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In this paper we propose a general Dykstra-type sequential algorithm for finding the
Bregman projection of a given point r € R™ onto €' and show that it converges in

several important special cases.
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1. INTRODUCTION

The Dykstra algorithm is an iterative procedure which (asymptotically) finds the
nearest point projection (also called the orthogonal projection) of any given point
onto the intersection of a given finite family of closed convex sets. It iterates by
passing sequentially over the individual sets and projecting onto each one a deflected
version of the previous iterate. The algorithm was first proposed and analyzed by
Dykstra in 1983 [21] for a family of closed convex cones in the Euclidean space R™
and, subsequently, by Boyle and Dykstra [4] for convex sets in a Hilbert space. In
1988 Han [26] rediscovered the algorithm, investigating its behavior in R" in the
framework of the duality theory of mathematical programming (see also the related
work of Han and Lou [27]). Gaffke and Mathar [25] studied the Dykstra algorithm
in Hilbert space from a duality standpoint and showed its relation to the method of

componentwise cyclic minimization over a Cartesian product. They also proposed



a fully simultaneous Dykstra algorithm. Iusem and De Pierro published in 1991
their study [32] in which they used Pierra’s [35] product space formalism to show
convergence of the simultaneus Dykstra algorithm in both the consistent and the
inconsistent cases in R”. Crombez [16] did such an analysis in Hilbert space.

Combettes included the Dykstra algorithm in his short review [15]. Bauschke and
Borwein [2] analyzed Dykstra’s algorithm for two sets in Hilbert space and generalized
the work of Iusem and De Pierro [32] to this setting (see also Bauschke’s thesis [1]).
Recently, Deutsch and Hundal published a rate of convergence study for the polyhe-
dral case [20], and generalizations to an infinite family of sets and to random, rather
then cyclic, order control [30]. Han [26], as well as Iusem and De Pierro [32], show
that for linear inequality constraints and for linear interval inequalities constraints
(the polyhedral case), the method of Dykstra becomes the Hildreth algorithm, first
published in [29] and studied further by D’Esopo [23] and by Lent and Censor [34],
and the ART4 algorithm of Herman and Lent [28], respectively.

In all the above mentioned investigations only orthogonal projections onto closed
convex sets are discussed, and it is natural to ask whether or not the algorithmic
framework of Dykstra can accomodate also different, non-orthogonal, projections. If
so, what kind of other projections should be employed? How should the more general
Dykstra algorithm look like? Which, if any, of the earlier results on the Dykstra
method carry over?

In this report we propose an algorithmic structure, based on the theory of Breg-
man functions, distances and projections, which is a starting point for generalizing
Dykstra’s algorithm to non-orthogonal projections. We are unable, at this time, to
furnish a complete convergence theory for our new scheme, but we do show below

how 1t is related to the following methods:

Dykstra’s original sequential method with orthogonal projections; (1.1)
Hildreth’s and the ART4 methods in the polyhedral case; (1.2)
Dykstra’s procedure with [-projections [22]; (1.3)

and

Bregman’s primal-dual minimization methods in the polyhedral case

(see Bregman [5] and Censor and Lent [11]). (1.4)

All these turn out to be special cases of our new scheme and as such, provide
partial convergence results for it. We conjecture that a general convergence theory

can be developed for our general, sequential non-orthogonal Dykstra algorithm.



Furthermore, it should be possible to develop a simultaneous non-orthogonal Dyk-
stra algorithm along the lines of Tusem and De Pierro [32] based on Censor and Elfving
[9].

Our presentation is organized as follows. In Section 2 we present the new non-
orthogonal algorithmic scheme and show how the classical orthogonal projections al-
gorithm is obtained from it. In Section 3 we prove the convergence of the new scheme
with non-orthogonal projections for the polyhedral case by reduction to Bregman’s
method. The analysis in Section 4 makes precise the relationship of our scheme with
Dykstra’s procedure for [-projections. For the reader’s convenience we attach an
Appendix with a brief summary of definitions and relevant results from the theory of

Bregman’s distances and projections.

