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Abstract

We study finite convergence of the modified cyclic subgradient pro-
jections (MCSP) algorithm for the convex feasibility problem (CFP) in
the Euclidian space. Expanding control sequences allow the indices of
the sets of the CFP to re-appear and be used again by the algorithm
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within windows of iteration indices whose lengths are not constant
but may increase without bound. Motivated by another development
in finitely convergent sequential algorithms that has a significant real-
world application in the field of radiation therapy treatment planning,
we show that the MCSP algorithm retains its finite convergence when
used with an expanding control that is repetitive and fulfills an addi-
tional condition.

Keywords. Convex feasibility problem, modified subgradient pro-
jections, finite convergence, expanding controls, repetitive control,
quasi-cyclic control.

1 Introduction

In this paper we consider the convex feasibility problem (CFP) in the finite-
dimensional Euclidean space Rn, which is to find a point in the nonempty
intersection Q := ∩mi=1Qi of a finite family {Qi}mi=1 of subsets Qi ⊆ Rn. It is
assumed that the sets are given by level-sets of convex functions gi, i.e., for
all i ∈M := {1, 2, . . . ,m},

Qi = {x ∈ Rn | gi(x) ≤ 0}. (1)

This is a vast field of research in optimization and applied mathematics with
many practical consequences. The CFP is a fundamental problem in many
areas of mathematics and the physical sciences, see, e.g., Combettes [10,
11] and references therein. It has been used to model significant real-world
problems in image reconstruction from projections, see, e.g., Herman [17], in
radiation therapy treatment planning, see Censor, Altschuler and Powlis [5]
and in crystallography, see Marks, Sinkler and Landree [22], to name but a
few. Published works related to the CFP is extensive and includes, among
many others, Byrne [2], Cegielski [3], Jiang and Wang [20], Kiwiel [21], and
Yamada [25].
Projection methods have been particularly useful in solving such problems

and we focus here on one specific projection method, namely, the modified
cyclic subgradient projection (MCSP) method of De Pierro and Iusem [13].
They have shown that certain perturbations of the cyclic subgradient projec-
tion (CSP) method of Censor and Lent [6] and Eremin [14, 15] (see also [7,
Algorithm 5.3.1]), can make the method converge finitely without loosing its
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row-action nature, see Censor [4], see also Bauschke and Borwein [1, Exam-
ple 7.19 and Remark 7.20]. However, the control sequence, which governs
the manner by which the sets Qi are taken up by the algorithm, could be in
[13] at most almost cyclic. This means that all indices ofM must re-appear
in, i.e., be re-used by, the algorithm as iterations proceed, within iteration
index “windows” of bounded lengths.
In this work we make for the MCSP method the leap into the realm of

control sequences with unbounded window lengths. Inspired by the quasi-
cyclic control proposed and studied by Tseng and Bertsekas [24] and Tseng
[23], and further used by Combettes [12], we term such control sequences ex-
panding controls and show, specifically, that the finite convergence property
of the MCSP method is preserved for expanding controls of the repetitive
type that fulfill an additional condition (Condition 19 below). To our knowl-
edge, no previous work attempted to show finite convergence with expanding
(thus with unbounded windows of indices) controls. Earlier work on finite
convergence of iterative projection methods for the CFP appears in Goffin
[16].
Condition 19 is algorithmic—dependent and difficult, if not impossible,

to verify. Therefore, our efforts to prove finite convergence of the MCSP
method with expanding control sequences give limited results by applying
only to repetitive controls which fulfill this condition. Further investigation
is needed to remove or weaken Condition 19, if possible. The motivation
to pursue finite convergence of the MCSP method with expanding control
sequences comes from another algorithmic development in finitely convergent
sequential algorithms that has a real-world application in the field of radiation
therapy treatment planning. We explain this in Section 4.

2 Control sequences for sequential projection
methods

We define control sequences for sequential projection methods as follows.
Denote by N := {0, 1, 2, · · · } the set of all positive integers and zero, and
denote byM := {1, 2, . . . ,m} a given finite index set.

Definition 1 Given a monotonically increasing sequence {τk}∞k=0 ⊂ N , a
mapping i : N →M is called a control with respect to the sequence
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{τk}∞k=0 if it defines a control sequence {i(t)}∞t=0, such that, for all k ≥ 0,

M ⊆ {i(τk), i(τk + 1), . . . , i(τk+1 − 1)}. (2)

Call the set {τk, τk + 1, . . . , τk+1 − 1} the k-th window (with respect to the
given sequence {τk}∞k=0) and define its length by Ck := τk+1 − τk. A con-
trol with respect to a sequence {τk}∞k=0 for which {Ck}∞k=0 is an unbounded
sequence (in contrast with bounded) will be called an expanding control.

