seminorm-
induced projection is made, namely, that the set will be directionally affine
with respect to G, see [7, Definitions 2.3 and 2.4]. In spite of the actual
generalization obtained in this way, its scope is limited due to this extra
condition.

Here we manage to construct a simultaneous projection algorithm with
component-wise weighting, for general convex (not necessarily linear) sets
without any such scope-reducing conditions on the convex sets. The method
proposed here keeps using seminorm-induced oblique projections but instead
of performing them directly onto the convex sets (which led to that extra
condition in [7]) we do the seminorm-induced oblique projections onto super
half-spaces, determined by any subgradient of the function at the current
point. This is easier to execute and it still allows the user to employ, and
take advantage of, component-wise weighting.

The potential for initial algorithmic acceleration in the sparse Jacobian
case inspired us to investigate this problem but we present in this report only
theoretical results of the algorithmic development and convergence. The no-
tion of sparseness is very well understood and used for matrices (see, e.g.
Wilkinson [31]) and, from there, the road to sparseness of the Jacobian (or
generalized Jacobian) matrix as an indicator of sparseness of nonlinear pro-
gramming problem is short, see, e.g., Betts and Frank [4].

Future studies are aimed at further expanding the family of projection
algorithms that allow component-wise weighting with weights {w;;} for all
¢ and all j and at studying convergence rates. There are some real-world
problems such as intensity-modulated radiation therapy (IMRT) where con-
vex nonlinear constraints appear, see, e.g., Censor et al. [10, 11], which
might benefit from the developments presented here but this has not yet
been verified.

More general (asynchronous, block-iterative, iteration-dependent weight,
adapted long-step relaxations) parallel projection methods exist to solve sys-
tems of convex inequalities, see, e.g., Dos Santos [21], Combettes [17], Kiwiel
and Lopuch [26]. However, these methods are based on different principles
and do not incorporate component-wise weighting neither cater specifically
for sparse problems. The possibility of combining such other techniques with
the methodology proposed here still needs to be investigated.



1.1 Projection methods: Advantages and earlier work

The reason why the CFP is looked at from the viewpoint of projection meth-
ods can be appreciated by the following brief comments, that we made in ear-
lier publications, regarding projection methods in general. Projections onto
sets are used in a wide variety of methods in optimization theory but not
every method that uses projections really belongs to the class of projection
methods. Projection methods are iterative algorithms that use projections
onto sets while relying on the general principle that when a family of (usually
closed and convex) sets is present then projections onto the given individ-
ual sets are easier to perform then projections onto other sets (intersections,
image sets under some transformation, etc.) that are derived from the given
individual sets.

A projection algorithm reaches its goal, related to the whole family of sets,
by performing projections onto the individual sets. Projection algorithms
employ projections onto convex sets in various ways. They may use different
kinds of projections and, sometimes, even use different projections within the
same algorithm. They serve to solve a variety of problems which are either
of the feasibility or the optimization types. They have different algorithmic
structures, of which some are particularly suitable for parallel computing, and
they demonstrate nice convergence properties and/or good initial behavior
patterns.

Apart from theoretical interest, the main advantage of projection meth-
ods, which makes them successful in real-world applications, is computa-
tional. They commonly have the ability to handle huge-size problems of di-
mensions beyond which other, more sophisticated currently available, meth-
ods cease to be efficient. This is so because the building bricks of a projec-
tion algorithm are the projections onto the given individual sets (assumed
and actually easy to perform) and the algorithmic structure is either sequen-
tial or simultaneous (or in-between). Sequential algorithmic structures cater
for the row-action approach (see Censor [5]) while simultaneous algorithmic
structures favor parallel computing platforms, see, e.g., Censor, Gordon and
Gordon [8]. The field of projection methods is vast and we can only mention
here a few recent works that can give the reader some good starting points.
Such a list includes, among many others, the works of Crombez [18, 19],
the connection with variational inequalities, see, e.g., Aslam Noor [28], Ya-
mada’s [30] which is motivated by real-world problems of signal processing,
and the many contributions of Bauschke and Combettes, see, e.g., Bauschke,



