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ABSTRACT� Let fCi j � � i � mg be a �nite family of closed convex subsets

of Rn� and assume that their intersection C  �fCi j � � i � mg is not empty�

In this paper we propose a general Dykstra�type sequential algorithm for �nding the

Bregman projection of a given point r � Rn onto C and show that it converges in

several important special cases�
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�� INTRODUCTION

The Dykstra algorithm is an iterative procedure which �asymptotically� �nds the

nearest point projection �also called the orthogonal projection� of any given point

onto the intersection of a given �nite family of closed convex sets� It iterates by

passing sequentially over the individual sets and projecting onto each one a de�ected

version of the previous iterate� The algorithm was �rst proposed and analyzed by

Dykstra in ���� �
�� for a family of closed convex cones in the Euclidean space Rn

and� subsequently� by Boyle and Dykstra ��� for convex sets in a Hilbert space� In

���� Han �
�� rediscovered the algorithm� investigating its behavior in Rn in the

framework of the duality theory of mathematical programming �see also the related

work of Han and Lou �
���� Ga�ke and Mathar �
�� studied the Dykstra algorithm

in Hilbert space from a duality standpoint and showed its relation to the method of

componentwise cyclic minimization over a Cartesian product� They also proposed



a fully simultaneous Dykstra algorithm� Iusem and De Pierro published in ����

their study ��
� in which they used Pierra�s ���� product space formalism to show

convergence of the simultaneus Dykstra algorithm in both the consistent and the

inconsistent cases in Rn� Crombez ���� did such an analysis in Hilbert space�

Combettes included the Dykstra algorithm in his short review ����� Bauschke and

Borwein �
� analyzed Dykstra�s algorithm for two sets in Hilbert space and generalized

the work of Iusem and De Pierro ��
� to this setting �see also Bauschke�s thesis �����

Recently� Deutsch and Hundal published a rate of convergence study for the polyhe�

dral case �
��� and generalizations to an in�nite family of sets and to random� rather

then cyclic� order control ����� Han �
��� as well as Iusem and De Pierro ��
�� show

that for linear inequality constraints and for linear interval inequalities constraints

�the polyhedral case�� the method of Dykstra becomes the Hildreth algorithm� �rst

published in �
�� and studied further by D�Esopo �
�� and by Lent and Censor �����

and the ART� algorithm of Herman and Lent �
��� respectively�

In all the above mentioned investigations only orthogonal projections onto closed

convex sets are discussed� and it is natural to ask whether or not the algorithmic

framework of Dykstra can accomodate also di�erent� non�orthogonal� projections� If

so� what kind of other projections should be employed� How should the more general

Dykstra algorithm look like� Which� if any� of the earlier results on the Dykstra

method carry over�

In this report we propose an algorithmic structure� based on the theory of Breg�

man functions� distances and projections� which is a starting point for generalizing

Dykstra�s algorithm to non�orthogonal projections� We are unable� at this time� to

furnish a complete convergence theory for our new scheme� but we do show below

how it is related to the following methods�

Dykstra�s original sequential method with orthogonal projections� �����

Hildreth�s and the ART� methods in the polyhedral case� ���
�

Dykstra�s procedure with I�projections �

�� �����

and

Bregman�s primal�dual minimization methods in the polyhedral case
�see Bregman ��� and Censor and Lent ������

�����

All these turn out to be special cases of our new scheme and as such� provide

partial convergence results for it� We conjecture that a general convergence theory

can be developed for our general� sequential non�orthogonal Dykstra algorithm�



Furthermore� it should be possible to develop a simultaneous non�orthogonal Dyk�

stra algorithm along the lines of Iusem and De Pierro ��
� based on Censor and Elfving

����

Our presentation is organized as follows� In Section 
 we present the new non�

orthogonal algorithmic scheme and show how the classical orthogonal projections al�

gorithm is obtained from it� In Section � we prove the convergence of the new scheme

with non�orthogonal projections for the polyhedral case by reduction to Bregman�s

method� The analysis in Section � makes precise the relationship of our scheme with

Dykstra�s procedure for I�projections� For the reader�s convenience we attach an

Appendix with a brief summary of de�nitions and relevant results from the theory of

