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Abstract. The prescribed goals of radiation treatment planning are often
expressed in terms of dose—volume constraints. We present a novel formulation of
a dose—volume constraint satisfaction search for the discretized radiation therapy
model. This approach does not rely on any explicit cost function. The inverse
treatment planning uses the aperture based approach with predefined, according
to geometric rules, segmental fields. The solver utilizes the simultaneous version
of the cyclic subgradient projection algorithm. This is a deterministic iterative
method designed for solving the convex feasibility problems. A prescription is
expressed with the set of inequalities imposed on the dose at the voxel resolution.
Additional constraint functions control the compliance with selected points of the
expected cumulative dose—volume histograms. The performance of this method is
tested on prostate and head—and-—neck cases. The relationships with other models
and algorithms of similar conceptual origin are discussed. The demonstrated
advantages of the method are: the equivalence of the algorithmic and prescription
parameters, the intuitive setup of free parameters, the improved speed of the
method as compared to similar iterative as well as other techniques. The technique
reported here will deliver an approximate solutions for inconsistent prescriptions.
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1. Introduction

The process of treatment planning can be viewed as a sequence of logically and/or
functionally separate phases determined by the modeling methodology and medical
insight as well as technological restrictions. The main goal is to determine the essential
set of parameters that will provide the required spatial dose distribution. This might
be quantified with dose—based or biological criteria. In practice the former are usually
employed to articulate the goals of the therapeutic radiation. (Deasy, 1997; Shepard
et al., 1999; Brahme, 2000; Glatstein, 2001; IMRTCWG, 2001; Deasy et al., 2002).
The dose—based criteria also appear to be clinically relevant, at the end of the process,
as a main gauge of plan quality expressed in terms of the cumulative dose—volume
histograms (DVH) and isodose distributions.

A dose—volume prescription is a conceptual starting point for inverse treatment
planning (ITP). A useful analogy (Bortfeld et al., 1990; Censor and Zenios, 1997;
Kak and Slaney, 2001) with the discretized model of computed tomography (CT)
shows another characteristic of ITP. The crucial difference between ITP and the CT
is that the latter is a solvable problem of constraint sets that model a posteriori
a physical phenomenon. The a priori character of the ITP nullifies this certainty.
Mathematically, ITP belongs to inverse problems. They are usually ill-posed and
concerned with the determination of the causes of desired effects. Current approaches
for ITP usually rely on various optimization techniques that utilize objective functions.

Ideally these functions should reflect treatment goals in an unequivocal manner so
that the determination of the relevant parameters optimize the plan quality. However
in practice it is difficult to quantify and consolidate all pertinent components for all
possible clinical scenarios. Our understanding of the radiation response of many tissues
is limited so that formulating meaningful objective function is not straightforward.
(Deasy, 1997; Shepard et al., 1999; Brahme, 2000; Glatstein, 2001; IMRTCWG,
2001; Chen et al., 2002). It is also important to consider other aspect like the
smoothness of the intensity maps or the optimization of gantry angles (Spirou et al.,
2001; Pugachev et al., 2001). Possible non—convexity of the cost functions may give
rise to the problem of local minima that might compromise specific clinical objectives.
Execution times are also important. Rigorous modeling and implementation of the
dose—volume constraints (DVC) in terms of the mixed integer programming (MIP) is a
NP-complete problem that might not solve plans in clinically acceptable time (Garey
and Johnson, 1979; Deasy, 1997; Bednarz et al., 2000). This points out another issue
that the cost functions might be predetermined by a given optimization scheme, e.g.
the MIP must use only linear cost functions. Thus the very nature of these conditions
render the problem a complex multi—objective decision and multi—criteria optimization
process with mutually competing and/or incommensurable objectives, and inevitable
trade—offs.

As a viable alternative we consider the inverse planning as a constraint satisfaction
problem. The determination of the beam intensities quantified by the beam weight
vector within this computational context has been examined since the very outset of
the development of the fully discretized feasibility approach to the inverse treatment
planning (Altschuler and Censor, 1984; Censor et al., 1988b; Censor et al., 1988a).