Combettes and Kruk [2] and references therein. Consult Bauschke and Bor-
wein [1] and Censor and Zenios [13, Chapter 5] for a tutorial review and
a book chapter, respectively. Systems of linear equations, linear inequali-
ties, or convex inequalities are all encompassed by the CFP which has broad
applicability in many areas of mathematics and the physical and engineer-
ing sciences. These include, among others, optimization theory (see, e.g.,
Eremin [22], Censor and Lent [12] and Chinneck [14]), approximation theory
(see, e.g., Deutsch [20] and references therein) and image reconstruction from
projections in computerized tomography (see, e.g., Herman [23, 24], Censor

[5])-

2 Subgradient generalized oblique projections
onto convex sets

The following definitions of oblique projections and generalized oblique projec-
tions will lead us to define the new subgradient generalized oblique projections
onto convex sets. Consider a hyperplane H := {z € R" | (a,xz) = b} ,with
a € R", b€ R and a # 0, where (-,-) denotes the inner product in R". Let
G be an n x n symmetric positive definite matrix and let ||z]|7, := (z, Gz) be
the associated (squared) ellipsoidal norm. Given a point z € R"™, the oblique
projection with respect to G of z onto H is the unique point P§(z) € H for
which

Pfi(2) = argmin {||z - 2| | = € H}. (3)
Solving this minimization problem leads to
h—
PG(2) =z + MG’M (4)
lallG-

where G~! is the inverse of G. For G = I, the unit matrix, PS is the
orthogonal projection and we denote it by Py. We consider now generalized
oblique projections onto a hyperplane with respect to a diagonal matrix G =
diag(g1, g2, - - -, gn) for which some diagonal elements may be zero. Since this
does not fit into the formula (4), we use the following definition from [8].

Definition 1 Let G = diag(¢1,92,...,9n) withg; > 0 forall j=1,2,...,n,
be a given diagonal matriz. Let H = {x € R" | (a,x) = b} be a hyperplane



with 0 # a = (a;) € R™ and b € R, and assume that g; = 0 if and only if
aj = 0. Define the vector v = (v;)j—; by

w={ o fu s ®

The generalized oblique projection of a point z € R" onto H with
respect to G is defined, for all j =1,2,...,n, by

(PG(2)), = 2 + @2 (©)
Za%/gl

We generalize this to half-spaces in the obvious way.

Definition 2 Let G' = diag(¢1,92,...,9n) withg; > 0 forall j=1,2,...,n,
be a given diagonal matriz. Let L = {x € R™ | (a,z) < b} be a half-space with
0+#a=(a;) € R" and b € R, and assume that g; = 0 if and only if a; = 0.
For any point z € R™ let

n

c(z) = min | 0,(b = (a,2)) /(D _ai/a) | - (7)

=1
9170

The generalized oblique projection of the point z onto L with
respect to G is defined by

P (2) =z +c(2) v (8)
where v is as in Definition 1.

The set of all subgradients of a convex function f at a point z is called
the subdifferential set of f at z and denoted by 0f(z). A vector t € R" is a
subgradient of f at a point z if

(t,x —z) < f(x) — f(2), forall =€ R", 9)

see, e.g., [29, p. 214]. If f is differentiable at z then its gradient V f(z) is its
unique subgradient at z and a convex function always has a subgradient.
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Lemma 3 [1, Lemma 7.5] Let [ : R" — R be a convex function and let
z € R". Assume that the level-set F' := {x € R" | f(x) < 0} is nonempty
and for any t € 0f(z), define the closed convex set L by

L:=L¢(z,t):={z e R"| f(2)+ (t,x —2z) <0}. (10)

Then
(i) FCL andift#0 then L is a half-space; otherwise L = R™.

(i1)

Pz =3¢ "l (11)

We denote the bounding hyperplane of L by
H:=Hy(z,t) :={x € R"| f(2) + (t,x — z) = 0}. (12)

In order to define subgradient generalized oblique projections onto convex
sets we need first the following information.

Definition 4 A real diagonal n x n matriz G with diagonal elements g; > 0
15 called sparsity pattern oriented (SPO) with respect to a vector

a = (a;)? if, for every j =1,2,...,n, g; # 0 if and only if a; # 0.