2. THE ALGORITHMIC SCHEME WITH
NONORTHOGONAL PROJECTIONS

Let C; CTR" 1 =1,2,...,m, be a finite family of closed convex nonempty sub-
sets of the n-dimensional Euclidean space, and assume that 2 N, Ci # 0. Let
f € B(S) be a Bregman function with zone S and let D;(x,y) be the generalized
distance function associated with f (consult the Appendix at the end of the paper
for definitions and results about Bregman functions, generalized distances and pro-
jections). The problem under consideration is:

min Dg(x,r)

st.xeCnNS (2.1)

where r € S is a given point. Our goal is to find the projection Pé(r) of r onto C
with respect to f. The proposed Dykstra-type sequential algorithmic scheme solves
this problem by sequentially projecting w.r.t. f, onto each set (;, a deflected version
of the previous iterate.

In the sequel we denote the gradient of f by Vf. If f is also essentially smooth,
then y = V f(z) is a one-to-one mapping with a continuous inverse (V f)™!, see, e.g.,
Rockafellar [37], Corollary 26.3.1. The applicability of the following Algorithm 2.1
depends on the ability to invert V f explicitly to get a workable formula in any given

case.

Algorithm 2.1
Initialization: Set the vectors {y((?))}?;l so that

Vi) =0, i=12..m, (2.2)
and set l’ESr?) 2 r, the given point.

Iterative step: Compute the 2m vectors {J}Ek))};(il, {y((f)) ™, as follows:

K3



Set J}Eg; = :I;Efn_)l) and, fori1=1,2,...,m, calculate Z((Zk)) from

k k k-1
VIR = VIt + Vi) (2:3)
then project Z((Zk)) onto C; w.r.t. f, t.e.,
k k
v = PI((Y), (2.4)
where Pif = Pél,, and finally update the “memory” vector by calculating y((f)) such that
k k k
VIw(E) = V) = VI D). (2.5)

Observe that in practice y((f)) need not be found explicitly from (2.5) since only the
gradient Vf(y((f)_l)) is needed in (2.3).

If we choose the Bregman function f(x) = %||z||* with zone S = 5 = R", then
Vf(x) =2, Dg(x,y) = Lz —y||* and P/ is the orthogonal projection P; onto C;. In
this case Algorithm 2.1 becomes the original Dykstra algorithm with y((?)) = 0 for all
i=1,2,...,m, and with (2.3) and (2.5) replaced by
A = oy (2.6

K3

and by

respectively. See, e.g., Han [26].

3. CONVERGENCE IN THE POLYHEDRAL CASE

The polyhedral case occurs when the sets are half-spaces C; = {z € R" | (a(),z) <
a;}, where 0 # o) € R” and o; € R, for all i = 1,2,...,m, are given. Han [26]
and Iusem and De Pierro [32] have shown that in this case the original Dykstra
algorithm coincides with Hildreth’s algorithm; see Hildreth [29], D’Esopo [23], Lent
and Censor [34], or Censor and Zenios [14] (Han [26] actually considers sets of the form
{zeR" |3 < <a(i), x) < o} in which case the Dykstra algorithm becomes identical
with the algebraic reconstruction technique ART4 of Herman and Lent [28].) Deutsch
and Hundal [20] studied the rate of convergence of the method in the polyhedral case.

Here we consider the polyhedral case of Algorithm 2.1 and prove the following

convergence result (consult the Appendix for the meaning of strong zone consistency).

Theorem 3.1 Let f € B(S), Cié{:z: cR" | (', 2) <oy} fori=1,2,...,m, C2
N™,C;, and assume that C NS # (), and that f is strongly zone consistent w.r.t.



cach H; 2 {x € R | (@D, 2) = a;}. Let r € S and assume that there exisls a vector
m € RY such that

Vi(r)=—-Aln, (3.1)

where AT is the nxm matriz with ') in its i-th column. Then any sequence {x ¥}

where z*) 2 :I:E:;)), generated by Algorithm 2.1, converges to the solution of (2.1).

Proof. The idea of the proof is to show that under the assumptions of the theorem,
Algorithm 2.1 reduces to Bregman’s algorithm for the minimization of f(z) over CNS,
see Algorithm A.1 in the Appendix. In the k-th iterative step of Algorithm 2.1, when
the ¢-th half-space is iterated upon, one of the following two cases occurs.
0k k k

Case 1. <a(()k,)z((i))> < ;. Then, by (2.4), E)) Pf( ((Z)) = ((Z)) and, by (2.5),

Vf (y(i) ) =0.
Case 1II. <a(i),z((f))> > «;. Then, according to the formula for Bregman projections

onto a hyperplane (see, equations (2.14)—(2.15) of [5], Lemma 3.1 of [11], or

Lemma 2.2.1 of [14]), there exists a unique real number A¥ such that
k k i
V) = V) = A, (32
and
<a(i), :L'Ef))> = ;. (3.3)
;From Lemma 3.2 of [11] we know that A\¥(a; — <a(i),ng))>) > 0, and therefore
A¥ > 0 must hold in Case II.

We can think of (3.2) as covering both Case I and Case II if we agree that \¥ = 0
for Case I and that A} is determined form (3.2)-(3.3) in Case II.
Equation (3.2) implies, by (2.5), that
Vi) = Aral. (3.4)
Using (3.2), (2.3) and (3.4) for k — 1, we get
k k - ;
V() = V) + 0 = A, (3.5)

which can also be written as

al) (%)
)\f — )\f—l _|_< a

oo ) = (e V6l (56)

This enables us to say that, in either Case I or Case II, the iterative step of Algorithm

2.1 can be described in equivalent form by

Vi) = Vi) + 8ta (3.7)



with

0.V (i) = V)
EA . k-1 (a, (4) (-1)

Indeed, for 3F = Xi7! (3.7) is identical to (3.5) with A¥ = 0, and using (3.4) for k — 1,
we obtain Vf(ng))) = Vf(z((f))), which is Case L. For 8F # M1, (3.7) is identical to
(3.5) via (3.6). The fact that in Case II, A\¥ > 0 guarantees, by (3.6), that 3% will not
take the value A\f=,

Finally, to complete the identification of (3.7)—(3.8) with Bregman’s algorithm,
we replace the double index (k,7) by a single index v through

vE(k—1m+i—1 (3.9)

and define

K3

w22 A RN and ¢, 25 (3.10)

With these replacements it is clear that Algorithm 2.1 becomes identical with Algo-
rithm A.1 of the Appendix and Theorem A.1 applies. |

In a similar manner it is possible to handle the polyhedral case with interval lin-
ear inequality constraints and show that in this case Algorithm 2.1 becomes identical
with Algorithm 5.1 of Censor and Lent [11], which in the special case of orthogonal
projections is Herman and Lent’s [28] ART4 algorithm.

4. THE CASE OF /[-PROJECTIONS

Dykstra devised in [22] an algorithm which finds the [-projection of a point onto

the nonempty intersection of closed convex sets.

Definition 4.1 Let A, 2 {x € RY | 3% @5 =1}, and for all v,y € A, let
I(z,y)2 Y w;log(~),
7=1 y]

where log stands for the natural logarithm and Olog()é(). For a closed and convex
subset 0 C A, and a point r € A, the [-projection of r onto Q is defined as the
point r* € A, for which

r* =arg min I (x,r). (4.1)
refd

Csiszar [17], [18] studied such [-projections (see also Robertson, Wright and Dykstra
36]).

In the spirit of the original Dykstra algorithm ([21], [4], [26]) with orthogonal
projections (2.6)—(2.7), Dykstra developed in [22] the following algorithm.



Algorithm 4.1
(0) A

Initialization: Set Yy =1, 1=1,2,...,m, where | is the vector all the coordinates
)

of which are equal to 1, and set J}E 2 r, the given point.
Iterative Step: Set J}Eg; = J}Efn_)l) and, forv=1,2,....,m, calculate z((f)) from

0
m)

k
(k) (9‘?22'11))1 . _
(Z(i) ) = = 7=12,...,n; (4.2)
(y(i) )i
then I-project Z((Zk)) onto C;, i.e.,

“/'Ef)) = PiI(Z((f)))v (4.3)
where P! is the I-projection onto the set C;. Finally, update the “memory” vector by
calculating

(2()s
(i) =—S—.  j=12...n (4.4)
(P,

To recognize the identity of this algorithm with Dykstra’s I-projections algorithm
one has only to identify J}Ef)) = pn,; and Z((Zk)) = s,,; where p,; and s, ; are the symbols
used in [22]. Dykstra conjectures that Algorithm 4.1 always converges to the I-
projection of r onto the intersection ' 2 N~, Ci, but he is only able to prove this by
requiring an extra condition ([22], Theorem 2.1).