A novel enhancement of this class of modeling and weight vector computation is
examined here. Instead of relying on heuristics, the DVCs are incorporated into the
model for a constraint satisfaction search. This computational approach determines
the weight vector beyond the paradigm based on the notion of the measure of plan
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quality mirrored by an objective function or that of the MIP. In contrast with those
approaches, we present a new model that uses an iterative algorithm based on the
method of cyclic subgradient projections (CSP) which solves the convex feasibility
problem. It is a natural extension of our previous work, currently implemented in our
clinic, that uses only dose constraints expressed in terms of interval inequalities. We
report the performance study of this new method for aperture—based inverse planning
(ABIP). However the model and algorithmic part of the paper are independent of this
particular modality which is based on predefined segments. The method can be easily
applied to the beamlet—based inverse treatment planning(Xiao et al., 2003b).

2. Materials and Methods

2.1. Aperture—Based Inverse Planning

The methodology of the aperture-based inverse planning has been already described
in detail elsewhere (Xiao et al., 2000; Galvin et al., 2000; Bednarz et al., 2000; Xiao
et al., 2003a). The first step is the setting—up of apertures to define all relevant beams.
For all chosen gantry angles the process starts with conformal apertures that cover
combined targets. Additional apertures address boost regions. Further apertures
provide maximal coverage of the targets while sparing OARs. Subsequently beam
weights are determined.

The APIB method was applied to six prostate and four oropharyngeal
cancer cases. The aperture definition was carried out with commercial CMS
FOCUS treatment planning system (Computerized Medical Systems, Inc., 2001).
Two sets of coplanar gantry angles were used for the prostate cases. Three
cases used set A = {45,90, 135,225,270 and 315deg}, the others used set
B = {35,90,125,180,235,270 and 325deg}. As described later, the prostate cases
used different dose—volume prescriptions. Nine equally spaced coplanar gantry angles
starting from 0deg were used for head—and-—neck cases. For the prostate cases, a
5mm margin surrounded the clinical target volume (CTV) to define the planning
target volume (PTV) (IMRTCWG, 2001). An additional 8mm margin was added to
accommodate the beam penumbra. Radiation Therapy Oncology Group protocol H-
0022 (RTOG-H-0022) was used for the oropharyngeal cancer cases (Eisbruch et al.,
2001). The number of apertures depended on the geometry and the topology of
a particular site as well as the complexity of the prescription, e.g., the number
of boost regions. The prostate cases yielded between 12 and 49 apertures. The
head—and—neck cases, a much more anatomically intricate disease site with more
demanding dose goals, yielded between 51 and 99 apertures. Subsequently, the
patient volume was automatically discretized into a three—dimensional grid of voxels
with a user—assigned resolution of 3mm. For a given set of N fields with a weight
vector x = [x1,-++,2j,+++,2n]" (T denotes transpose) and for every structure s the
CMS FOCUS dose engine using the scatter integration with heterogeneity correction
calculated the unit weight dose matrix, dgj-), ES),
delivered to voxel i of a given structure s,

N
D =" dx;. (1)
J

These steps concluded preparation for the weight determination. Having been granted
access to the source code of the pertinent modules of the CMS Focus treatment

that allows us to compute the dose, D



lower upper

STRUCTURE reference | reference
underdose limits limits overdose
Table A Volume % Gy Gy | Volume %
Bladder 0.00 60.00 20.00
Rectum 0.00 60.00 20.00
Left Femur 0.00 45.00 15.00
Right Femur 0.00 45.00 15.00
PTV (a) 5.00 73.80 78.00 5.00

(b) 10.00 75.00

Table B Volume % Gy Gy | Volume %
Bladder 0.00 65.00 20.00
Rectum 0.00 65.00 20.00
Left Femur 0.00 50.00 15.00
Right Femur 0.00 50.00 15.00

PTV 5.00 75.60 83.16

Table 1. The DVCs for prostate cases. The cases that used gantry angles assigned
from set A as described in § 2.1 utilized constraints marked by A, and those that
used values from set B utilized constraints B.

planning system, the re—engineered software used our weight determination program.

2.2. Dose—Volume Constraints: Prescriptions

Two disease sites selected for the study differ in anatomical and dose prescription
complexity. The oropharyngeal cases are more challenging than the prostate cases in
both of these aspects. The latter are interesting because they allow for an intuitive
understanding of the dependencies between the parameters during the computation.