Bregman�s distances and projections�

�� THE ALGORITHMIC SCHEME WITH

NONORTHOGONAL PROJECTIONS

Let Ci � Rn� i  �� 
� � � � �m� be a �nite family of closed convex nonempty sub�

sets of the n�dimensional Euclidean space� and assume that C
�

Tm
i��Ci � �� Let

f � B�S� be a Bregman function with zone S and let Df �x� y� be the generalized

distance function associated with f �consult the Appendix at the end of the paper

for de�nitions and results about Bregman functions� generalized distances and pro�

jections�� The problem under consideration is�

minDf �x� r�
s�t� x � C � S

�
���

where r � S is a given point� Our goal is to �nd the projection P f
C�r� of r onto C

with respect to f � The proposed Dykstra�type sequential algorithmic scheme solves

this problem by sequentially projecting w�r�t� f � onto each set Ci� a de�ected version

of the previous iterate�

In the sequel we denote the gradient of f by rf � If f is also essentially smooth�

then y  rf�x� is a one�to�one mapping with a continuous inverse �rf���� see� e�g��

Rockafellar ����� Corollary 
������ The applicability of the following Algorithm 
��

depends on the ability to invert rf explicitly to get a workable formula in any given

case�

Algorithm ���

Initialization� Set the vectors fy����i� g
m
i�� so that

rf�y
���
�i� �  �� i  �� 
� � � � �m� �
�
�

and set x
���
�m�

�
 r� the given point�

Iterative step� Compute the 
m vectors fx
�k�
�i� g

m
i��� fy

�k�
�i� g

m
i�� as follows�



Set x�k����  x
�k���
�m� and� for i  �� 
� � � � �m� calculate z

�k�
�i� from

rf�z
�k�
�i� �  rf�x

�k�
�i���� �rf�y

�k���
�i� �� �
���

then project z�k��i� onto Ci w�r�t� f � i�e��

x
�k�
�i�  P f

i �z
�k�
�i� �� �
���

where P f
i  P f

Ci
� and �nally update the �memory� vector by calculating y�k��i� such that

rf�y
�k�
�i� �  rf�z

�k�
�i� ��rf�P f

i �z
�k�
�i� ��� �
���

Observe that in practice y
�k�
�i� need not be found explicitly from �
��� since only the

gradient rf�y
�k���
�i� � is needed in �
����

If we choose the Bregman function f�x�  �
�
kxk� with zone S  S  Rn� then

rf�x�  x� Df �x� y� 
�
�
kx� yk� and P f

i is the orthogonal projection Pi onto Ci� In

this case Algorithm 
�� becomes the original Dykstra algorithm with y
���
�i�  � for all

i  �� 
� � � � �m� and with �
��� and �
��� replaced by

z
�k�
�i�  x

�k�
�i��� � y

�k���
�i� � �
���

and by

y
�k�
�i�  z

�k�
�i� � Pi�z

�k�
�i� �� �
���

respectively� See� e�g�� Han �
���

�� CONVERGENCE IN THE POLYHEDRAL CASE

The polyhedral case occurs when the sets are half�spaces Ci  fx � Rn j ha�i�� xi �

�ig� where � � a�i� � Rn and �i � R� for all i  �� 
� � � � �m� are given� Han �
��

and Iusem and De Pierro ��
� have shown that in this case the original Dykstra

algorithm coincides with Hildreth�s algorithm� see Hildreth �
��� D�Esopo �
��� Lent

and Censor ����� or Censor and Zenios ���� �Han �
�� actually considers sets of the form

fx � Rn j �i � ha�i�� xi � �ig in which case the Dykstra algorithm becomes identical

with the algebraic reconstruction technique ART� of Herman and Lent �
���� Deutsch

and Hundal �
�� studied the rate of convergence of the method in the polyhedral case�

Here we consider the polyhedral case of Algorithm 
�� and prove the following

convergence result �consult the Appendix for the meaning of strong zone consistency��

Theorem ��� Let f � B�S�� Ci
�
 fx � Rn j ha�i�� xi � �ig for i  �� 
� � � � �m� C

�


�m
i��Ci� and assume that C � S � �� and that f is strongly zone consistent w�r�t�



each Hi
�
 fx � Rn j ha�i�� xi  �ig� Let r � S and assume that there exists a vector

� � Rm
� such that

rf�r�  �AT�� �����

where AT is the n�m matrix with a�i� in its i�th column� Then any sequence fx�k�g�k���

where x�k�
�
 x

�k�
�m�� generated by Algorithm ���� converges to the solution of 	���
�

Proof� The idea of the proof is to show that under the assumptions of the theorem�

Algorithm 
�� reduces to Bregman�s algorithm for the minimization of f�x� over C�S�

see Algorithm A�� in the Appendix� In the k�th iterative step of Algorithm 
��� when

the i�th half�space is iterated upon� one of the following two cases occurs�

Case I� ha�i�� z
�k�
�i� i � �i� Then� by �
���� x

�k�
�i�  P f

i �z
�k�
�i� �  z

�k�
�i� and� by �
����

rf�y�k��i� �  ��

Case II� ha�i�� z
�k�
�i� i � �i� Then� according to the formula for Bregman projections

onto a hyperplane �see� equations �
������
���� of ���� Lemma ��� of ����� or

Lemma 
�
�� of ������ there exists a unique real number �ki such that

rf�x
�k�
�i� �  rf�z

�k�
�i� �� �ki a

�i�� ���
�

and

ha�i�� x
�k�
�i� i  �i� �����

�From Lemma ��
 of ���� we know that �ki ��i � ha�i�� x�k��i� i� � �� and therefore

�ki � � must hold in Case II�

We can think of ���
� as covering both Case I and Case II if we agree that �ki  �

for Case I and that �ki is determined form ���
������� in Case II�

Equation ���
� implies� by �
���� that

rf�y�k��i� �  �ki a
�i�� �����

Using ���
�� �
��� and ����� for k � �� we get

rf�x�k��i� �  rf�x�k��i���� � ��k��i � �ki �a
�i�� �����

which can also be written as

�ki  �k��i �
D a�i�

ka�i�k�
�rf�x�k��i����

E
�
D a�i�

ka�i�k�
�rf�x�k��i� �

E
� �����

This enables us to say that� in either Case I or Case II� the iterative step of Algorithm


�� can be described in equivalent form by

rf�x
�k�
�i� �  rf�x

�k�
�i���� � �k

i a
�i�� �����



with

�k
i

�
 min

�
�k��i �

ha�i��rf�x�k��i� ��rf�x�k��i����i

ka�i�k�

�
� �����

Indeed� for �k
i  �k��i ����� is identical to ����� with �ki  �� and using ����� for k���

we obtain rf�x
�k�
�i� �  rf�z

�k�
�i� �� which is Case I� For �k

i � �k��i � ����� is identical to

����� via ������ The fact that in Case II� �ki � � guarantees� by ������ that �k
i will not

take the value �k��i �

Finally� to complete the identi�cation of ����������� with Bregman�s algorithm�

we replace the double index �k� i� by a single index � through

�
�
�k � ��m� i� � �����

and de�ne

u���
�
x

�k�
�i���� �

���
i

�
�k��i � and c�

�
�k

i � ������

With these replacements it is clear that Algorithm 
�� becomes identical with Algo�

rithm A�� of the Appendix and Theorem A�� applies�

In a similar manner it is possible to handle the polyhedral case with interval lin�

ear inequality constraints and show that in this case Algorithm 
�� becomes identical

with Algorithm ��� of Censor and Lent ����� which in the special case of orthogonal

projections is Herman and Lent�s �
�� ART� algorithm�

�� THE CASE OF I�PROJECTIONS

Dykstra devised in �

� an algorithm which �nds the I�projection of a point onto

the nonempty intersection of closed convex sets�

De�nition ��� Let �n
�
 fx � Rn

� j
Pn

j�� xj  �g� and for all x� y � �n let

I�x� y�
�


nX
j��

xj log
�xj
yj

�
�

where log stands for the natural logarithm and � log �
�
�� For a closed and convex

subset � � �n and a point r � �n� the I�projection of r onto � is de�ned as the

point r� � �n for which

r� arg min
r��

I�x� r�� �����

Csisz ar ����� ���� studied such I�projections �see also Robertson� Wright and Dykstra

������

In the spirit of the original Dykstra algorithm ��
��� ���� �
��� with orthogonal

projections �
�����
���� Dykstra developed in �

� the following algorithm�



Algorithm ���

Initialization� Set y����i�
�
�
�

� i  �� 
� � � � �m� where �
�

is the vector all the coordinates

of which are equal to �� and set x����m�
�
 r� the given point�

Iterative Step� Set x
�k�
���  x

�k���
�m� and� for i  �� 
� � � � �m� calculate z

�k�
�i� from

�z
�k�
�i� �j 

�x
�k�
�i����j

�y�k����i� �j
� j  �� 
� � � � � n� ���
�

then I�project z�k��i� onto Ci� i�e��

x
�k�
�i�  P I

i �z
�k�
�i� �� �����

where P I
i is the I�projection onto the set Ci� Finally� update the �memory� vector by

calculating

�y�k��i� �j 
�z�k��i� �j

�P I
i �z

�k�
�i� ��j

� j  �� 
� � � � � n� �����

To recognize the identity of this algorithm with Dykstra�s I�projections algorithm

