
Mathematical Optimization For The 
Inverse Problem Of Intensity-Modulated

Radiation Therapy

Yair Censor, D.Sc.
Department of Mathematics, University of Haifa

Haifa, Israel 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Problem Definition And The Continuous Model . . . . . . . . . . . . . . . . . . . . . 27
Discretization Of The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
The Feasibility Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Optimization Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Mathematical Optimization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Simulated Annealing And Global Optimization . . . . . . . . . . . . . . . . . . . . . . . . 36
Multi-Objective Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Linear Optimization And Mixed Integer Programming (MIP) . . . . . . . . . . . . 39
Cimmino’s Algorithm And Other Projection Methods . . . . . . . . . . . . . . . . . . 40

The String-Averaging Algorithmic Structure . . . . . . . . . . . . . . . . . . . . . . . . 42
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Introduction

We consider intensity-modulated radiation therapy (IMRT) where beams of penetrat-
ing radiation are directed at the lesion (tumor) from external sources. Based on
understanding of the physics and biology of the situation, there are two principal
aspects of radiation teletherapy that call for mathematical modeling. The first is the
calculation of the radiation dose, which is a measure of the actual energy absorbed
per unit mass everywhere in the irradiated tissue. In dose calculation the relevant phys-
ical, geometric and biological characteristics of the irradiated object and the relevant
information about the radiation source (geometry, physical nature, intensity, etc.) serve
as input data. The result of the calculation is a dose function (distribution) whose values
are the dose absorbed as a function of location inside the irradiated body. This dose
calculation is the forward problem of IMRT.

The second aspect is, mathematically speaking, the inverse problem of the first.
In addition to the availability of the physical and biological parameters of the irradi-
ated object we assume here that the relevant information about the capabilities and
specifications of the available treatment machine (i.e., radiation source) is given. Based
on medical diagnosis, knowledge, and experience, the physician prescribes a desired
dose function to the case. The output of a solution method for the inverse problem
should be a radiation intensity function, whose values are the radiation intensities at
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the sources as a function of source location, that would result in a dose function that
is identical to the desired one. To be of practical value, this resulting radiation inten-
sity function must be implementable, in a clinically acceptable form, on the available
treatment machine.

Historically, working in two dimensions (2-D) where only a single plane through
the center of the target is considered, the treatment planning was done (and is still
frequently done) in a trial-and-error fashion. A machine setup that gives rise to a certain
external radiation intensity field (function) is picked up and then, using a forward-prob-
lem-solver software package, the resulting dose function is determined. If the
discrepancy between this dose function and the prescribed dose function is unaccept-
able, then some changes are made to the external radiation intensity field (i.e., the
machine setup parameters) and the process is repeated until the physician and
dosimetrist are satisfied with the resulting dose function. Only then is actual patient
treatment performed.

Such 2D-RTTP (radiation therapy treatment planning) has achieved success due
to accumulated experience and also because of the ever-increasing quality, sophisti-
cation, and speed of forward-problem-solvers. However, automated solution of the
inverse problem of IMRT should be useful in handling difficult planning cases, partic-
ularly in three dimensions (3-D) (see figure 1). There, it would be much more difficult
to reach an acceptable plan by trial-and-error because of the multitude of potential
directions from which the 3-D object can be irradiated. Nonetheless, even a 2-D discus-
sion, as given here, is enough to expose the nature of the dilemmas that we consider
in the sequel.

In the next section we present the continuous forward and inverse problems and
then we give their discretizations. The feasibility approach is formulated and opti-
mization formulations are given in later sections. Finally, we very briefly discuss some
of the methods and techniques that have been applied to the inverse problem of IMRT,
namely, global optimization (including simulated annealing), multi-objective opti-
mization, linear and mixed integer programming, and projection methods (including
Cimmino’s algorithm). This paper is written as a tutorial and there is neither an inten-
tion to present a full survey of optimization methods in RTTP, nor an attempt to
properly cover the literature. We also admit a slight bias in space allocation below
towards projection methods, which are our own main field of research.
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Figure 1. A 3-D cross-section, external radiation field, and dose distribution 
for 3-D IMRT planning.