The DVCs for prostate cases are listed in Table 1 and for head—and-neck cases
in Table 2. Two oropharyngeal cancer cases had four different target regions with
three different dose prescription levels (PTV 54, PTV 60 and PTV 66). The other
two head—and-neck cases had two boost regions (PTV 54 and PTV 66). We imposed
a few types of constraints for the prostate cases denoted by A and B in Table 1. Three
cases used constraints A(a) and A(b) to demonstrate their effect on the cumulative
DVH of the PTV. The other three cases used constraints B. Lower and upper reference
limits mark the desired dose intervals for listed structures. The pertinent structures
may be either uderdosed or overdosed with respect to these limits as the prescriptions
stipulate with the percentages of organs’s volumes listed in the table.

2.3. Dose—Volume Constraints: Model

In a first approximation, dose constraints are based on the voxel dose limits given in
terms of the inequalities

Dgs) < R for OARs and (2)
rs) < Dgs) < R® for targets (3)



lower upper
STRUCTURE reference | reference
underdose limits limits overdose
Volume % Gy Gy | Volume %
Brainstem 0.00 54.00
Spinal Cord 0.00 45.00
Right Parotid 0.00 30.00 50.00
Mandible 0.00 70.00
Primary PTV 5.00 66.00 72.60 20.00
(PTV 66) 1.00 61.38
Subclinical Disease 5.00 60.00 66.00 20.00
(PTV 60) 1.00 55.80
Bilateral Lymph Nodes 5.00 54.00 59.40 20.00
(PTV 54) 1.00 50.22

Table 2. The DVCs for oropharyngeal cases as given by the RTOG-H-0022
protocol. The DVC for salivary glands used for computation listed in table is one
the three alternate stipulations; the others are: i) mean dose to either parotid
below 26 Gy or ii) at least 20 cc of the combined volume below 20 Gy. The cases
had two targets at the subclinical disease level.

where (®) and R(*) define the permissible dose range for a given structure. The
lower limit for OARs is not necessary since dose DES) is nonnegative. If these are
the only directives for a given structure, we denote them for short as the dose limit
constraints (DL). However, the problem may be inconsistent and these limits will not
determine the actual delivered dose.

Thus, to augment the model to reflect the dose-volume based prescription we use
a new set of contraints. We only give the description of the dose-volume constraint
(DVC) of the overdose since the equivalent formulation for the underdose can be easily
inferred. The permissible overdose for a given structure s assumes the values given by
a set

(U©, M, FED &0 M) g (sM)) (4)

where U(®) is a redefined value corresponding to a new limit at the voxel resolution, cf.
the value R®) in Equation (2), M is the number of the DVCs, and for 1 <[ < M, value
F(: js the fraction of structure s allowed to obtain the dose between a new reference
limit «() and U®) (u(s*l) < U(S)). If no DVCs are imposed, U®) corresponds
to R®). For example, the overdose of the right parotid is described by the set
(72.60Gy, 1,0.50,30.00Gy) (the values are from TABLE (2)).

For every structure s we rewrite constraints as a set of inequalities,

g(x) <0, teT® (5)

where T(%) is a set of indices enumerating the constraints for the given structure. At
the voxel resolution we use

0 if Dgs) <U® (L(S) < Dfs) <U® for targets) ,
gt(x) =< LG — Dgs) if Dgs) < L) for targets, (6)
DY —y® if U® <D
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where L(*) is the lower limit equivalent of U(®). These constraints gauge the
discrepancy of the voxel dose with the prescription. The cumulative DVCs, i.e., those
controlling the compliance with selected points of the required DVH, are

v ()
g(x) = > H(x) = FEDVE) (U6 — ylsD) (7)

where V() is the volume of the st" structure in terms of the number of voxels, [ tags
the given overdose DVC and

0 if D < yleh),
HEY(x) = § (D) — w0y 4 (U — D) if u*) < D < U®), (8)
(DY) — sy it U < D).

These constraints measure the compliance of the organ’s total dose with the
prescription. It is instructive to view definitions given by Equation (6) and
Equation (7) as functions concerning real and virtual voxels, respectively. If a weight
vector complies with all the constraints the plan is guaranteed to meet the DVC—based
prescription. The proof is in Appendix. Thus this set of DVCs allows us to consider
the weight determination as a constraint satisfaction problem.