one has only to identify x
�k�
�i� � pn�i and z

�k�
�i� � sn�i where pn�i and sn�i are the symbols

used in �

�� Dykstra conjectures that Algorithm ��� always converges to the I�

projection of r onto the intersection C
�

Tm
i��Ci� but he is only able to prove this by

requiring an extra condition ��

�� Theorem 
����

Algorithm ��� can be viewed as a special instance of Algorithm 
�� by taking

the function f�x�
�

Pn

j�� xj log xj � xj� and the zone S
�
 int �n� Then f � B�S��

�rf�x��j  log xj� j  �� 
� � � � � n� and Df �x� y�  KL�x� y� for all x� y � �n� where

KL�x� y� is the Kullback�Leibler distance

KL�x� y� 
nX

j��

�
xj log

�
xj
yj

�
� xj � yj

�
� �����

which coincides with I�x� y� over �n � �n� see� e�g�� Teboulle ����� Examples ����

Therefore� the result of Dykstra �

� applies to Algorithm 
�� in this case�

The function f�x�
�

Pn

j�� xj log xj  � ent�x�� where ent�x�
�
 �

Pn
j�� xj log xj

is Shannon�s entropy� is a Bregman function over the larger zone S  int Rn
� and

Df �x� y�  KL�x� y�� see� e�g�� Censor et al� ���� Lemma �� but these distance func�

tions are not necessarily equal to I�x� y� outside �n � �n� Denoting P f
i � in this

particular case� by P ent
i � we obtain from Algorithm 
�� another Dykstra entropic al�

gorithm which is identical with Algorithm ��� except for the replacement of P I
i by

P ent
i in ����� and ������ This slightly more general case in also well covered by Algo�

rithm 
�� because if � � �n is a closed convex set and r � int Rn
� but r �� �n then

it is not di!cult to verify that

P ent
� �r�  P ent

�

�
P ent
�n

�r�
�
 P I

��r
��  P I �

� �r�� �����



where r�  P ent
�n

�r�  r�
Pn

j�� rj and P I �

� is the projection onto � with respect to

I ��x� y� 
Pn

j��

�
xj log

�
xj

yj

��
de�ned on �n �Rn

� �
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APPENDIX� BREGMAN FUNCTIONS	

DISTANCES AND PROJECTIONS

We recall here some basic facts on Bregman functions� Df �functions� and projec�

tions� This material has its origin in Bregman�s paper ���� Censor and Lent ����� and

futher developments which appear in the works of Bauschke and Borwein ���� Censor

and Zenios ����� Censor� Iusem and Zenios ����� De Pierro and Iusem ����� Eckstein

�
��� Iusem ����� Teboulle ����� and others �see Censor and Zenios ������ Let S be a

nonempty� open� convex set such that its closure S � "� where " is the domain of a

function f � " � Rn 	 R� Assume that f�x� has continuous �rst partial derivatives

at every x � S and denote by rf�x� its gradient at x� From f�x�� construct the

Df �function Df �S � S � R�n 	 R by

Df �x� z�
�
 f�x�� f�z�� hrf�z�� x� zi� �A���

where h
� 
i is the standard inner product in Rn� Denote� for � � R� the partial level

sets of Df �x� z� by

Lf
���� z�  fx � S j Df �x� z� � �g� �A�
�

Lf
��x� ��  fz � S j Df �x� z� � �g� �A���

De�nition A�� A function f � " � Rn 	 R is called a Bregman function if there

exists a nonempty� open� convex set S� such that S � " and the following hold�

	i
 f is continuously di�erentiable on S�

	ii
 f is strictly convex on S�

	iii
 f is continuous on S�

	iv
 for every � � R� the partial level sets Lf
���� z� and Lf

��x� �� are bounded� for

every z � S and every x � S� respectively�



	v
 if z�k� � S� for all k � �� and limk�� z�k�  z�� then limk��Df �z�� z�k��  ��

	vi
 if x�k� � S and z�k� � S� for all k � �� limk��Df �x�k�� z�k��  �� limk�� z�k� 

z��� and fx�k�g is bounded� then limk�� x�k�  z��

The set S is called the zone and the function f is a Bregman function with respect

to S and we denote these facts by f � B�S�� The reason for collecting the conditions

�i���vi� under one heading is that these are precisely the conditions needed to ensure

the applicability of the primal�dual optimization algorithm of Bregman ��� and the

algorithm for interval convex programming of Censor and Lent ����� when the function