Problem Definition And The Continuous Model

Let D(r, θ) be a real-valued nonnegative function, of the polar coordinates r and θ,
whose value is the dose absorbed at a point in the patient’s planar cross-section Ω coin-
cident with the plane of the machine’s gantry motion. This is the dose function, or dose
distribution. A ray is a directed line along which radiated energy travels away from
the source (the teletherapy source ). Rays are parametrized by variables u and w in
some well-defined way and the real-valued nonnegative function ρ(u, w) represents
the radiation intensity along the ray (u, w) due to a point source on the gantry circle,
located at (u, w).

Problem 1. The continuous forward problem of IMRT. Assume that the cross-
section Ω of the patient and its radiation absorption characteristics are known. Given
an external radiation intensity function ρ(u, w), for 0 ≤ u < 2πand −W ≤ w ≤ W, find
the dose function D(r, θ), for all (r, θ) ∈ Ω , from the formula
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(1)

where � is the dose operator which relates the dose function to the radiation inten-
sity function.

In other words, the forward problem amounts to the calculation of the total dose
absorbed at each point of a patient’s cross-section when all parameters of all radiation
beams are specified and the description of the patient’s cross-section is known. The
difficulties associated with the forward problem stem from the fact that to this date
there exists no closed-form analytic representation of the dose operator � that will
enable us to use equation (1) for the calculation of D(r, θ). Although the interaction
between radiation and tissue is measured and understood at the atomic level, the situ-
ation is so complex that, to solve the forward problem in practice, a state-of-the-art
computer program, which represents a computational approximation of the operator
� and which enables reasonably good dose calculations, must be used.

By stating that “there exists no closed-form analytic representation of the dose
operator �” we mean that only if drastically simplifying assumptions are made about
the physics of the model as well as of the particulars of the desired dose distribution,
then it is sometimes possible to express the dose operator in a closed-form analytic
formula. This has been done first by Brahme, Roos, and Lax (1982) and extended by
Cormack and co-workers; consult the review paper of Cormack and Quinto (1990) for
further references. See also Brahme’s review (Brahme 1995) and Goitein’s editorial
(Goitein 1990). In current practice of IMRT, when dose calculations are performed to
verify the dose that will result from a proposed treatment plan, the goal is to obtain
results that are as accurate as possible. To achieve this, various empirical data, which
are often condensed in look-up tables, are incorporated into the forward calculation.
Thus, the true forward calculation, or true dose operator, is not represented by a closed-
form analytic relation between the radiation intensity function ρ(u, w) and the dose
function D(r, θ), but by a software package that calculates D(r, θ) from ρ(u, w). We
choose to adhere to the software representation of � rather than to compromise by
allowing simplifying assumptions that might lead to a closed-form analytic mathe-
matical formula at the expense of the physical and biological reality of the forward
calculation.

Problem 2. The continuous inverse problem of IMRT. Assume that the cross-
section Ω of the patient and its radiation absorption characteristics are known. Given
a prescribed dose function D(r, θ), find a radiation intensity function ρ(u, w) such that
equation (1) holds, or, equivalently,

, (2)

where �−1 is the inverse operator of �.

ρ θu w D r, ,( ) = ( )[ ]−� 1

D r u w r, , ,θ ρ θ( ) = ( )[ ]( )�
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Solving problem 2 gives an external configuration and relative intensities of radi-
ation sources (i.e., the radiation field) that will deliver the prescribed radiation dose
distribution (or some acceptable approximation thereof). This inversion problem needs
to be solved, in a computationally tractable way, although no closed-form analytic
mathematical representation is available for the dose operator �. Without such a math-
ematical representation of � it is impossible to employ mathematical methods for
analytic inversion to find the inverse operator �−1. This is why full discretization of
the problem has to be adopted, as we did in Altschuler and Censor (1984) and Censor,
Altschuler, and Powlis (1988a).

The dose at (r, θ) is the sum of the dose contributions from the sources at all the
different gantry angles. Thus,

(3)

where, for each s = 1, 2, . . . , S, the value Ds(r, θ) is the dose deposited at point (r, θ)
by a beam of unit intensity from the sth source, and ys is the time the sth beam is kept
on. It will be assumed here that the dose Ds(r, θ) can be calculated accurately once the
beam parameters and patient’s cross-section information are specified. That is, we
assume that we can solve the forward problem and calculate D(r, θ) accurately from
(3). This assumption is confirmed by innumerable direct measurements in water and
tissue-equivalent phantoms. Whereas a dose distribution that solves the forward prob-
lem is always obtained for a specified external radiation intensity field, the inverse
problem may have no solution at all, since some prescribed dose functions may be
unobtainable from any radiation field.

Discretization Of The Problem

In the approach presented here, we adhere to the computational approximation of the
dose operator �. Full discretization of the problem at the outset is used to circumvent
the difficulties associated with the analytic inversion of �. We also neglect in the
present description the effects of scattered radiation. The patient’s cross-section Ω is
discretized into a grid of points represented by the pairs{(rj, θj) j = 1, 2, . . . , J }. Define
�j[ρ] by

(4)

and call �j a dose functional, for every j = 1, 2, . . . , J. Acting on a radiation intensity
function ρ(u, w), the functional �j provides �j [ρ], which is the dose absorbed at the
jth grid point of the patient’s cross-section Ω due to the radiation intensity field ρ. To
continue the discretization process of the problem it is assumed that a set of I basis

� �j j jrρ ρ θ[ ] = [ ]( ): ,

D r y D rs
s

s

s, ,θ θ( ) = ( )
=
∑

1
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radiation intensity fields is fixed and that their nonnegative linear combinations can
give adequate approximations to any radiation intensity field we wish to specify. This
is done by discretizing the region 0 ≤ u < 2π, −W ≤ w ≤ W in the (u, w)-plane into a
grid of points given by {(ui, wi) i = 1, 2, . . . , I}. A radiation intensity function

(5)

is a unit intensity ray (or beamlet) and serves as a member of the set of basis radiation
intensity fields for i = 1, 2, . . . , I. In this fully discretized model, a desired radiation
intensity function ρ that solves the inverse problem is always approximated by

(6)

where xi is the intensity of the ith ray and it is required to be nonnegative, i.e., xi ≥ 0
for all i = 1, 2, . . . , I. Once the grid points are fixed, any radiation intensity function

, that can be represented as a nonnegative linear combination of the rays, is uniquely
determined by the intensity coefficients xi. The latter form the components of the vector

, in the I-dimensional Euclidean space, referred to as the radiation
intensity vector.

Further, assume that the dose functionals �j are linear and continuous. This
assumption cannot be mathematically verified due to the absence of an analytic repre-
sentation of either � or �j, but it is a reasonable assumption based on the empirical
knowledge of �j. Using linearity and continuity of all �j’s, we can write

(7)

For j = 1, 2, . . . , J, and i = 1, 2, . . . , I, denote by

(8)

the dose deposited at the jth grid point (rj, θj), in the patient’s cross-section Ω, due to

a unit intensity ray σi(u, w), and define vectors , for j = 1, 2, . . . , J.