Given a point z € R", let GG be a real n x n diagonal matrix, which is SPO
with respect to a subgradient of the convex function f at the point z. We
will consider generalized oblique projections onto a half-space L = L¢(z,t)
with respect to G. Let GT be the Moore-Penrose generalized inverse of the
n x n diagonal matrix G (see, e.g., Ben-Israel and Greville [3]), i.e.,

G' = diag(g1, G2, - - -, Gn), (13)
where / ; #

~ 1 gjv { gj 07

%= { 0, if g;=0. (1)

Definition 5 Let f : R" — R be a convex function. Suppose that the level-
set F:={x € R"| f(x) <0} is nonempty and let z € R" be a given point.
Taking any subgradient t € Of(z), let G be a real n x n diagonal matriz,
G =diag{g1,92,-..,9n} withg; > 0 forallj = 1,2,... ,n, which is SPO with
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respect to t. The subgradient gemeralized oblique projection, with
respect to G, of the point z onto the set F, denoted by Q% (z), is de-
fined as

Of(2) = PL(2), (15)

where L = L¢(z,t) is a half-space as in (10).

Denoting |x|G := y/{(x, Gz), where G is a diagonal matrix with nonnega-

tive diagonal entries, observe that |x| is a vector seminorm (see, e.g., [27])
because it may be equal to zero for an x # 0 if G has at least one g; = 0.
We express Q% explicitly component-wise, under the conditions of Definition
5, by
zj — nf(zitjy if f(z)>0
(QF(2)); = > at)? (16)

=1
2, if f(z)<0

for all j =1,2,...,n, or in matrix notation,

$|) ~Git, if f(z)>0

(=2 |o (17)

Notice that (17) generalizes (11). Indeed, if G = al, where [ is the unit
matrix and « is a positive scalar, then

(L L@ ) >0

Zji — o

(QF(2); = Y ()*/a

b if f(2) <0
( Zj — ﬁf(z) tj, lff(Z) >0

= < > (W)

=1

L %) if f(z) <0
= (P(2));- (18)




3 The algorithm

Consider the CFP with {Q;};", given as in (1) and make the following defi-
nition.

Definition 6 Let f; : R* — R, 1+ = 1,2,...,m be convex functions and
let z € R". Denote t' € dfi(x) , t* = (t})7_;. The m x n matriz T(x) =
(tij)iti,7—y is called a generalized Jacobian of the family of functions

{fi}i, at the point x if t;j =t for all i and all j, for some t'.

This definition coincides in our case with the Clarke’s generalized Jaco-
bian, see [15] and [16]. A generalized Jacobian T'(x) of the functions in (2) is
not unique because of the possibility to fill it up with different subgradients
from each subdifferential set. In case all f; are differentiable the general-
ized Jacobian reduces to the usual Jacobian. Furthermore, the generalized
Jacobian might be a sparse matrix. Therefore, it is useful to make the next
definition.

Definition 7 A family {G;}", of real diagonal n xn matrices with all diago-
nal elements g;; > 0 such that Y ;" G; = I will be called sparsity pattern
oriented (SPO) with respect to a generalized Jacobian of (1)

at some given point z if, for everyi =1,2,...,m, gi; # 0 if and only if
tij # 0.

Thus, g;; is the j-th diagonal element of the diagonal matrix G;. Our al-
gorithm for solving the CFP, with subgradient seminorm-induced generalized
oblique projections, is a simultaneous projection algorithm that allows the
use of component-wise weighting in the convex combination of projections at
each iterative step in the following manner.

Algorithm 8
Initialization: 2° € R™ is arbitrary.
Iterative step: Given the current iterate x*, calculate the next iterate
k+1
x by

m k
" =2k Z G* (QZG (z%) — xk> : (19)
i=1
Gk - Gk . . R k1m . . .
where ;" = Q4! and in the k-th iterative step {G7}[2, is a given family

of diagonal SPO matrices with respect to a generalized Jacobian T (z*), and
{Mi}re, are relazation parameters.



Calculating explicitly the j-th component of the expression under the
summation symbol in (19), using (17), we obtain

(6 (o o)) | Tty () e A=
’ 0, if fi(a%) <0
(20)
This shows the component-wise weighting nature of the algorithm. Denoting
the set of indices of functions which are active at a given point z by Z(z) =
{i| fi(z) >0, i=1,2,...,m}, (19) can then be rewritten component-wise,
using (16), as

lc+1 )\k Z fl i7 (21)
i€=(E) Zgz ()?

=1
for j =1,2,...,n, where t* € df;(z").

4 Convergence analysis

In this section we prove convergence of Algorithm 8 and propose a specific
set of matrices {G;}.", which accelerates the algorithm. Our proof of con-
vergence is done under the following conditions:

(C1) fi : R* — R, for i = 1,2,...,m, are convex functions, hence Q; C
R™ fori=1,2,...,m, are closed convex sets as given in (1).

(C2) For every k > 0, {Gf}zl is a set of real diagonal matrices which
are SPO with respect to a generalized Jacobian T'(z*), chosen at the k-th
step.

(C3) Q =N, Q; # 0.

(C4) There exists an ¢ > 0, such that, for every i = 1,2,...,m, and for
all & > 0, the diagonal elements gU of Gf, are for all j = 1,2,...,n either
g =0or gj >e>0.

We first treat the unity relaxation case A\, = 1, for all k£ > 0, so that the
iterative step has the form

=S ek (ot (22)
=1

and remove this restriction later.
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Lemma 9 If {x*}3°, is any sequence, generated by Algorithm 8 with unity
relazation, then for any x € R™ and for every k > 0,

zm: |QIGf(ack) — aclsz = zm: |QZGf(mk) — xkﬂl; + ||z - :UkHHz . (23)
i=1 ‘ i=1 ‘

Proof. The proof follows the lines of Proposition 3.4 in [7].

m
% 2 % 2
Z |QZGZ (xk) - xlc;lv o Z |QZGZ (xk) o xkﬂlak
1 l:l 1

i=1
- Zm: (Il‘l; N |5’5k+1|; +2 <Gf9f§ (), 2" — :c>> L (29
i=1 i i

Using the fact that, due to >_7", GF = I, we have, for any y € R",

Zm: |y|z = [lyll3 (25)
=1 K

the result follows. ®m

Lemma 10 Let L C R"™ be a half-space and let G # 0 be a nonnegative
diagonal matriz and let PS¢ be the generalized oblique projection as in (8). If
z € L is any given point, then for anyy € R", the following inequality holds:

2

|Pew) |, <) —|, - |- PP W], (26)

Proof. If y ¢ L, it is obvious that P (y) = P§(y),where H = {x € R" |
(a,z) = b} is the bounding hyperplane of L. Let z = P§(y) + h for some h.
Then

|- - y|z ~ |-~ Pﬁ(y)rG - |Piw) - y|2G
=2(h,G(Pii(y) —y)) . (27)

Then using (y — P§(y), G(z — P (y))) < 0 we obtain (26). If y € L then
the result follows immediately. m
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Definition 11 A sequence {z*} 2, is called Fejér-monotone with respect
to a nonempty set C C R" z'fok“ — :UH2 < ka — 33H2 , for all k >0, for
every x € C.

Lemma 12 Any sequence {x*}2,, generated by Algorithm 8 with unity re-
laxation, is Fejér-monotone with respect to ().

Proof. Let x € ), then, using (23), we have

m
: 2
R el e [ e e [ C R
i=1 !
-l—zm:lQGf(:L‘k) _‘,L,k:—&-ll2
— 1" Gf
Z:n 2 Gk 2
= Zl (lx — :L‘lef — |Ql (k) — x|G§>
=
oGk k1]
+> | @) =L (28)
i=1 !

For the second summand in the last expression we have,

m

Gk 2
> @ =, = 0. (29)
i=1 !
and taking G = G¥, 2 = x, y = 2F and PZ(y) = ka (z*) in Lemma 10
yields,

m

> (Il ~loffen ol ) 2 oot~ 20 6o

1=1

from which the result follows. =

Theorem 13 [1, Lemma 2.16 | Suppose that a sequence {xk}zozo is Fejér-
monotone with respect to some closed convex set C' then {:L‘k}:ozo converges
to some point in C if and only if {xk}zozo has cluster points all lying in C.
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Now we are ready to prove the convergence result.

