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Abstract
We study general algorithmic frameworks for online learning tasks.
These include binary classification, regression, multiclass problems
and cost-sensitive multiclass classification. The theorems that we
present give loss bounds on the behavior of our algorithms which de-
pend on general conditions on the iterative step sizes.
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1 Introduction

Online learning algorithms for various prediction tasks differ fundamentally
from batch learning algorithms. The online learning process assumes that



the instances that need to be classified and their correct labels are not all
available to the algorithm at the start of the training, but rather that they
are unveiled sequentially. Moreover, the algorithm starts to offer predicted
labels from its exposure to the first instance-label pair, and it subsequently
learns and makes further predictions simultaneously. The theoretical aspect
of online learning algorithms analysis is to provide tight bounds on their
performance. Very often, these algorithms can be analyzed and shown to
work quite well even when no statistical assumptions of any kind are made
about the process producing the observed data. Many of the algorithms and
methods of analysis used in this area can trace their roots to the work of
Littlestone, Vovk and Warmuth, see [6, 7, 8]. Inspired and influenced by [4],
we formulate general sets of conditions under which many algorithmic vari-
ants of online passive-aggressive algorithms can be analyzed. More precisely,
we answer the following question: under what conditions on the choice of
iterative steps can one obtain results analogous to those of [4]?

Thus, our work contributes to the development of new analytical frame-
works that advance theoretical studies of practical learning methods. All the
algorithms of [4] can be obtained as special cases of our algorithmic frame-
work, but the framework is wide enough to encompass many more variants.
Our way of looking at the subject will lead to additional developments of a
similar nature. In particular, there are many links between online learning
algorithms and projection algorithms for solving convex feasibility problems,
see, e.g., [1, 2, 5, 3], which can lead to new studies of the latter that will
concentrate on providing tight bounds on their performance as online algo-
rithms, rather then on their asymptotic convergence.

We structured the paper so that the sections order follows closely that of
[4], successively handling binary classification (Section 2), regression (Section
3), multiclass problems (Section 4) and cost-sensitive multiclass classification
(Section 4).

2 Binary classification

We denote the instance presented to the algorithm on round t by x! € R",
where R" is the n-dimensional Euclidean space. We assume that z‘ is as-
sociated with a unique label y; € {+1,—1} and refer to each instance-label
pair (z%,y;) as an ezample. The algorithms discussed in this paper make
predictions using a classification function. We restrict our discussion to clas-



sification functions that are based on a vector of weights w € R", and which
take the form sign (w,z). We denote by w' the weight vector used by the
algorithm on round ¢, and refer to the expression y; (w’, z*) as the (signed)
margin attained on round t. Whenever sign (w', z') = y, the algorithm has
made a correct prediction. The loss is defined by the following hinge-loss
function:

. . 0, if y(w,z)>1,
fw; (2,y)) = { 1—y{w,z),  otherwise, (2.1)
and, clearly,

We assume henceforth that for any number ¢ > 0, ¢/0 := +o0.

Algorithm 2.1 General Online Passive-Aggressive Algorithmic
Framework for Binary Classification

Initialization: Set w' = (0,0,...,0) and choose parameters v, and a
sufficiently small k > 0 such that

0< 7 < 2. (23)

Iterative step: (1) Given the weight w' and receiving the instance z°,
predict:
gy = sign (w’, z"). (2.4)
(2) Receive the correct label y, € {+1,—1} and calculate the loss
Ly = L(w'; (2, yy)).
(8) Choose a nonnegative parameter 7; for which

7 < viby/||2t||* and if £, > 1 then 1, > k. (2.5)

(4) Update:

w't! = w' + nyat (2.6)
We now turn to the analysis of our algorithmic framework. For any
set E, denote by card(F) its cardinality. As before, we denote by ¢; the
instantaneous loss suffered by Algorithm 2.1 on round ¢. In addition, we
denote by #¢; the loss suffered by an arbitrary fixed predictor to which we are
comparing our performance. Formally, let u be an arbitrary vector in R",
and denote R
Oy = b(w; (2%, yy)) and £ = £(u; (2%, yy)). (2.7)
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For any natural number %, define

t+1

Ap = ||w' — u||2 — lw" = u||2 (2.8)