Df �x� z� has the form �A����

�From the strict convexity assumption on f it follows that� for x � S� z � S�

Df �x� z� � �� and Df �x� z�  � � x  z� �A���

which makesDf a #measure of distance on S$ according to the terminology of Csisz ar

����� although� for a general Bregman function� Df is not a distance function� We

remark however that Df equals the vertical distance� at the point x� between �x� f�x��

and the tangent hyperplane to epi f at the point �z� f�z��� cf� Eckstein �
��� When

f�x�  �
�kxk

� one gets Df �x� z� 
�
�kx� zk��

With the aid of Df one de�nes projections as follows�

De�nition A�� Given a Bregman function with zone S� a set � � Rn and some

z � S� the projection 	called D�projection in ��
 of z onto �� denoted by P f
��z�� is

the point

z�  P f
��z�

�
 arg min

x���S
Df �x� z�� �A���

Existence and uniqueness of such a projection when � is closed and convex and

� � S � � �which we hereafter assume� are established in Lemma 
�
 of Censor and

Lent ����� We will also need the following concept�

If f�x�  �
�
kxk� and S  Rn� then P f

��z� is the orthogonal projection� Further

results on Bregman projections and additional examples can be found in Censor and

Reich ��
�� De Pierro and Iusem ����� Eckstein �
��� Teboulle ����� Censor and Elfving

���� Byrne and Censor ��� and Kiwiel �����

The following basic result can be considered an extension of the Pythagorean

theorem�

Lemma A�� Let a function f � B�S� and a closed convex set � � Rn be given�

Assume that ��S � � and that y � S implies P f
��y� � S� If y � ��S� then for any

y � S the inequality

Df �P
f
��y�� y� � Df �z� y��Df �z� P

f
��y�� �A���



holds�

Proof� This is a specialization of Lemma � of Bregman ��� for the case of Df �

functions� see Example 
 on p� 
�� of Bregman ����

Bregman�s algorithm for the linearly constrained minimization of a Bregman func�

tion f � B�S� is designed to solve the problem

Minimize f�x� �A���

s�t� ha�i�� xi � bi� i � I
�
 f�� 
� � � � �mg� �A���

x � S� �A���

Let Hi
�
 fx j ha�i�� xi  big and Ci

�
fx j ha�i�� xi � big� denote also H  �m

i��Hi�

C  �m
i��Ci� and assume that C � S � �� A  �aij� is the m � n matrix the i�th

row of which is �a�i��T � and b  �bi� � Rm� Assume that all a�i� � �� Assume also

that f � B�S� is strongly zone consistent with respect to every Hi� This means

������ De�nition ���� that y � S implies P f
	Hi
�y� � S for %Hi  Hi� and for any other

hyperplane %Hi parallel to Hi and lying between y and Hi� De�ne the following sets�

Z
�
 fx � S j �� � Rm such that rf�x�  �AT�g� �A����

Z�
�
 fx � S j �� � Rm

� such that rf�x�  �AT�g� �A����

which are assumed to be nonempty�

The following algorithm can be found in ���� ����� �����

Algorithm A��

Initialization� u��� � Z� is arbitrary� and ���� is such that

rf�u����  �AT����� �A��
�

Iterative step� Given u��� and ����� calculate u������ and ������ from

rf�u������  rf�u���� � c�a
�i�����

������  ���� � c�e
�i����� �A����

c�
�
 min��

���
i���� 	���

where 	� is the parameter associated with the generalized projection of u��� onto Hi�v��

We assume throughout that the representation of every hyperplane is �xed during the

whole iteration process� so that the values of 	� are well de�ned�

Control� The sequence fi���g���� is cyclic on the index set I�

Recall that 	�� the parameter associated with the generalized projection %u����� of

u��� onto Hi���� is obtained by solving the system

rf�%u������  rf�u���� � 	�a
�i�����

ha�i����� %u�����i  bi����
�A����



Here we use e�t� to denote the t�th standard basis vector with a � in its t�th coordinate

and zeros elsewhere� The cyclicalitymeans that i���  � �modm� �� �a more general

control sequence called almost cyclic may also be employed� see ������

The following convergence theorem ����� ����� ����� holds�

Theorem A�� Assume the following�

	i
 f � B�S��

	ii
 f is strongly zone consistent with respect to each Hi� i � I�

	iii
 fi���g���� is cyclic�

	iv
 Z� � ��

Then� any sequence fx���g produced by Algorithm A�� converges to the point x��

which is the solution of 	A��
�	A��
�


