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INTRODUCTION 
 
The purpose of proton Computed Tomography (pCT) 

is to provide an image that accurately captures the relative 
stopping power (RSP) needed for proton treatment 
planning calculations. Series-expansion type methods [1] 
have been successfully employed in this area and have 
demonstrated good results [2,3]. These methods are used 
for solving a linear system of equations of the form 
     (1) 
where is the system matrix with  rows and  columns, 

 is a vector with  elements representing the integral 
RSP measurements, and  is a  -dimensional vector 
representing the image which we need to reconstruct. The 
system (1) is often very large and requires substantial 
resources for solving it. It has the characteristic of also 
being sparse which makes it ideal when solved with 
iterative projection methods. These types of methods 
accept an initial point as part of an input and perform 
iterative updates to the image vector  The updates are 
performed according to some projection scheme, that 
could be sequential or parallel (or any mix of the two, 
such as String-Averaging Projections (SAP) or Block 
Iterative Projection (BIP) methods). In pCT the parallel 
schemes are preferred since the rows of the matrix can 
then be partitioned into groups (blocks) where the rows in 
each block can be processed simultaneously, and achieve 
faster convergence as a result.  
        The projection methods discussed above belong to 
the family of feasibility-seeking algorithms. Their main 
characteristic is that they will accept any solution as long 
as it is consistent with the system (1). On the other hand, 
there are problems that require, in addition to finding a 
feasible solution, that the solution should also be a 
minimum (or a maximum) of some well-defined merit 
function; methods for doing this are referred to as 
optimization methods since they seek an optimal solution. 
A new methodology, called superiorization, was recently 
developed as a framework for algorithms that lie 
conceptually between feasibility-seeking and optimization 
algorithms. It is a heuristic tool that does not guarantee to 
find the optimum value of a given functional, rather it 
obtains a solution that is superior (with respect to the 
merit function) to what would be achieved if 
superiorization would not have been used (i.e., superior to 
a feasible solution). The advantage of an algorithm that 
uses superiorization as the driving tool (as opposed to 
optimization) is that it requires less computational 

resources while providing comparable solutions, from the 
point of view of real-world applications, to those that one 
would get with algorithms that use optimization. 
Superiorization relies on the general principle that many 
classes of projection methods (such as SAP and BIP) are 
perturbation resilient, meaning that every step in the 
iterative process can be perturbed and convergence to a 
feasible solution can still be retained. Mathematically we 
mean that if an algorithm, whose iterative step has the 
form  
      (2) 
where is the algorithmic operator and  is a positive 
integer representing the current iteration index, converges, 
then so will the perturbed algorithm whose iterative step 
is either 
                
      or    (3) 
                
where are nonnegative real numbers such that  

and are bounded vectors [4,5]. 
Superiorization uses these (bounded) perturbations to 
steer the iterates towards a solution that is superior with 
respect to a given merit function  so that a superior 
feasible solution is found with respect to  as opposed to 
just any feasible solution. This is achieved, for example, if 
at each iterative step the value of the function gets 
reduced as the iterations proceed. 
        Superiorization with total variation as the  was 
successfully implemented for pCT. Here we take the 
approach one step further and suggest to have a dual 
perturbation scheme. The first perturbation of the scheme 
aims at superiorizing the  while the second aims at 
improving our control of the balance between the work 
done to achieve feasibility and the work done to reduce 
the merit function. We discuss the details of our proposed 
method in the next section and then show its usefulness 
for pCT. 
  
METHODS 
 
        Our suggested scheme uses two kinds of 
perturbations. The algorithm in each iterative step 
performs the first kind, followed by a projection operator 
(that is known to be bounded perturbation resilient), 
followed by the second kind of perturbations, where the 
output of the latter is considered the starting point for the 
next iteration. The first kind of perturbations aims at 
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reducing the value of a given merit function  Here we 
use the Total Variation ( ) defined as  

 
where  is the image vector  of (1) represented as a 2D 

array and  and  represent the index of the of rows 
and columns of  respectively. The perturbations scheme 
for reducing the  was chosen as in [4]. The essence of 
it relies on the fact that  is a convex function and that 
moving in the negative (normalized) subgradient direction 
with a given step size insures that the value of  be 
superiorized. Due to the normalization, the perturbation 
vector is bounded. The vector for the  iteration is 