Lemma 2.2 Let {(z',v1), (% v2), ..., (z7,yr)} be a sequence of examples,
where ' € R™ and y; € {+1,—1} for allt. Let 7; satisfy (2.5) for allt. Then

T
S (2@ — |2t - 2@) < [l (2.9)

t=1

Proof. Clearly,

}ﬂ

T
A= (llwt =l = [Jwt = ull?) = flw! —ul®— [ —ul?, (2.10)
t=1

t=1
and hence,
T
D Ar <yl (2.11)
t=1
By (2.6) and (2.8) we have, for t =1,2,...,T,

Ay =’ —ul® = o™ —ull* = v’ — ul]* = |lw’ — v+ yma’||?

= |lw' —ull* = (0" = ull® + 2ry(w’ —u), 2") + 772" [|?)
= =27y (w' —u, 3"y — 77||z||*. (2.12)

By (2.1), (2.5), (2.6) and (2.8) we also have for t =1,2,..., T, that
if Et = 0, then Ty = 0 and At = 0. (213)

Assume that
te{l1,2,...,T} and ¢, > 0. (2.14)

Applying (2.1), we get
b=1—1y <wt,xt> and Zt >1—1y <u,xt>. (2.15)
By (2.12) and (2.15),

Ay >2m((1=6) — (1= £)) = |2 |” = 2n (b — &) — 72 ||a*|% (2.16)
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which, in view of (2.11), (2.14) and (2.13), yields

T T
ll?>3"a,>3 7 (2@ — |t - zet) , (2.17)
t=1 t=1
proving the lemma. m
Set
B ={te{1,2,...,T}| £, > 1). (2.18)

Theorem 2.3 Let {(z},y1), (2, 12), ..., (@1, yr)} be a sequence of examples,
where x* € R" and y; € {+1,—1} for all t and assume that 7; satisfies (2.5)
for all t. Assume that there exists a vector u such that Z: =0 for allt. Then
card(Ey) < k752 — v1) 7 Y|u||?, i-e., the number of indices t € {1,2,...,T}
for which £, > 1 does not exceed k(2 — 1) H|ul*.

Proof. By Lemma 2.2, (2.9) holds. Since Zt = 0 for all ¢, (2.9) implies
that

T
> n (26— nllat|?) < [lul? (2.19)

t=1
and that z* # 0 for all ¢. In view of (2.5) and (2.19),

T T
lall> = Y e~ 2emll2'|* = 71l 1) = D (26m — 77 l"|%)

t=1 t=1
T T

> Z(%ﬂt - Tt“hft) = Ztht(Q - ’Yl)- (2-20)
t=1 t=1

By (2.18), (2.20), (2.3) and (2.5),
ull> > @2 =)l > Y (2= n)m > k(2 — p)card(Er)  (2:21)

teBy teR

and the required result follows. m
Theorem 2.4 Let {(z*,y1), (22, 12), ..., (@7, yr)} be a sequence of examples,
where z* € R" and y; € {+1,—1} for all t and assume that 7; satisfies (2.5)

for all t. Let uw € R™ and assume that there is a number ¢ > 0 such that
7+ < ¢ for all t. Then

T
card(B) < Y 4 < k12— ) Ml + 2 chy). (2.22)
t=1

te bk



Proof. By Lemma 2.2, (2.9) holds and implies that

T T
> 20—l ?) < Jull*+ > 2nb. (2.23)
t=1 t=1

Together with (2.5) this implies that

||’UJ||2 + Z 27}6,{ > Z 26,57} — Tt")/lgt ZTtgt 2 — ’)/1
t=1
2 — ’)/1 Z Ttet 2 ’}/1 K Z Kt- (224)
teF tek

Since 1; < ¢ for all ¢, it follows from (2.24) that

T
card E1 Z Et < K 2 — ")/1 1(“?,[,”2 + Z QTtgt)
=1

tek,
T
<K 2= y) T (full? +2) ] ch), (2.25)
t=1
which completes the proof. m

2.1 Special cases

We show that all three variants ((PA), (PA-I) and (PA-II)) of the online
passive-aggressive learning algorithm of Crammer et al. [4, Figure 1] are
special cases of Algorithm 2.1 when the sequence {z'} is bounded. To see
this, assume that there is an 9 > 0 such that

||zt|| < 7o for all integers ¢ > 1. (2.26)
Consider the algorithmic variant (PA) of [4, Figure 1] with 7, = £||«t||72.
Clearly, the first half of (2.5) holds with 74 = 1. We show that its second
half holds with k = ry 2 Assume that ¢, > 1. By definition,

n > o] > g, (2.27)