2.4. The Simultaneous Subgradient Projection Method

Constraint optimization problems are expressed generically as a set of problem
functions of the decision parameters. One of these functions is the objective and the
rest are the constraints. Thus the vector that satisfies the constraints and optimizes
the cost function is a solution of the optimization problem. However any vector
satisfying only the constraints is a solution of the constraint satisfaction problem.
The model of the dose—volume constraints and the algorithm we use here belong
to this class. Thus the weight determination assumes the minimalistic approach
addressing the dose prescription without any underlying policy. Different solutions can
be obtained by changing a starting point or adjustable parameters, or the termination
criterion.

We use the simultaneous version of the CSP method (SSP) (ITusem and Moledo,
1986; Censor and Zenios, 1997). The algorithm finds a vector x that belongs to the
set of feasible solutions defined as

Q={xeRY| Yier g:(x) <0 A g;(x) is convex}, (9)

where T is the set containing indices enumerating constraints; in our case T' = (J, T,

The SSP method is an iterative algorithm that starts from a weight vector of an
arbitrary initial value. The k-th iteration commences with a weight vector, x*. For
every constraint set, ¢, the following intermediary vector, X¥, is computed

max(0, g;(x*))

Xy =x" - dge(x), (10)
' 10 (x¥)]|>
where 0g;(x*) is a relevant subgradient (or the gradient for the differentiable case)
of the function, g;(x*), and || - || is the Euclidean norm. The iterative update of the
weight vector, x*, takes the form,
X =xF 4 O w XF—xb), (11)

teT
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where 0 < A\ < 2 is a relaxation parameter, and 0 < w; is the importance of the ¢-th
constraint such that ) , ., w; = 1. Since the weight vector is nonnegative, the final
step is the projection onto the nonnegative orthant, ]Rf .

The computation of the vectors, XF, is the step which determines a parallel
character of this algorithm (Andrews, 2000; Censor and Zenios, 1997). For a
given iteration all vectors, X¥, at the voxel resolution and relevant components in
Equation (8) are independent and can be computed simultaneously which we took
advantage of in our implementation using a multithreaded Posix technology on a dual
Pentium Linux box. In practice this resulted in nearly halving the execution time
with comparison to the sequential control flow of the program.

The CSP algorithm is designed to solve the convex feasibility problem. Yet the
cumulative DVC functions are quasiconvex. However the use of non—convex constraint
functions is not without a precedence for similar algorithms (Fienup, 1982). It seems
reasonable to compromise the type of a few constraint functions to maintain the
veracity of the model. Moreover all constraint functions are differentiable that allows
us to use an analytic form of gradients in the implementation.

2.5. Algorithm Parameters

The importances are user—assigned and systematized in our implementation as follows.
First, an importance, wy, is assigned to each structure, s. Then, the normalized
importances are split into a user-assigned fraction for a DVC importance of Equation 7
and the organ’s importance of Equation 6. It is worth pointing out that in our
implementation the importance of the given constraint can be viewed as an attribute
of the given voxel, either real or virtual.

Our previous experiments with the DL-SSP algorithm applied to feasible cases
showed that this projection method with such an initial weight vector delivers solutions
that approach the vector with smallest norm (Xiao et al., 2003a). This feature is
beneficial in that smooth intensity patterns result in reduced total beam—on time.
Due to affinity of the DL-SSP and DVC-SSP algorithms, the initial weight vector
was set to 0.

The relaxation parameter is also user-assigned, \¥ = A = 1.999. This decision is
dictated by the accelerated performance of the algorithm with the over-relaxation.

Any formal modeling associates the relevant parameters with expressions and
operations of mathematical constructs. It is desirable to apply directly the dose—
volume contraints used in the physician’s prescription as input for the inverse
planning. If a computational method resorts to some exogenous structures, parameter
values or computational processing it may loose its rigour. However practical
situations sometime necessitate these empirical adaptations and modifications to
re—gain computational efficacy. They stem from the knowledge of the algorithm’s
behavior or characteristics of the plan. For example, the loss of robustness of the
conjugate gradient method with a quadratic cost function for the beamlet based ITP
prompted the authors to differentiate explicitly between computational values and
those from the prescription (Spirou and Chui, 1998; Hunt and Burman, 2003). The
actual computational parameters can be based on the dosimetrist’s experience, e.g.,
applying stricter interval dose limits for a target or boost levels, which obviously make
multiple point DVCs defunct. However the lowering of the upper dose limit for OARs
does not have to be viewed as a deviation from the prescription since ideally for any
case we would like this dose to be minimal.
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For example, in all of the solved cases and for the DL-SSP method we set
the spinal cord upper limit at 40.00 Gy. For the DVC-SSP method we imposed a
corresponding DVC with the upper limit set at 45.00 Gy. This change appeared to
be crucial for obtaining solutions otherwise these methods did not perform robustly
enough. The same tactics was applied to the upper limit for the prostate PTV for
cases that used constraints given in Table 1B. The DL-SSP used 80.00 Gy as the
upper limit in the computation. The DVC-SSP method used interval (80.00, 83.16]
Gy as an allowed overdose. The same was for head—and—neck cases with two boost
regions. The head—and-—neck cases also required more adjustments of the importance
parameters. This is our usual practice with complex cases (Bednarz et al., 2000).

In principle, all voxels affect the determination of the weight vector. Yet one
must remember that the issue is more subtle since the geometry and topology of the
disease site, and the given prescription interplay in a way difficult to envisage. For
example, for some cases a significant difference in the volumes of organs might hinder
solving plans. This was our rationale for deacreasing by ten—folds the importance of
the bladder as compared to other OARs for some of the prostate cases.

2.6. Algorithm Termination

Computations were terminated either when the prescription or an arbitrary number
of iterations was reached (in most cases 30000). This was dictated by an emphasis in
this report on testing its efficiency in solving a given dose—volume based prescription
rather than approaching the prescription or achieving some other particular goals.
The same termination condition and values of pertinent adjustable parameters allows
for the comparison of these methods.

2.7. Similar Computational Methods

It is instructive to place this particular model and the algorithm in a context of related
computational methods (Xing and Chen, 1996; Shepard et al., 2000; Xiao et al., 2000;
Starkschall et al., 2001; Xiao et al., 2003a). The SSP algorithm applied to the model
without DVC functions, i.e., only with the dose limit constraints (DL-SSP), coincides
with the well behaved Cimmino method of the simultaneous projections onto linear
constraint sets (Censor and Zenios, 1997; Stark and Yang, 1998). Its salient feature
is its inherent convergence which can be viewed in a least-square sense. It is afforded
by the existence of the monotonic function decreasing along iterations. This function
called proximity is a sum of weighted square distances of the solution from constraints
sets (Cimmino, 1938; Censor and Zenios, 1997; Stark and Yang, 1998). The CSP
algorithm is also convergent but only for feasible problems of the continuous convex
constraint functions and with the uniform boundedness of subgradients (Censor and
Zenios, 1997). Thus it is more convenient for us to look at the DVC-SSP from the
perspective of the Cimmino method. A sequential version of the latter, known as the
Kaczmarz algorithm (Kaczmarz, 1937; Censor and Zenios, 1997), lacks what appears
to be a crucial performance advantage of the simultaneous counterpart because in an
infeasible case, at some point, iterations restricted exclusively to constraint sets start
cycling through values. This is also the reason we used the simultaneous instead of
sequential version of the CSP method.

The performance of the DL-SSP method can be accelerated with over—relaxation,
e.g., (Hoffner et al., 1996). For the relaxation parameter, A € (0,2), the iterative
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Figure 1. Number of iterations, k x 103, as a function of the PTV importance
for prostate case P—A—1 solved with the DL-SSP, DL-SSP-ER and DVC-SSP
methods. The OARS’ importances were set to 1.

update is a contraction mapping that guaranties the algorithm’s convergence (Censor
and Zenios, 1997; Stark and Yang, 1998; Luenberger, 1997). This is equivalent to
preserving a non—increasing proximity function. The values below 1 decelerate the
convergence, while parameter values above 1 accelerate it. Thus it is easy to control
the over-relaxation along the iterations increasing its value as long as the proximity is
non—-increasing. If the proximity function increases, the relaxation parameter is set to
1.999. This is our default value for A in our implementation of the DL-SSP method.
It might be even used in a less formal mathematical sense, i.e., with the function that
is some other measure of the algorithm’s performance. This adaptive adjustment of
A for the DL-SSP method we call elastic relaxation (ER). The value of A\ was set to
1.999 for the DVC-SSP method.

3. Results and Discussion

3.1. The Importances and the Convergence Rate

For prostate cases we started experiments with equi-important structures,
e.g., Vsws = 1. The DL-SSP and DVC-SSP methods with this initial set—up yielded
solutions only for some cases. Next, the OARs’ importances were kept fixed while
solving with increased values of the PTV importance. The DVC-SSP was able to solve
the plan with lower values of the PTV importance than the DL-SSP method . All
figures show typical behavior of the algorithms. The comparison of the algorithms for
the head—and—neck cases were not be achieved. The DL-SSP algorithm used modified
dose limits to get a solution. The following notation is used in the figures. The prefix
P or HN are for prostate or head—and—neck cases, respectively. Next, letters A and
B are for the prostate cases with constraints given in Table 1A and 1B, respectively.
For the head—and—neck cases, A and B denotes cases with four and two boost regions,
respectively. The suffix denotes the case number.

Figure 1 demonstrates the number of iterations as a function of the PTV
importance for the P-A—-1 case. For the DVC-SSP we used the PTV DVCs given
in Table 1A(a). The OARs’ importances were set to 1. The fractional underdose
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Figure 2. Number of iterations, k x 103, as a function of the PTV importance
for prostate case P-B-1 solved with the DL-SSP, DL-SSP-ER and DVC-SSP
methods. The OARS’ importances were set to 1.

(dvc) and overdose (DVC) importance for the PTV were w((ichv) = w(DPVTC‘( ) = 0.275.

The first solution obtained with the DL-SSP method that met the prescription was for
wpry = 80. The DVC-SSP managed to solve the case for wpry = 12. The algorithm
performs better while increasing the PTV importance until again the efficiency is
slowly lost. Another characteristic behavior is shown in Figure 2 for case P-B-1.
The geometry of the anatomical site for this prescription led only to acceleration of
the algorithm’s convergence while increasing the PTV importance. In this case the
DVC-SSP solved the plan with all equi-important structures. The DL-SSP method
delivered solution with wpry = 130. These and other figures also include the plots of
the DL-SSP method with an adaptively changed relaxation parameter (DL-SSP-ER).

All head—and—neck cases solved with the DVC—-SSP exhibited behavior similar to
that of the P-A-1 case solved with the DVC-SSP as shown in Figure 1. However
all these cases were solved with equi-important structures. Despite more complex
anatomy and the dose prescription the lowest number of iterations were comparable
to the solutions of the prostate cases.

The DL-SSP method requires more adjustments of the importance parameters,
ws, to proceed efficiently towards a weight vector satisfying the prescription. Our
experiments indicate that setting up these parameters is not an intuitive process. It
is difficult to establish a template with values for same disease sites. The shape,the
size and the relative location of structures affect the computation. Thus providing the
algorithm with the additional knowledge of the cumulative dose requirements appears
to alleviate this problem.

The DVC-SSP appears to take advantage of the interplay between the numerically
well-behaved convergent DL-SSP as applied to constraint sets at the voxel resolution
and sets based on cumulative dose—volume conditions. The control over the effects of
these parts is via the distribution of the importance between constraint sets ascribed
to voxels and the DVCs. This behavior for the P-A-1 case is demonstrated in Figure 3.
It shows the number of iterations k as a function of the virtual voxels’ importance. At
first there is a dramatic decrease with best results occurring for the DVC importance
about 0.55. In this case further increase of wgy. slightly reduced the number of
iterations to solve the plan.
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The use of too small or too large values for the importance of the DVCs may
preclude effective convergence to the plan requirements. For example, if the DVC
importance is too small, the algorithm neglects the particular DVC and drifts toward
behavior that starts to resemble that of the DL-SSP method with a higher number of
iterations to meet the plan. The increase of the importance of virtual voxels changes
this behavior. The computation acquires the ability to fine—tune the dose to real and
virtual voxels. This type of experiment was not carried out for the head—and-neck
cases because there were too many combinations of the DVC importances.

3.2. Multipoint DV Cs

The multi-point DVCs of the RTOG-H-0022 protocol for the oropharyngeal cancer
are not suitable for simple testing. Therefore we used two DVCs restricting underdose
of the PTV in prostate cases as marked by (a) and (b) in Table 1A. This type of
stipulations can be used to mirror available prescriptions or to design custom made
DVHs as shown in Figure 4. This simple experiment with the P-A—1 case shows how
the dual dose—volume stipulation can affect the DVH.

For the HN-A-1 case the DVC-SSP algorithm terminated the execution close to
50% of the right parotid volume receiving 30.00 Gy. For other cases the algorithm
met the prescription with a better sparing of this organ. Figure 5 demonstrates a
simple experiment that improves the sparing of the right parotid for the HN-A-1
case. Instead of using stipulated by the protocol 50% of volume we used 40% of the
volume receiving no more than 30.00 Gy. Other parameters remained the same.

Previously, the method of projections onto convex sets was used in a two
dimensional feasibility study of the prostate case with the DVCs modeled through
an integral dose controlled adaptively in the course of iteration by a limit adjusted
proportionally to the violation of the prescription (Lee et al., 1997; Cho et al., 1998).
The change of the limit along iterates is to help to guide the computation toward the
solution. However such constraints do not mirror a prescription like the DVC-SSP
method does.

The use of the CSP method with the cumulative dose—volume histograms as

Ul

Figure 3. Number of iterations for prostate case P-A-1, k x 103, in terms
of the DVC importance, wgy (fraction of the PTV importance). The number
of iteration to reach the prescription with the DL-SSP for the same setup of
structural importances was 21781, c¢f. plot DL-SSP in Figure 1. The lowest
number of iterations obtained with the DVC-SSP was 969.
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Figure 4. The cumulative DVH for the PTV of the P-A—1 case obtained
with different dose(-volume) stipulations. The structural importances were set
to match the most efficient performance of the DL-SSP algorithm. We could not
achieve the 95% and 90% coverage of the PTV with the DL-SSP method within

a reasonable time.

constraint functions has already been reported (Starkschall et al., 2001). The
subgradients were approximated with numerical values of derivatives of the DVHs
with respect to beam weights. However the discretized nature of the volume of interest
may preclude obtaining non—zero gradients. The number of voxels in relevant intervals
might remain the same yielding zero—valued gradient despite the change of the dose
map. This was our experience with this method applied to prostate cases using 3mm
voxel resolution for plan evaluation and starting with a zero weight vector. This
separates our implementation from that reported (Starkschall et al., 2001) which used
Smm voxels and 500 randomly spaced points for PTV and 250 points for critical
structures. It also used a different initial weight vector.
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Figure 5. The cumulative DVH for case HN-A-1. The broken lines show
the solution obtained for the RTOG-H—-0022 protocol. The solid lines show the
solution with the DVCs changed from 50% to 40% of the parotid overdose.
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Figure 6. The evolution of the underdose of the PTV for the P-B—1 case along
the iterations, k x 103, solved with the DL-SSP, DL-SSP-ER and DVC-SSP
methods.

3.3. The DVC and the Inconsistency of DL Constraints

Cases which manifest infeasible dose limit constraints can be compared to frustrated
systems. Phase I of the simplex method revealed that all investigated for this report
cases with the prescription without the DVCs turned out to be inconsistent, i.e.,
Q = 0 as defined in Equation (9). Adding DVCs removes this infeasibility. The
DL-SSP method addresses all voxels concurrently. The DVC-SSP method tries to
satisfy the voxel doses the same way, however concomitant to that is the effect on the
cumulative dose—volume statistics. Figure 6 shows a typical evolution along iterations
of an organ DVH. This is the PTV underdose for the P-B-1 case solved with the same
structural importances as those that yielded first solution with the DL-SSP method
(cf. Figure 2). In the case of the DL-SSP method it took a lot of iterations to meet
the prescription. When the DVCs is switched on the system reaches compliance with
the prescription much faster. The difference is one order of magnitude. Figure 6
is typical for the DVC-SSP method in that it exhibits alternating jumps until the
underdose drops below the required value, in this case 5%, concurrently with other
organs meeting the prescription. The evolution of the underdose for the DL-SSP
method is smooth.

3.4. The DL-SSP FElastic Relazation and the DVC-SSP

Two experiments were carried out with over-relaxation. First, a fixed value of the
over-relaxation parameter above 2 was used to examine the susceptibility of this
technique to the loss of the convergence. The DL-SSP method was less forgiving
than the DVC-SSP algorithm. The former method was already vitiated with values
of A about 2.3. The behaviour of the DVC-SSP approach was practically not affected
by values below 5. Next, the DL-SSP method was modified to adaptively over—relax .
The increment of A by a value of §, = 5.0 for the non—increasing proximity function was
scheduled to occur at arbitrary intervals of 250 iterations. Setting ) = 5.0 was partly
dictated by the experiments with a fixed over-relaxed . As soon as the proximity
function deteriorated A was decreased by ) but not below 1.999. These adaptive
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adjustments turned out to be a practical method of accelerating the performance of
the DL-SSP algorithm as shown in Figures 2, 3, and 6. However the DVC-SSP method
achieved required dose prescriptions in fewer iterations. In addition it also required
fewer adjustments of the importances compared to the DL-SSP-ER method.