Different choices of the sequence {τk}∞k=0 and different conditions on the
window lengths Ck give rise to the following specific control sequences. The
first three are controls with bounded window lengths.

Example 2 Almost cyclic control: This is any control sequence {i(t)}∞t=0
for which there exists some monotonically increasing sequence {τk}∞k=0, such
that (2) is satisfied and τk = Ck where C ≥ m, i.e., every window must
contain the setM and the windows are all of the same fixed length C.

Example 3 m-window control: This is any almost cyclic control for which
τk = mk, for all k ≥ 0.

Example 4 Cyclic control: This is any m-window control for which the
order of the indices in the first window repeats in all subsequent windows,
namely, i(t) = t(modm) + 1, for all t ∈ N .

The next three controls allow the window lengths to increase without
bound, as k increases, and may, therefore, be expanding controls.

Example 5 Repetitive control: This is a control sequence {i(t)}∞t=0 for
which there exists some monotonically increasing sequence {τk}∞k=0, such that
(2) is satisfied and limk→∞Ck = +∞ without any additional condition im-
posed. This means that the only thing that matters is that every index i ∈M
should appear again, no matter how large Ck is. Alternatively, a control se-
quence {i(t)}∞t=0 is repetitive in N if for every t ∈ N there exists a positive
integer ∆t such thatM ⊆ {t, t+1, . . . , t+∆t− 1}. Elsewhere this control is
called also chaotic.

Example 6 Quasi-cyclic control: This is any repetitive control such that
the window lengths Ck ≥ m and

P∞
k=0 1/Ck = +∞. This means that the

lengths of the windows may (or may not) grow without bound but cannot
grow too fast with k.
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Example 7 Linearly increasing windows control: This is any quasi-
cyclic control with τk+1 = τk +mk which implies Ck = mk, i.e., the lengths
of windows increase linearly with k.

The quasi-cyclic control was proposed and studied by Tseng and Bertsekas
[24] and by Tseng [23] who showed that the method of successive orthogonal
projections for the convex feasibility problem still converges under such a
control. The quasi-cyclic control was further used by Combettes [12] along
with several other controls to pursue convergence properties of his Extrapo-
lated Method of Parallel Projections (EMOPP). By our definitions, a cyclic
control is a m-window control, which is an almost cyclic control, which is
a linearly increasing windows control, which is a quasi-cyclic control, which
is a repetitive control. Additional controls, not mentioned here, such as the
remotest set control, the approximately remotest set control, and the most
violated constraint control, see, e.g., [7, Section 5.1], and the admissible, co-
ercive, and chaotically coercive from Combettes [12], have also been used.

3 Finite convergence of the modified cyclic
subgradient projection method with repet-
itive control

The modified cyclic subgradient projection (MCSP) method with repetitive
control is described as follows.

Algorithm 8 The modified cyclic subgradient projection (MCSP)
method with repetitive control.
Initialization: Pick an arbitrary x0 ∈ Rn, let {εt}∞t=0 be a monotoni-
cally decreasing sequence of positive numbers such that limt→∞ εt = 0 andP∞

t=0 εt =∞, and choose any, arbitrarily small, 0 < β1, β2 < 1.
Iterative Step: Given the current iterate xt, pick a control index i(t) and
compute the next iterate by

xt+1 =

⎧⎨⎩
xt, if gi(t)(xt) ≤ 0,

xt − αt
gi(t)(x

t) + εt°°st°°2 st, otherwise, (3)

where st ∈ ∂gi(t)(x
t) is a subgradient of gi(t) at xt and {αt}∞t=0 are relaxation

parameters.
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Relaxation Parameters: The relaxation parameters {αt}∞t=0 must all lie
in the interval β1 ≤ αt ≤ 2− β2.
Control Sequence: The control sequence {i(t)}∞t=0 is repetitive.

The following string of lemmas leads to the required finite convergence
result. Our analysis follows closely that of [13]. We need a Slater condition
on the CFP to guarantee the existence of an interior point of Q. For any
ε > 0 define

Qε := {x ∈ Rn | gi(x) + ε ≤ 0, for all i ∈M}. (4)

Condition 9 Slater condition: There exists a positive ε̂ such that Qε̂ 6= ∅.