Algorithm 4.1 can be viewed as a special instance of Algorithm 2.1 by taking
the function f(x) 2 iy wjloga; — x;, and the zone S2int A,. Then f e B(9),
(Vf(z)); =logzj, j =1,2,...,n, and Dy(x,y) = KL(z,y) for all z,y € A, where
K L(z,y) is the Kullback-Leibler distance

Ky =Y (xj log (ﬁ) — i+ yj) : (4.5)

j=1 j
which coincides with I(x,y) over A, x A,; see, e.g., Teboulle [38], Examples 3.1.
Therefore, the result of Dykstra [22] applies to Algorithm 2.1 in this case.

The function f(x) 2 iy xjlogx; = — ent(z), where ent(x) 2_ iy vy logx;
is Shannon’s entropy, is a Bregman function over the larger zone S = int R} and
D¢(x,y) = KL(z,y), see, e.g., Censor et al. [8], Lemma 5, but these distance func-
tions are not necessarily equal to [(z,y) outside A, x A,. Denoting Pif, in this
particular case, by P we obtain from Algorithm 2.1 another Dykstra entropic al-
gorithm which is identical with Algorithm 4.1 except for the replacement of P! by
P in (4.3) and (4.4). This slightly more general case in also well covered by Algo-

rithm 2.1 because if @ C A, is a closed convex set and r € int R} but r ¢ A, then
it is not difficult to verify that

PE™(r) = P& (P& (r)) = PA(r) = P& (7). (4.6)



where ' = P"(r) = r/3%_r; and Pl is the projection onto © with respect to

I'z,y) =", (l‘j log (5—;)) defined on A, x R .
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APPENDIX: BREGMAN FUNCTIONS,
DISTANCES AND PROJECTIONS

We recall here some basic facts on Bregman functions, Dj-functions, and projec-
tions. This material has its origin in Bregman’s paper [5], Censor and Lent [11], and
futher developments which appear in the works of Bauschke and Borwein [3], Censor
and Zenios [13], Censor, Tusem and Zenios [10], De Pierro and Iusem [19], Eckstein
[24], Tusem [31], Teboulle [38], and others (see Censor and Zenios [14]). Let S be a
nonempty, open, convex set such that its closure S C A, where A is the domain of a
function f: A € R™ — R. Assume that f(x) has continuous first partial derivatives
at every © € S and denote by V f(x) its gradient at . From f(x), construct the
D;function D;: 8 x § CR?™ — R by

Dy(x,2)2 f(x) — f(z) = (Vf(2),x — 2), (A1)

where (-, -) is the standard inner product in R". Denote, for o € R, the partial level
sets of Dy(x,z) by
Li(a,2) = {z €| Dy(z,2) < a, (A2)

Li(z,a)={z€ 5| Ds(x,z) < a}. (A.3)

Definition A.1 A function f:A C R™ — R is called a Bregman function if there
exists a nonempty, open, conver set S, such that S C A and the following hold:

(i) [ is continuously differentiable on S;

(ii) f is strictly convex on S;

(iii) f is continuous on S;

(iv) for every o € R, the partial level sets L{(oz,z) and Lg(x,oz) are bounded, for
every z € S and every x € S, respectively;



(v) if 2 € S, for all k >0, and limy_,o, 2% = 2%, then limy_o, Ds(2*, 2F)) = 0;
(vi) if e® € 'S and 2% € S, for all k > 0, limg_yoo Ds(x® 25y =0, limy_,o, 2% =

2 and {2} is bounded, then limy_o 2® = 2.

The set S is called the zone and the function f is a Bregman function with respect
to S and we denote these facts by f € B(S). The reason for collecting the conditions
(i)—(vi) under one heading is that these are precisely the conditions needed to ensure
the applicability of the primal-dual optimization algorithm of Bregman [5] and the
algorithm for interval convex programming of Censor and Lent [11], when the function

D¢(x, z) has the form (A.1).