4. Conclusion

The DVC satisfaction problem was formulated to model prescriptions for ABIP.
An iterative algorithm of the simultaneous subgradient projections was used to
obtain solutions. The algorithm is easy to implement and has minimal memory
requirements. This inherently parallel numerical approach allows for taking advantage
of modern computational technologies such as multi-threading on multiple-chip boxes
or computer clusters. The model and its solver might be viewed as a specific version of
the Cimmino method with non—linear constraints. This algorithmic similarity implies
practical salutary numerical features. The diversity of the examined cases provided a
representative sample of the algorithm’s behavior for two classes of disease sites and
prescriptions.

In case of loss of robustness when the DVC-SSP algorithm cannot converge to a
prescription compliant weight vector the method is amenable enough to be modified
to save the best, in some metrics, weight vector. We want to point out that failure to
arrive at the solution does not necessarily equate with inconsistent constraints.

The execution times of a single iteration of these three algorithms are mostly
determined by the dose recalculation for a given weight vector. For example, the
worst and best times for the DVC-SSP, DC-SSP-ER, and DC-SSP methods for
the case in Figure 1 were (8.55,109.04s), (38.38,109.24s),(82.05, 190.05s), respectively
(sequential implementation on Pentium IIT 800 MHz Linux box). The time to reach
the compliance for the head-and-neck case in Figure 5 was 31.88s (514 iterations)
and 324.03s (5370 iterations) for 50% and 40% of the parotid overdose, respectively.
The set up of the DVC-SSP method is more intuitive and the performance is more
robust than the DL-SSP and DL-SPP-ER method. This improvement is due to the
synergy of dose-limit constraints at the voxel level and cumulative DVCs at the organ
level. Albeit the elastic relaxation parameter for the DL-SSP method speeds up the
execution significantly this approach must still seek proper sets of the importances
and use ad hoc adjusted dose limits that differ from those given in the prescriptions.
The DVC-SSP can also be favorably contrasted with the aformentioned method of
the projections onto convex sets with an adaptively adjusted integral dose constraint
(Cho et al., 1998) since this approach only partially relies on the prescription.
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Appendix
Let us consider the set of constraint functions as previously defined in § 2.3. The
feasible case is equivalent with the certificate of solvability i.e. Ix V,cpe ge(x) < 0.
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We show the proof for the overdose since for the underdose is similar. For structure, s,
with M overdose DVCs tagged by [, let us split the set of indices, I(*), that enumerate
the real voxels into subsets, C(5:Y) and E() defined as

C(s,l) _ {t = T(é) A DES) — u(s’l) < O} and
EGD ={t:teT® AD® —ubh > 0},

Thus’ E(S7l) UC(Svl) — I(S)7 and E(Sl) ﬂC(SJ) — w7 and |E(Sal)|+ |C(S7l) — |I(S)| = V(S)7
where symbol, |-|, denotes the number elements in a set. Since all function inequalities
are satisfied at the voxel resolution it is also true for this very case that

ECD = {t:teT® A DY —ub) > 0 A DY —U® < 0}

The constraint function, g;(x), for a virtual voxel corresponding to the {** DVC can
be rewritten as

gx)= Y H 4+ S HED - FEOY (U —ul=D)

i€ E(s:) ieC(s:h)
= > (DY —ulD) 4 (U D))+
e E(s:)

+ |C(Syl)| x0 — FEDy, (U(S) _ u(svl))
Since, g¢(x) < 0, we have
Z (DY) —usDy (U —yoy)y < FEDy, (U6 — y&)
i€ E(sD
For voxel i € E(*! we have 0 < (DZ(S) —u®D) and
Z (U — &0y < FEDy ) (U — D)y,
i€E}
This is equivalent to
|E(5’l)| < pleby(s)

Thus for the weight vector, x, complying with all the constraints, the dose map for
a given structure complies with the dose—volume based prescription. The number of
voxels in set E(*! does not exceed the stipulated fraction of the organ volume.
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