The step size  is initially set to 1. To insure that the 
merit function is reduced, we check its value before and 
after the perturbation. If the value of the function of the 
new perturbed point is not reduced (superiorized), then 
the size of  is halved and the process repeats (with the 
same ) until the condition succeeds. The resulting 
sequence of  is summable, as required for bounded 
perturbations resilience. 
        The projection operator is then applied to the newly 
perturbed point. In this work we have chosen the DROP 
operator [6], which belongs to the BIP algorithmic family. 
In DROP, the rows of the system matrix in (1) are 
partitioned into  blocks, where  is the set of row 
indices of the  block and the total number of rows is 

 The DROP operator was chosen as 
in [1] but here the blocks were partitioned so that the 
number of proton histories was not necessarily equal in 
each block (although their sizes are approximately the 
same). The DROP algorithm is defined as 

       (5) 

where and are the current and next image 
vectors, respectively, is a sequence of user-chosen 
relaxation parameters, is a diagonal matrix with an 
element on its diagonal equivalent to the minimum 
between 1 and the reciprocal of the number of nonzero 
intersections of the  row in  and the  pixel in 

 and and  correspond to the row and element 
of and  in the block , respectively. Here we have 
adopted the cyclic control, where mod  
controls the order by which the blocks are picked and 
projected onto.  
        The resulting point of the projection operator is then 
perturbed for the second time. The aim of the second kind 
of perturbations is to enable us to better control the trade-
off between feasibility-seeking and merit function 
reduction. Too intensive use of the feasibility-seeking 
projection method might give the superiorization 
algorithm insufficient time to properly reduce the merit 
function values in the process. Too little use of the 
feasibility-seeking projections method might be 
counterproductive to the quest for a solution that will 

agree with the constraints. Therefore, we introduce a 
“second” perturbation into the process. This second 
perturbation is periodically done with respect to a fixed 
perturbation vector, i.e.,  for all  but with 
another sequence of step-sizes . In our implementation, 
we have chosen a Filtered Backprojection (FBP) 
reconstruction as the single perturbation vector. In pCT, 
since the calculation of the history paths of the protons is 
considered an intense computational effort, it was 
suggested [3] to use an FBP reconstruction in order to 
provide the outer contour of the object and calculate the 
proton most likely paths only inside the object as opposed 
to the entire reconstruction region (outside the object 
straight lines are assumed when formulating the 
matrix ). Since an FBP reconstruction is already 
calculated as part of formulating the system matrix, there 
is no added computational cost for using it in our 
proposed method. Furthermore, the FBP reconstruction is 
based on a transform method that still relies on the data 
provided by the measurements. The intuition behind the 
choice of the second perturbation (fixed) vector as the 
FBP is the following: Superiorization was demonstrated 
in the literature [5] to provide superior results when the 
starting point, is further away from the sought after 
feasible solutions set defined by the constraints. The 
reason is that starting from a point that is further away 
from it allows for more perturbations to be interlaced 
between the iterative steps and, as a result, a better value 
for the merit function can be achieved when the stopping 
criterion is met. On the other hand, starting the process 
from a point that is closer to the feasible solutions set 
defined by the constraints will reach a stopping point 
faster, however the value of the merit function will not be 
very close to a desired value. The proposed second 
perturbation (within an iteration step) is therefore 
suggested to overcome the need to balance these 
contradicting aims between speed and quality of the 
reconstruction, allowing the process to start with a point 
further away while not penalizing the number of 
iterations. 
         For the second perturbation vector, we have chosen 
the (positive) FBP vector for all . For the sequence of the 
step sizes (denoted here as  we chose the same 
sequence of  from the first kind of perturbation step, 
multiplied by a small positive real number. The sequence 
of the  is summable since the are summable.  
         The stopping criterion for the algorithm was chosen 
in our implementation as in [5]; it makes use of a user-
specified  that sets a threshold on the residual between 
the system matrix and the measurements, given the 
current image. Since our simulated data are noisy, the 
phantom (i.e., the object that we need to reconstruct) has a 
residual as well. From the point of view of what we are 
trying to do (estimating the RSP values of the phantom), 
there is no need to find a solution that has a smaller 
residual than the phantom itself. In the Appendix we 
provide the pseudo-code of the algorithm described above 
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and in the next section we illustrate the usefulness of our 
method on pCT-simulated data. 
 
RESULTS  

 
We have simulated data from 180 projections over 

360 degrees of the Herman Head phantom (shown in Fig. 
1(a)) using the simulation tool Geant 4. For the DROP 
algorithm, we have set to 0.04 and the number of 
blocks to 180, associating all the histories that belong to a 
specific projection angle with a block. We set the 
stopping criterion to 736 since this was the residual of the 
phantom with the dataset. We compared our newly 
proposed method with two other reconstructions: ones 
that use only one perturbation scheme that aims at 
superiorizing , where the only difference between the 
two are the starting points with the first being the FBP 
point as was done in [2] and the second being the ZERO 
point (i.e., a vector with all elements zero) [5]. We first 
examine the reconstruction that started with FBP. As 
pointed out in the previous section, since the residual of 
the FBP point (737) is very close to the residual of the 
phantom (736) it required only one iteration to get below 
it. While getting to the stopping criterion faster is 
generally a good thing, as indicated previously, the 
superiorization algorithm does not have enough iterations 
to steer the process towards a superior point. This can be 
seen when the  values are compared. The  of the 
phantom is 1287 while the one of the FBP is 2441 and the 
reconstructed image obtained after one iteration was 
1944. If we allow more iterations that satisfy the stopping 
criterion (with a lower residual), then after 8 iterations the 
algorithm that started with the FBP point reduces the  
to 1479 (the lowest  value for this reconstruction), 
which is not as low as the  of the phantom; the image 
presented in Figure 1(b) displays this reconstruction. In 
Figure 1(c) we show the reconstruction of the algorithm 
when the starting point is the ZERO point. The  of the 
reconstruction is now lower than the  of the phantom 
with 1262. The number of iterations, however, to reach 
the stopping criterion was 10.  

Figure 1(d) shows the image obtained with our newly 
proposed scheme, when the starting point is the ZERO 
point, the first kind of perturbations is aimed at 
superiorizing  (similar to the other two 
reconstructions) but here we also use the FBP point for 
the second kind of perturbations, with  proportional to 
!k  with a multiplier of 0.25 (i.e., ). The TV of 
the reconstructed image is 1278 (lower than the phantom) 
but took only 4 iterations to reach a residual set by the 
stopping criterion. In Figure 2 we present the relative 
stopping power distributions of the phantom and the three 
reconstructions.  
 
 
 

  
(a) (b) 

  
(c) (d) 

 
Figure 1: The Herman Head phantom, =1287 is shown 
in (a) and superiorization reconstructions aiming at 
superior  with (b) FBP as the starting point (8 
iterations,  =1479) and (c) ZERO as the starting point 
(10 iterations, =1262). (d) Superiorization 
reconstruction with dual perturbations scheme (4 
iterations,  =1278) starting from the ZERO point. 
 

 
  

Figure 2: Relative stopping power distribution of the 
phantom and the three reconstructions. ZERO and FBP are 
the superiorization reconstructions that started from the zero 
and FBP points, and DUAL is the newly proposed 
superiorization method that uses the zero point as the starting 
point and FBP as a second perturbation vector.  
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CONCLUSIONS  
 
         We presented a new superiorization scheme that 
uses two kinds of perturbations with the first aiming at 
reducing a merit function and the second to steer the 
iterates faster towards a solution by controlling the 
balance between the activities of feasibility-seeking and 
merit function reduction. We illustrated the usefulness of 
the newly proposed method over previous published 
results and showed their applicability to pCT with 
realistic simulated data reconstructing the Herman Head 
phantom. 
 
APPENDIX: PSEUDOCODE OF THE 
SUPERIORIZATION ALGORITHM USING A 
DUAL PERTURBATIONS SCHEME 
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