;From the strict convexity assumption on f it follows that, for z € S, z € S,
D¢(x,2z) >0, and Dy(r,z)=0 < z =z, (A4)

which makes D a “measure of distance on 5”7 according to the terminology of Csiszar
[18], although, for a general Bregman function, D; is not a distance function. We
remark however that Dy equals the vertical distance, at the point @, between (x, f(z))
and the tangent hyperplane to epi f at the point (z, f(2)), cf. Eckstein [24]. When
7(2) = L] one gets Dy(z,2) = Hje — 2|1
With the aid of Dy one defines projections as follows.

Definition A.2 Given a Bregman function with zone S, a set @ C R"™ and some
z € S, the projection (called D-projection in [7]) of z onto Q, denoted by PK{(Z), is
the point

ZF = PS{(Z) 2 arg min_Dy(x, z). (A.5)
zeQNS

Existence and uniqueness of such a projection when € is closed and convex and
QNS # () (which we hereafter assume) are established in Lemma 2.2 of Censor and
Lent [11]. We will also need the following concept.

If f(2) = %||z|* and S = R", then PS{(Z) is the orthogonal projection. Further
results on Bregman projections and additional examples can be found in Censor and
Reich [12], De Pierro and Iusem [19], Eckstein [24], Teboulle [38], Censor and Elfving
[9], Byrne and Censor [6] and Kiwiel [33].

The following basic result can be considered an extension of the Pythagorean
theorem.

Lemma A.1 Let a function f € B(S) and a closed convex set 8 C R™ be given.
Assume that QNS # 0 and that y € S implies Pé(y) €S. Ify € QN S, then for any

y € S the inequality

Ds(P5(y),y) < Dylz.y) — Dy(z, Pi(y)) (A.6)



holds.

Proof: This is a specialization of Lemma 1 of Bregman [5] for the case of Dj-

functions; see Example 2 on p. 205 of Bregman [5]. |
Bregman’s algorithm for the linearly constrained minimization of a Bregman func-

tion f € B(S) is designed to solve the problem

Minimize f(x) (A7)
st (a® 2y <b, iel2{1,2,....m}, (A.8)
r €S, (A.9)

Let H; 2 {z | (P, 2) = b} and C2{x | (a,2) < b;}; denote also H = N7, H;,
C = N™,C;, and assume that C NS # 0. A = (a;;) is the m x n matrix the i-th
row of which is (¢(?)T, and b = (b;) € R™. Assume that all a!) # 0. Assume also
that f € B(S) is strongly zone consistent with respect to every H,;. This means
([11], Definition 3.1) that y € S implies P;_fli(y) € S for H;, = H;, and for any other
hyperplane H; parallel to H; and lying between y and H,;. Define the following sets:

72 {z € §|3r € R™ such that Vf(z) = —ATr}, (A.10)

Zo2{x €S| 3Ir e RT such that Vf(z) = —ATr}, (A.11)

which are assumed to be nonempty.
The following algorithm can be found in [5], [11], [14].
Algorithm A.1

Initialization: u(®) € Z, is arbitrary, and 7% is such that
Viu®) = —-AT7), (A.12)
Iterative step: Given u'”) and 7, calculate Y, and 7V from
Vf(u(”+1)) — Vf(u(”)) + ¢,ali)
) = 720 ¢ 0D (A.13)
2 min(s) 0,

where 0, is the parameter associated with the generalized projection of u') onto Hiyy.
We assume throughout that the representation of every hyperplane is fivred during the
whole iteration process, so that the values of 0, are well defined.

o0

Control: The sequence {i(v)}52, is cyclic on the index set I.

Recall that 6, the parameter associated with the generalized projection 41 of
u™) onto H;(,y, is obtained by solving the system

vf(@(vﬂ)) = Vf(u(”)) +6,ali®)),
(A.14)



Here we use el to denote the t-th standard basis vector with a 1 in its t-th coordinate
and zeros elsewhere. The cyclicality means that i(v) = v (mod m) 41 (a more general
control sequence called almost cyclic may also be employed, see [11]).

The following convergence theorem ([5], [11], [14]) holds.

Theorem A.1 Assume the following:

(i) f € B(S),

(ii) [ is strongly zone consistent with respect to each H;, 1 € I,

(ti1) {i(v)}52, is cyclic,

(iv) Zo # 0.

Then, any sequence {x™} produced by Algorithm A.1 converges to the point x*,
which is the solution of (A.7)—(A.9).