Thus, (PA) is indeed a particular case of Algorithm 2.1. Consider now the
algorithmic variant (PA-I) of [4, Figure 1] with 7, = min{C, #||z*||%}. (Here
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C is a positive constant.) Clearly, the first half of (2.5) holds with v, = 1. If
l; > 1, then
7 > min{C, ||z|*} > min{C, r;*} (2.28)
and the second half of (2.5) holds with x = min{C, r,*}.
Next, consider the algorithm variant (PA-II) of [4, Figure 1] with

7= 4(]|="]]? + 20)7H) 7L (2.29)
Clearly, the first half of (2.5) holds with v, = 1. If ¢, > 1, then
7> (27 + (20) 1) " > (g + (20) 1) (2.30)

and the second half of (2.5) holds with k = (r2 + (2C)~')~".

3 Regression

Each instance z! is associated with a real target value y; € R which the online
algorithm tries to predict. On every round, the algorithm receives an instance
! € R"™ and predicts a target value 7j; € R using its interval regression
function 7; = (w', %), where w' is the incrementally-learned vector.

We use the e-insensitive hinge-loss functions

05 if |<'LU,$> - y| S g,

(w,z) —y| —e, otherwise, (3.1)

s (a.)) o= {
where ¢ is a positive parameter.

Algorithm 3.1 General Online Passive-Aggressive Algorithmic
Framework for Regression
Initialization: Fiz e > 0. Set w' = (0,0,...,0) and choose parameters
v1 and a sufficiently small k > 0 such that

0<m <2 (3.2)

Tterative step: (1) Given the weight w' and receiving the instance ',
predict:

g = (', 2. (3.3)
(2) Receive the correct label y, € R and calculate the loss £, =
C(w's (2, 1)-



(8) Choose a nonnegative parameter 1 for which

7 < le/||2t||?, and if £ > € then 7, > k. (3.4)
(4) Update:
w'™ = w' + sign(y, — ) ma’. (3.5)

Again we denote by 2; the loss suffered by an arbitrary fixed predictor to
which we are comparing our performance. Formally, let u be an arbitrary
vector in R™, and denote

by = £ (w'; (2, y;)) and 0, = Oc(us (2%, 1)), (3.6)
We also re-use the definition
Ap = [lw' —ul® = [lw™ - ulf*. (3.7)

Lemma 3.2 Let {(z,11), (2% v2), ..., (zT,yr)} be a sequence of examples,
where ' € R" and y; € R for all t. Let 7 satisfy (3.4) for all t. Then

S (214 —r||zt|f? - 242) < [l (3.8)
t=1
Proof. By (3.7),
T
S A= [t = uf? [ = w2 < ]l (3.9)
t=1

Let t € {1,...,T}. By both (3.7) and (3.5),
Ay = |lw' —ul]® — [Jw* — u+ sign(y, — G)ra’|)* =
— sign(y; — )21 (wy — u)® — 772 || 7). (3.10)
We now add and subtract the term sign(y; — 9;)27;y; from the right-hand side
in the above equation to get the bound
A, > —sign(y, — 50)2n((w’, ') — u)
+ sign(y; — @t)27t(<u, xt> — 1Y) — Tf||:vt||2. (3.11)



From (3.3) we obtain
—sign(y, — 7:) ((w', 2") — yp) = [(w', 2") — . (3.12)
Assume that £, # 0. We then get, by (3.1),
b = [{(wt, 2"y —yy| —e. (3.13)
By (3.11), (3.12), (3.13), (3.6) and (3.1),
Ay > 27(by + €) + sign(y; — 52) 27 ((u, 2*) — yp) — 77 ||
> 2136 + €) — 21 (G + €) — 2|l = (26, — ml|zt]|? — 26,).  (3.14)
When combined with (3.9), this implies that

T

T
D 26 — nllat|? - 26) <A, <l (3.15)

t=1 t=1

which completes the proof. m
Now set
E . ={te{l,2,...,T}| & > ¢} (3.16)

Theorem 3.3 Let {(z',y1), (2%, 12),--., (&7, yr)} be a sequence of examples,
where xt € R™ and y; € R for all t, let the nonnegative parameters T, satisfy
(8.4) for all t, and let € > 0 be fived. Assume that there erists a vector u
such that ¢, = 0 for all t. Then card(E,) < ||lul]?(e(2 —1)x) 7"

Proof. From Lemma 3.2 we have (3.8) which together with (3.4) gives

T T
Jul* > Z(2£t7—t — Tinby) = Ztht(Q — M) (3.17)
t=1 t=1

This yields, in view of (3.2), (3.16) and (3.4),

P > 3" 62 = ) > Y e2 = ). (3.18)

teE.

Hence,
card(E;) < [lull®(e(2 = m)x) ™,

as asserted. m



Theorem 3.4 Let {(z',y1), (%, 12), ..., (@', yr)} be a sequence of examples,
where ' € R™ and y; € R for all t, let the nonnegative parameters T, satisfy
(3.4) for all t, let € > 0 be fizred and let w € R". Assume that there is a
number ¢ > 0 such that 7, < ¢ for allt. Then

T
e card(E Zﬁt ((2=m)kK 1)(||u||2—|—232025). (3.19)
t=1

teE.

Proof. From Lemma 3.2 we have (3.8) which, together with (3.4), implies
that

T T T
llull* + 227}@ > ZTt(%t —mb)=2-m) Ztht
t=1 t=1 t=1
> 2k Y (3:20

teE.
The last inequality leads to
T
e card(E, Zét (2 = v)K) " (JJul? —1—227}&)
teE. t=1

< (2 = 7)) "H(|Jul)? Z 2cl,), (3.21)

which completes the proof. m

4 Multiclass problems

In multiclass problems every instance z' is associated with a set of labels Y;.
Denoting by YV :={1,2,...,k} the set of all possible labels, Y; is a subset of
Y. We say that y € Y is relevant for the instance z! if y € Y;. The online

algorithm receives instances x!,z?, ... sequentially, where z' belongs to an
instance space X .
Assume that we are provided with a set of functions ¢, ¢, ..., g : X X

Y — Rand ¢ = (¢1,¢9,...,d4). On round ¢, the prediction of the algorithm
is the k-dimensional vector

((w', ¢(a", 1)), (v’ ¢(a",2)),..., (w', ¢(z, k))). (4.1)
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We define the margin attained by the algorithm on round ¢ for the ezample
(2", Y}) by

y(w'; (2", Y1) = min{(w’, (a",7)) | r € Vi} — max{(w’, ¢(z', 5)) | s ¢ Vi}.

(4.2)
The instantaneous loss suffered after receiving Y; is defined by the following
hinge-loss function:

_ o 0, if y(w;(z,Y)) > 1,
buc(w; (2,Y)) = { 1 —vy(w;(z,Y)), otherwise, (4.3)
and we define
6 = lyc(w'; (2, Y,)) and 4 = lyo(u; (2, Y))), (4.4)

where u € R™.

Algorithm 4.1 General Online Passive-Aggressive Algorithmic
Framework for Multiclass Classification

Initialization: Set w' = (0,0,...,0) and choose parameters i, v, and
a sufficiently small kK > 0 such that

0<m <2, 7 € (0,1]. (4.5)

Tterative step: (1) Given the weight w' and receiving the instance ',
predict the associated set of labels Y;.
(2) Receive the correct associated set of labels Y; and calculate
the loss £y = Lyrc(wt; (24, Y3)).
(8) Calculate

Ty = argmin{(wt, ¢(xt,r)> | r € Y},
s := argmaz{{w’, ¢(z",s)) | s ¢ V;}. (4.6)

(4) Choose a nonnegative parameter 7y such that 7, = 0 if [, = 0,

otherwise
7 < b/ ||p(at, ) — @zt s1)||”, and if & > v, then 7, > k. (4.7)
(5) Update:
Wt =w' + 1 (2, 1) — P2, s)) (4.8)
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Again, it can be shown that the three algorithmic variants that appear
in [4, Section 7] are particular cases of our Algorithm 4.1 if there is an my
such that ||¢(zt, ) — ¢(at, s,)||> < my for all .

Lemma 4.2 Let {(z',Y1), (2%, Ys),..., (2T, Yr)} be a sequence of examples
with 2t € R™, Y; C {1,2,...,k}, let w! = (0,0,...,0), and let u € R*. Then

>or (26— 2 - ||olat, ) — ot s)|) < lluf®. (49)

Proof. Set again
JAVEE ||wt — u||2 — ||wt+1 — u||2 (4.10)

for all t. Then
T
3 Ar = ! =l = o™ = ull? < Jful. (4.11)

Fort =1,2,...,T with ¢, > 0 it follows from (4.10) and (4.8) that

Ap= [l —ul® — [lw' —u+ 7 (62", ) — ¢z’ 50)) ||
= _27-t <wt —u, ¢(mta rt) - ¢($t > ||Q5 .’E rt ¢($t: St)H2 .
(4.12)
Assume that ¢t € {1,2,...,T} and the loss ¢; > 0. By (4.3),
6 =1—~(w' (2, ;) and 4 > 1 — v(u; (2", V7). (4.13)

Together with (4.2) and (4.6) this implies that

(1) = (1= ) < 7(u; (', ¥2) — (' (xt Y))
(Ua( LY)) — (<w (', > <w (2, s >)
, p(z, t)> <u B(zt, s >
<wt, B(x", rt)> — <wt, B(z* ,st)>)
u—w, oz, ) — ozt st)> ) (4.14)

Il
2
8

IN
5

/\/‘\/\

By (4.12) and (4.14),

Ay > 278 — 4) — 77 || ¢(2t, ) — (at, st)HZ. (4.15)
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Together with (4.11) this implies (4.9) as asserted. m
Recall that
E,, ={te{l,2,....,T}| & > v} (4.16)

Theorem 4.3 Let {(z,Y1), (2%, Ys), ..., (¥, Yr)} be a sequence of examples
with 2t € R, Y; C {1,2,...,k}, let w' = (0,0,...,0), and let u € R™ be
such that £(u; (2*,Y;)) = 0 for all t. Then card(E,,) < |[ul]*(x(2 — 71)72) "

Proof. It follows from (4.9) and (4.7) that, for t =1,2,...,T,

2&5 — Tt |‘¢($t, T‘t) - ¢(.’Et, St)HQ > (2 — 'yl)ét. (417)
Together with (4.9) this implies that

T
Jull* > ZTt(2 — 71 )b (4.18)
By (4.18) and (4.7),
ull> > )" (2= )% > &2 - 11)72card(E,,), (4.19)
1€,

and the theorem follows. m

Theorem 4.4 Let {(z,Y1), (2%, Ys),..., (zF,Yr)} be a sequence of examples
with z* € R, Y; C {1,2,...,k} and let u € R". Assume that there is a
number ¢ > 0 such that 7, < ¢ for allt. Then

T
o card(E. Z b < ((2—7)6) " (||ul)® + QCZE). (4.20)
t=1

t€E.,

Proof. By (4.9),

T

T
Son (26— )0t ) — ot so)P) < ullP+ Y 2ml (421)
t=1

t=1

Together with (4.7) this implies that

||’LL||2 -+ ZQTtEt > ZTt 2&; ’Yﬁt 2 Y1 ZTtgt 2 - /Yl)K; Z Et'

L€y,
(4.22)

13



This implies that

T
yecard(En,) < ) 4 < (2= 7)) (lull® + ) 2mby)
t=1

< (=R (lull” +2¢Y4) (4.23)

and the result follows. =

5 Cost-sensitive multiclass classification

With Y and ¢ as in Section 4, in cost-sensitive multiclass classification each
instance z! is associated with a single label y; € Y and the prediction ex-
tended by the online algorithm is simply

Uy = argmax{<wt, o(z*, y)> |y e Y} (5.1)

A prediction error occurs if y; # ¥;. More specifically, for every pair of labels
(y,y) there is a cost p(y,y). We assume that p(y,y) = 0 for all y € ¥ and
that p(y,y) > 0 whenever y # §. The goal is to minimize 23:1 o(Ys, Ut)-
Define the cost sensitivity loss

len(w; (z,9)) = (W, 62, y)) — (w, ¢(z,9)) + p(y, 7)1/2. (5.2)

Algorithm 5.1 General Online Passive-Aggressive Algorithmic
Framework for Cost-Sensitive Multiclass Classification

Initialization: Set w' = (0,0,...,0) and choose parameters i, v, and
a sufficiently small Kk > 0 such that

0<m <2, 7€ (0,1]. (5.3)

Iterative step: (1) Given the weight w' and receiving the instance z*,
predict the label ;.
(2) Receive the correct label y; and calculate the loss
b = lpp(w'; (z*, yy)).
(8) Choose a nonnegative parameter 1, such that if ¢, = 0, then
7+ = 0; otherwise

7 < b/ |62t ) — S, )|, and if > o then 7, > . (5.4)
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(4) Update:
wt+1 = wt + Ty (¢(‘rt’ yt) - ¢(mt’ @\t)) - (55)

Again, it can be shown that the three algorithmic variants that appear in
[4, Section 8] are particular cases of our Algorithm 5.1 if there is a constant
my such that ||¢(zt, y:) — d(2*, 5:)|| < myg for all .

To analyze Algorithm 5.1, let § = §(w; z,y) € Y be defined, for any given
w,z and y, by

j = argmax{(w, ¢(z, 7)) — (w, ¢(x,y)) + p(y,r)/* | r € Y},

Yi = @(wt§ l't, yt)- (5-6)

Define the loss for the max-loss update by

Oarp(w; (2, 9)) = (w, ¢z, §)) — (w, d(z, ) + p(y, §)"/*. (5.7)

By (5.2), (5.6) and (5.7),
Cpp(w'; (', 1)) < Carr(w'; (2, yr)- (5.8)

Lemma 5.2 Let {(z',v1), (2%, v2),..., (T, yr)} be a sequence of examples,
where t € R™ and y, € Y for all t. Let u be an arbitrary vector in R". If
7. > 0 satisfies (5.4), then, for any sequence {w'} generated by Algorithm
5.1,

T

Z[Tt(QfPB(wt; (xt:yt - H¢ T, Y ¢($t,/y\t)H2—2€ML(U; (ﬂﬂt,yt))Tt] < ||u||2

t=1

(5.9)
Under the same conditions, if in Algorithm 5.1 Yy is replaced by 7, then
d 2
Z[Tt(ZZML( ( ayt —T H¢ ;yt Qﬁ(ﬂft,gt)H _2€ML(U, (xtayt))Tt] < ||U||2
t=1
(5.10)
Proof. As usual, set
O T (5.11)



Then .
S A < wh =l P = [Jw™ = )P < ] (5.12)

Let t € {1,2,...,T} with
Cpp(wh; (z',y)) > 0. (5.13)
Then, by (5.11) and (5.5),
A=l —ul]® = [lw' —u+n (6", 50) — (=", ) |I”
= —2n(u' = u, ¢(a", ) — $(a", %)) — 7/ llb(a’, m) — (", G (5.14)
By definition (see (5.6) and (5.7)),
farz s (2%, 1)) = max{(u, B(z", ) — $(a,1)) + ol )2 | 7 € V). (5.15)
Therefore,
b= Lur(us (2, 10) > (u, @2, 5) — B, 1)) + p(yes )72 (5.16)
By (5.14) and (5.16),

Ay > =27 (W', ¢(a', ye) — (', 7)) + 27 (p(ws, ) *

— Lar (s (2, 90))) — N6 (2, o) — S(a", B)II”. (5.17)
By the definition of {pp (see (5.2)),
<wt7 qs(xt’ yt) - ¢(xt; gt)> = p(yta :/y\t)l/z - EPB(wt; (xt: yt)) (518)

By (5.17) and (5.18),

Ay > —QTt(P(ytagt)l/2 - EPB( 5 ( t,yt))) + QTt(p(ytagt)l/Q
— L (u; (2 1)) — T2l 8( we) — B(2*, 30 |1?

= (2lep(w'; (2%, 1)) — 77 9(2", ye) — S, TI” — 2lnan (u; (2, 1)) -
(5.19)

Relations (5.19) and (5.12) show that
lul* > ZAt > Z 7(2pp(w'; (2", 1)) — 7/l 6(2", o) — B (2", %) II”
- 2£ML( ; (2 ,yt))Tt]a (5.20)
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which proves the first case of the lemma. Considering the second case, where
in Algorithm 5.1 %; is replaced by ¢;, we define A, again by (5.11). Clearly,

T
D A <l (5.21)
t=1

Let t € {1,2,...,T} with
Lpp(w'; (z',31)) > 0. (5.22)
As in (5.14) we can show that
A= =27 (0 — u, 6(', ) — 9", 7)) — 72ll(at, i) — (e, T (5.29)
By definition (see (5.6) and (5.7)),
Z: = lyrr (u; (xta Ye)) > <Ua ¢($ta i) — ¢($t; yt)> + p(ys, ??t)lﬂ- (5.24)
By (5.24) and (5.23),

Ay > =27 <wt, ¢(37t, Ye) — ¢($t,@t)> + QTt(P(yt,@t)1/2

— L (u; (2, 9))) = M6 (2", 31) = S(", G)l). (5.25)
Again, by definition (see (5.6) and (5.7)),
(W', d(z", 31) = $(2", G0)) = p(ye, Ge) — Larr(w's (2", 2)).- (5.26)

By (5.25) and (5.26),

Ay > =27(p(ye, o) * — Caan (W' (2", 1)) + 27(p(ys, 5)
— (v (2", ) — 21| b (2, ye) — (", 5e) I

= 7(20ar (W' (2", ys)) — 2602 (w; (2, 9))) — TN B(2, we) — b(", Go) |-
(5.27)

Together with (5.21) this implies that

lll> =Y A=) (20w (w's (2, y)) — 26un(us (2, 32))

— 7t llo(, i) — o(a",50) 1], (5.28)

completing the proof. m
Consider the set

Ep={te{1,2,....T}| p(y, %) > 73}- (5.29)
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Theorem 5.3 Let {(z',y1), (%, 12), ..., (@7, yr)} be a sequence of examples,
where £t € R™ and y; € R for all t, and let u be an arbitrary vector in R™.

Assume that
EML(U'; (xt, yt)) =0 (5-30)

for allt. Then
card(E,z) < (k72(2 — 1))~ lull*. (5.31)

Proof. By (5.1), (5.4), (5.6) and Lemma 5.2,

T
lull> > " n(2lpp(w'; (", 1) — mell (', ) — o(a", T)|°)

S|
Il

T
> ZTt(Q - 71)€PB(UJ ,yt ZTt 2 71 yt;yt)l/z (5-32)
t=1 t=1

This and (5.4) yield

[Jul> > Z (2 = 71)72 > £72(2 — 1) card(E), (5.33)

tEEW%
proving the theorem. m

Theorem 5.4 Let {(z',y1), (2%, 12), ..., (@",yr)} be a sequence of examples,
where ' € R™ and y; € R for all t, and let u be an arbitrary vector in R".
Assume that there exists a number ¢ > 0 such that 7, < ¢ for all t. Then

Yacard(Eyg) < Y oy 50)"* < ((2=7)%) " (lull*+ ) 2eburn (u; (2, 9))).

1€E, t=1
(5.34)
Proof. Inequality (5.9), when combined with (5.4), implies that
T
Jull® + Z%ML (', 1)) > ZTt 20pp(w'; (o', y1))
t=1
T
—1lpp(w'; (2%, 1)) > (2—m) Z mlpp(w'; (z', 1))
t=1
T
> (2—7) > mplyn )% (5.35)
t=1
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This inequality, (5.4), (5.1) and (5.2) show that

2 Card(Eyg) < Z Py, 902 < (2 =) T2 = )R Z Tep(ye, ) *

tEEvg tEE’g

< (2= 7)R) lul® + ) 260z (us (2, y))m)

< (2= 7)R) 7 lul® + ) 26w (us (2, 31))e), (5.36)

concluding the proof. m
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