Remark 10 Observe, for later use, that Condition 9 implies that Qε 6= ∅
for all ε ∈ [0, ε̂]. Therefore, for any sequence {εt}∞t=0, as defined in Algorithm
8, there exists an integer T such that Qεt 6= ∅ for all t ≥ T, and such that
the following sets are nested as Qεt ⊂ Qεt̄ ⊂ Q for all t̄ ≥ t ≥ T.

A sequence {xt}∞t=0 is called Fejér-monotone with respect to a set
Ω ⊂ Rn if for any ω ∈ Ω we have kxt+1 − ωk ≤ kxt − ωk for all t ≥ 0.

Lemma 11 [13, Lemma 1] Let Qε̂ be as in Condition 9. Then for any
sequence {xt}∞t=0, generated by Algorithm 8 with {εt}∞t=0, and with the index
T as defined in Remark 10, the tail sequence {xt}∞t=T is Fejér-monotone with
respect to Qε̂.

Lemma 12 [13, Lemma 2] Let Qε̂ be as in Condition 9 and let ∆ be any
(fixed) positive integer. Then for any sequence {xt}∞t=0, generated by Algo-
rithm 8 with {εt}∞t=0, and with the index T as defined in Remark 10, we have
for all t ≥ T, and any x̂ ∈ Qε̂

°°xt+∆ − x̂
°°2 ≤ °°xt − x̂

°°2 − β2
2∆

Ã
t+∆−1X
j=t

°°xj+1 − xj
°°!2 , (5)

where β2 is defined in Algorithm 8.

We comment that in [13, Lemma 2] this lemma is proven for the “almost
cyclicality constant” C instead of the ∆ here, but the proof there does not
depend on the nature of the constant ∆. With the definition d(x, S) :=
inf{kx− yk | y ∈ S} of the distance from a point x to a set S, the following
corollary follows.
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Corollary 13 If Condition 9 holds, and if ∆ is any (fixed) positive integer,
then for any sequence {xt}∞t=0, generated by Algorithm 8 with {εt}∞t=0, and
with the index T as defined in Remark 10, we have for all t ≥ T,

d2(xt+∆, Qεt) ≤ d2(xt, Qεt)−
β2
2∆

Ã
t+∆−1X
j=t

°°xj+1 − xj
°°!2 . (6)

Proof. Condition 9 and Remark 10 assure us that Qεt 6= ∅ for all t ≥ T, so
that Lemma 12 applies, with Q̃ = Qεt. By taking the infimum of both sides
of (5) over all x̂ ∈ Qεt the result is obtained.
For any sequence {xt}∞t=0, generated by Algorithm 8 with {εt}∞t=0, and

with the index T as defined in Remark 10 and any x̂ ∈ Qε̂, define

M := max

(
−
°°xT − x̂

°°
gi(x̂)

| i ∈M
)
. (7)

M > 0 since gi(x̂) ≤ −ε̂ for all i ∈M.

Lemma 14 Let Condition 9 hold and let {xt}∞t=0 be any sequence, generated
by Algorithm 8. If xt 6= xt+1 then there exists an index c(t) ∈M such that

d2(xt, Qεt) ≤M2
¡
gc(t)(x

t) + εt
¢2
, (8)

where M is given by (7).

Proof. Since the control of Algorithm 8 does not enter here, the proof follows
verbatim from that of [13, Lemma 3].
In the next lemma we make use of the uniform boundedness on bounded

sets of the subgradients of a family of convex functions, defined next.

Definition 15 Given a family {gi}i∈M of convex functions and any bounded
set U ⊆ Rn, if there exists a constant R, called a uniform bound, such that
ksk ≤ R for all subgradients s ∈ ∂gi(x) for all i ∈M and all x ∈ U, then
we say that the family of convex functions has the uniform boundedness on
bounded sets of the subgradients property.

Remark 16 Uniform boundedness on bounded sets of the subgradients is
a standard property, frequently used in theorems on subgradient projection
methods. It holds if the effective domain of all functions is the whole space
Rn, as is the case here, see, e.g., [1, Proposition 7.8 and Corollary 7.9].
Therefore, we use this property in the sequel.
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Lemma 17 Let Condition 9 hold and let {xt}∞t=0 be any sequence generated
by Algorithm 8. If xt 6= xt+1 for some t, then

d2(xt, Qεt) ≤
µ
2MR

β1

¶2Ãt+∆t−1X
j=t

°°xj+1 − xj
°°!2 , (9)

where the real constant R is a uniform bound of the subgradients as in Defi-
nition 15, M is defined by (7) and ∆t is as in Example 5.

Proof. The proof follows closely that of [13, Lemma 4]. We give the details
for completeness. From Lemma 14 there exists an index c(t) ∈M such that
(8) holds. By repetitiveness there exists an index r such that

t ≤ r ≤ t+∆t − 1 and i(r) = c(t). (10)

For any sequence {xt}∞t=0, generated by Algorithm 8, it follows from Lemma
11 with Q̃ = Qεt, that kxt − x̂k ≤

°°xT − x̂
°° for all t ≥ T, where the index T

is defined in Remark 10. Therefore, the compact set

U := {x ∈ Rn | kx− x̂k ≤
°°xT − x̂

°°} (11)

contains the sequence {xt}∞t=T . So, from the subgradient inequality and from
uniform boundedness of the subgradients over U of (11) with bound R,

gc(t)(x
t) ≤ gc(t)(x

r) +

st, xt − xr

®
≤ gc(t)(x

r) +R
°°xt − xr

°°
≤ gi(r)(x

r) +R
r−1X
j=t

°°xj+1 − xj
°° . (12)

We claim now that

gc(t)(x
t) ≤ R

β1

t+∆t−1X
j=t

°°xj+1 − xj
°° . (13)

Indeed, if gi(r)(xr) ≤ 0 then, from (12) and the fact that 0 < β1 < 1,

gc(t)(x
t) ≤ R

r−1X
j=t

°°xj+1 − xj
°° ≤ R

β1

t+∆t−1X
j=t

°°xj+1 − xj
°° . (14)
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If, on the other hand, gi(r)(xr) > 0 then, from (12) and Remark 16 we obtain

gc(t)(x
t) ≤ gi(r)(x

r) + εr +R
r−1X
j=t

°°xj+1 − xj
°°

≤ R

αr

°°xr+1 − xr
°°+R

r−1X
j=t

°°xj+1 − xj
°° ≤ R

β1

t+∆t−1X
j=t

°°xj+1 − xj
°°
(15)

because, by Algorithm 8,

gi(r)(x
r) + εr ≤

ksrk
αr

°°xr+1 − xr
°° ≤ R

αr

°°xr+1 − xr
°° . (16)

Thus (13) is proven. Now, gi(t)(xt) > 0 since xt 6= xt+1, thus

εt ≤ gi(t)(x
t) + εt ≤

R

αt

°°xt+1 − xt
°° ≤ R

β1

°°xt+1 − xt
°°

≤ R

β1

t+∆t−1X
j=t

°°xj+1 − xj
°° . (17)

From (13) and (17) we get

¡
gc(t)(x

t) + εt
¢2 ≤ Ã2R

β1

t+∆t−1X
j=t

°°xj+1 − xj
°°!2 , (18)

which, together with (8), yields (9).

Corollary 18 Under the assumptions of Lemma 17, if xt 6= xt+1 for some t
then

d(xt+∆t, Qεt) ≤ σtd(x
t, Qεt), (19)

where

σt =

Ã
1− β2

8∆t

µ
β1
MR

¶2!1/2
. (20)

Proof. The proof follows from Lemma 17 and Corollary 13.
Observe that, due to control repetitiveness, limt→∞∆t = ∞ is true and

it implies that limt→∞ σt = 1. Since this prevents us from bounding the
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sequence {σt}∞t=0 from above by any upper bound smaller than 1, we need to
use in the finite convergence theorem a refined argument not present in [13,
Theorem 1]. Denote

γ :=
β2
8

µ
β1
MR

¶2
(21)

so that (20) becomes

σt =

µ
1− γ

∆t

¶1/2
. (22)

Consider Algorithm 8 with {εt}∞t=0, and with the index T as defined in Re-
mark 10. For any integer r define

hT (r) := τT +

µ=T+rX
µ=T

Cµ (23)

where {τk}∞k=0 and Cµ are as in Definition 1. Also define the distance

δt := d(xt, Qεt) (24)

between an iteration vector xt and a set Qεt.

Condition 19 Assume that the following limit exists

lim inf
r→∞

⎛⎜⎝µεhT (r)
RδT

¶4/r
+
2γ

r

r−2X
c=0
c even

1

Cc+T

⎞⎟⎠ > 1, (25)

where R is the uniform bound of the subgradients used in Lemma 17.

We present now our finite convergence theorem. Finite convergence means
that from a certain iteration index onward the algorithm does not create
further changes of the iteration vectors.

Theorem 20 Under the assumptions of Lemma 17 and Condition 19, any
sequence {xt}∞t=0, generated by Algorithm 8, converges finitely to a point in
Q.
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Proof. Using δt := d(xt, Qεt), Corollary 13, and Remark 10, we obtain, for
all t ≥ T,

δt+1 = d(xt+1, Qεt+1) ≤ d(xt+1, Qεt) ≤ d(xt, Qεt) = δt, (26)

proving that {δt}∞t=T is monotonically decreasing. If the sequence {xt}∞t=0
does not converge finitely then, for each even r, there exists an iteration
index tr such that

tr ∈
"
τT +

µ=T+r−1X
µ=T

Cµ, τT +

µ=T+rX
µ=T

Cµ

!
= [hT (r − 1), hT (r)) (27)

for which xtr 6= xtr+1, see the definition of hT (r) in (23). This is so because
this is the (T + r)-th window and if there was not such a tr there then
finite convergence would have been established because all indices ofM are
included in the window.
Now we describe how this non-finite convergence assumption leads to a

contradiction. It follows, from (27) and from the fact that {Ck}∞k=0 is a
non-decreasing sequence, that

tr ≥ τT + CT + CT+1 + · · ·+ CT+r−2 + CT+r−1

= (τT + CT + CT+1 + · · ·+ CT+r−2) + CT+r−1

≥ tr−2 + CT+r−1 ≥ tr−2 + CT+r−2, (28)

thus,
tr ≥ tr−2 + CT+r−2 (29)

and we apply Corollary 18 together with (26) to obtain:

δtr ≤ δtr−2+CT+r−2 [by (29) and (26)] (30)

= d(xtr−2+CT+r−2, Qεtr−2+CT+r−2
) [by definition]

≤ d(xtr−2+CT+r−2, Qεtr−2
) [by nested sets: Qεtr−2

⊂ Qεtr−2+CT+r−2
]

≤ σtr−2δtr−2 [by Corollary 18 with tr−2 and with ∆tr−2 = CT+r−2]

≤ σtr−2δtr−4+CT+r−4 [applying again the argument of (30)]

≤ σtr−2σtr−4δtr−4
≤ · · · ≤ σtr−2σtr−4 · · ·στT δτT
≤ σtr−2σtr−4 · · ·στT δT , (31)
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where the last inequality follows since {δt}∞t=T is monotonically decreasing
(see (26)) and T ≤ τT . Now let zk be the closest point to xk in Qεk , so
that δtr =

°°xtr − ztr
°° and let u = i(tr). Then we get from the subgradient

inequality
gu(z

tr) ≥ gu(x
tr) +


str , ztr − xtr

®
. (32)

Since gu(xtr) > 0 and gu(ztr) + εtr = 0, adding εtr to both sides of (32) gives
str , ztr − xtr

®
≤ −εtr , (33)

which, together with (31), yields

εtr ≤
¯̄
str , ztr − xtr

®¯̄
≤
°°str°° δtr ≤ Rδtr ≤ Rσtr−2σtr−4 · · ·στT δT . (34)

Setting t0 := τT , denoting ∆τT = ∆t0 and using (22), this means thatµ
εtr
RδT

¶2
≤ (σtr−2σtr−4 · · ·στT )2 =

r−2Y
c=0
c even

µ
1− γ

∆tc

¶
. (35)

By the standard inequality between the arithmetic and geometric means
of a finite set of real numbers, we get

r−2Y
c=0
c even

µ
1− γ

∆tc

¶
≤

⎛⎜⎝(2/r) r−2X
c=0
c even

µ
1− γ

∆tc

¶⎞⎟⎠
r/2

, (36)

which, in turn, leads toµ
εtr
RδT

¶4/r
≤ 1− 2γ

r

r−2X
c=0
c even

1

∆tc

. (37)

But letting ∆tc = tc+1 − tc be Cc+T (see the 3rd line of (30)), and since

tr ≤ hT (r) = τT +

µ=T+rX
µ=T

Cµ (by (27)), we obtain εhT (r) ≤ εtr , thus, for even

number r we have ⎛⎜⎝µεhT (r)
RδT

¶4/r
+
2γ

r

r−2X
c=0
c even

1

Cc+T

⎞⎟⎠ ≤ 1. (38)
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which contradicts Condition 19.
We note that Condition 19 is algorithmic-dependent and difficult, if not

impossible, to verify. Thus, further investigation is called for to remove or
weaken it, if possible. However, our result still partially is a logical general-
ization of [13, Theorem 1] due to the next lemma.

Lemma 21 Any almost cyclic control for which

lim
r→∞

¡
εhT (r)

¢4/r
> 1− γ

C
, (39)

where γ and C are as in (21) and in Example 2, respectively, is a repetitive
control that fulfills Condition 19.

Proof. By the definition of almost cyclic control, given in Example 2, Ck = C
for all k ≥ 0. Then the second summand in (25) is

lim
r→∞

2γ

r

r−2X
c=0
c even

1

Cc+T
= lim

r→∞

2γ

r

r

2C
=

γ

C
. (40)

For the first summand in (25)

lim
r→∞

µ
εhT (r)
RδT

¶4/r
= lim

r→∞

¡
εhT (r)

¢4/r
. (41)

Both {εhT (r)}∞r=0 and {4/r}∞r=0 tend to zero as r →∞. (Because hT (r)→∞,
as r → ∞.) Therefore, and since R and δT are constants, the limit in (41)
depends on which of the two sequences tends to zero faster. The condition
in (39) is sufficient to guarantee Condition 19.

4 Motivation from an algorithmic problem

Even though some sequential row-action algorithms [4] have been proved to
converge, finitely or asymptotically, under more general controls than a cyclic
control (e.g., almost cyclic control, repetitive control, quasi-cyclic control,
etc.), there did not exist, to the best of our knowledge, an implementation
of a more complicated non-cyclic control for any good reason, until our re-
cent work in [19]. We explain below the main thrust of [19], which is the
motivation for our present study.
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The algorithm Algebraic Reconstruction Technique 3 (ART3) [18] is a
cyclic projection algorithm for solving a system of linear interval inequalities.
It is proved to be finitely convergent if the feasible region is full-dimensional.
In [19] we proposed an improved version of ART3, called ART3+. It differs
from its predecessor ART3 only in that ART3+ picks the linear interval con-
straint to be used in each iteration in a specially designed non-cyclic manner.
We proved there that ART3+ is still finitely convergent, and demonstrated
by numerical experiments that ART3+ finds a solution faster than ART3.
In this way we demonstrated the possibility of improving the performance
of a sequential algorithm by resorting to specially designed non-cyclic con-
trols. This speeded-up ART3+ algorithm has been successfully applied to
radiation therapy treatment planning in [9].
Since the speed-up strategy of [19] is actually independent of the algo-

rithm ART3, this speed-up strategy has been generalized to any finitely con-
vergent algorithm in [8]. Instead of proving the finite convergence of ART3+
directly as in [19], the logic of the proof of the more general theorem in [8]
is as follows:
(1) Prove that the generalized ART3 is finitely convergent when its con-

trol is repetitive.
(2) Prove that the control sequences that are used by ART3+ are repet-

itive.
(3) Derive the finite convergence of ART3+ from (1) and (2) above.
Along these lines, we proposed in [8] a formal transformation from any

sequential algorithm ALG to its improved version ALG+, and proved that
for any sequential algorithm ALG, under some reasonable conditions, if ALG
is finitely convergent under repetitive control, then ALG+ is finitely conver-
gent. The efficiency of ALG+ can be illustrated by comparing the speed of
ALG and ALG+ in real world applications.
The MCSP algorithm of [13] is a candidate of such an ALG for solving

a, not necessarily linear, CFP. If we could prove that the MCSP is finitely
convergent under repetitive control, then automatically we would have a
proof for the claim that the new algorithmMCSP+, whose relative efficiency
over MCSP can be verified, is finitely convergent. However, [13] supplies
a finite convergence theorem for MCSP only under almost cyclic control.
This is why we need a stronger theorem which states that the MCSP is
finitely convergent under some expanding control and this is the rational for
the investigation present here. We are unable to produce a counter-example
to the claim that the MCSP algorithm with repetitive control is finitely
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convergent. Our Theorem 20 gives a partial affirmative answer to the claim.
Condition 19, which contains parameters ε and β, is built specifically for

MCSP. ART3+ has no such parameters so Condition 19 does not simply ap-
ply to it. We hope that this work will be continued and better understanding
of finite convergence in the presence of expanding controls will emerge.
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