Theorem 14 Under Conditions (C1)-(C4), any sequence {x*},, gener-
ated by Algorithm 8 with unity relaxation, converges to a solution of (1).

Proof. From Fejér-monotonicity of the sequence {:ck}:ozo follows that the
sequence {||xk — xH }ZOZO is monotonically decreasing and bounded, therefore,

limy_ o0 ka — xH = d for some d. Hence Hx — kaz — ||x — x’““H; tends to 0
as k — oo. This implies, via (28) and (30), that

k—o00

lim |Q1G§(xk) - xlek = 0. (31)

For any i € Z(z"), (17) implies

|QG§“(xk) _ xlek _ |xk o fz(fk) - (Gf)Tti . xkl

) k i k
z |, ¢
= Lx,), where t* € 0 f;(2%), (32)
[(chte]
G§
and so, by (31), we have
ok
lim fk(—‘f) —0. (33)
f—00 |(Gz) ¢ |Gk
Since the functions f; : R* — R, for ¢ = 1,2,...,m, are convex, their

subdifferentials are uniformly bounded on bounded sets, see, e.g., Bauschke
and Borwein [1, Corollary 7.9]. Therefore, for some T € @ there exists a
constant a = () such that ||t||, < «, for all subgradients ¢ € df;(z), for
alli =1,2,...,m, and for all z € R" for which ||z — Z||, < |[2° — Z|,. If we
denote

By ={zeR"||z—7|, < [s®— /"E\Hz} , (34)

then 2¥ € B; for every k > 0, by repeated application of Fejér monotonicity
of {2k}, with respect to @ and because T € @, and so all subgradients
t € 0fi(2"), for all k > 0, are bounded, i.e., ||t|, < a. Therefore, regardless
of which #* is taken, (t/)> < § for some constant 3, for all j = 1,2,...,n.
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From the definition of the seminorm, from Condition (C4) and from the
properties of G¥ and (G¥)T follows

12 .
|(@Hie], = (@t @hant) Zgw 59595t

N AGE NI (33)

Combining this result with (33) we obtain lim, ., f;(z*) = 0. Since {z*}%2,
is bounded, it has a cluster point, say, * and

lim o = 2%, (36)
p—o0
Since lim, .o, fi(z**) = 0, for all i = 1,2,...,m, we have that z* € Q.

Therefore, from Theorem 13 follows that {z*}%°, converges to some point in
() and the proof is complete. m

Next we get rid of the unity relaxation assumption and allow underrelaz-
ation.

Theorem 15 Under Conditions (C1)-(C4), any sequence {x*},, gener-
ated by Algorithm 8 with relaxation parameters {\,}32, such that 0 < 6 <
e < 1, for all k > 0, for some arbitrarily small but fixed 0, converges to a
point T* € Q).

Proof. Define the following m + 1 diagonal n x n matrices

%= \G¥ for alli =1,2,...,m and for all & > 0, (37)

M= 1— Zrk for all k > 0, (38)

and define an additional constraint set as the level-set of the identically-zero
function f,11(z) =0, i.e., Qi1 = R™. Then Algorithm 8 takes the form

m+1

= 3T (o), (39)

=1

because €2, o Q?f Also, the original CFP obviously remains unchanged,
and ZmH ['* = I, for all K > 0. Thus, Theorem 14 applies and the result
follows. m

14



Finally, we propose a specific way to construct at the k-th iterative step
diagonal matrices G¥, i = 1,2, ..., m, with nonnegative entries, that will ac-
celerate the algorithm when the generalized Jacobians are sparse. Dropping
the index k for convenience, let s; be the number of nonzero elements in the
j-th column of the generalized Jacobian T'(z) of (1), thus taking into account
only rows with indices i for which f;(z) > 0, and define

1/s;, if t;; # 0,

i = { 0/ " it =0, (40)

The generalized inverses (G;)" = diag(gi1, g2, - - - , §in) are then expressed by
— sj, if g =1/sj,

9ij = { OJ if gl-j- = 0./ ’ (41)

In case that the m x n matrix T'(z) is sparse the s; values will be smaller
than m. Therefore, such diagonal component-wise weighting will accelerate
the initial progress of the iterates generated by the algorithm. This has been
demonstrated experimentally in the linear case in [8] and [9].
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