Then the right-hand side of (7) becomes equal to the inner product 

in RI. The desired dose functional is also discretized by defining

bj := D(rj , θj ), for all j = 1, 2, . . . , J. (9)

aij j i:= [ ]� σ

� � �j j i j i
i

I
xρ ρ σ[ ] ≅ ( ) = [ ]

=
∑ˆ

1

ˆ , ,ρ σu w x u wi i
i

I

( ) = ( )
=
∑

1

σ i
i iu w

u w u w
, :

, , ,

, ,
( ) =

( ) = ( )




1

0

if

otherwise
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Problem 3. The fully discretized inverse problem of IMRT. Let aij be as in (8) and
let bj be the desired doses as in (9), for j = 1, 2, . . . , J, and i = 1, 2, . . . , I. Find a radi-
ation intensity vector x* ∈ RI such that

(10)

(11)

Defining the J × I matrix A as the matrix whose transpose AT has aj in its jth column,

and the Jth dimensional vector , the system (10)–(11) can be rewritten as

Ax* = b and x* ≥ 0. (12)

This fully discretized model calls for the quantities aij which can be precalculated
with any state-of-the-art forward-problem-solver. Numerous iterative techniques are
available for the solution of (12), some of which are discussed in the sequel. The
tendency to make the discretization finer results in very large values of I and J. If the
available treatment machine cannot deliver such finely discretized radiation intensity
fields, by shooting energy along rays, we need an additional computational step after
a solution vector x* (or an approximation thereof) of the system (12) has been obtained.
This is a “consolidation” step in which a clinically acceptable machine setup, usually
with few (up to 5 to 6) beam positions, is derived from the fully discretized solution
vector x* by using the individual ray intensities to rank the prominence of beams; see,
e.g., Censor, Altschuler, and Powlis (1988a). Modern computer-controlled multileaf
collimator (MLC) technology, capable of generating arbitrary intensity modulation,
fills in the gap that existed between the fully discretized beamlet-based solution of the
inverse problem and the delivery capabilities; see, e.g., Cho and Marks (2000) and
references therein. To sum up, the fully discretized model is not difficulties-free, but
it offers a route of circumventing the inversion problem of the computational dose
operator � without compromising on any of the heuristics and empiricism involved
in advanced dose calculations. Brahme (1995) reaches also a conclusion in favor of
full discretization and says: “...In either case it is very useful to transform the relevant
integral equation into an algebraic form by discretizing the transport quantities along
the coordinates of the free variables.”

and x for i Ii
* , , , ..., .≥ =0 1 2

a x b for Jj
j, , , , ..., ,* = =j 1 2
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The Feasibility Approach

The feasibility formulation relaxes the equality in (1). Let and D = D(r, θ)
be two dose functions whose values represent upper and lower bounds, respectively,
on the permitted and required dose inside the patient’s cross-section.

Problem 4. The feasibility formulation for the continuous inverse problem of
IMRT. Assume that the cross-section Ω of the patient and its radiation absorption
characteristics are known. Given prescribed dose functions , and D(r, θ), find
a radiation intensity function ρ(u, w) such that

, (13)

where � is the dose operator.
A radiation therapist defines and D(r, θ) for each given case and will accept

as a solution to the IMRT inverse problem any radiation intensity function ρ(u, w) that
satisfies (13). In target regions (tumors) the lower bound D is usually the important
factor because the dose there should exceed that given value. In critical organs and
other healthy tissues D(r, θ) = 0, and is the dose that cannot be exceeded. Any
solution ρ(u, w) that fulfills (13), for given and D, is a feasible solution to the IMRT
continuous inverse problem 4. In order to discretize (13) we must specify the dose
functions and D at the grid points by giving, for all j = 1, 2, . . . , J,

(14)

thus, converting (13) into a finite system of interval inequalities

. (15)

Denoting hereafter by (D) the J-dimensional column vector whose jth component
is j(Dj), the inverse problem of IMRT can be restated as follows:

Problem 5. The feasibility formulation for the fully discretized inverse problem
of IMRT. Assume that the cross-section Ω of the patient and its radiation absorption
characteristics are known. Given vectors = ( j) and D = (Dj) of permitted and
required doses, respectively, at J grid points in the patient’s cross-section Ω, find a
radiation intensity vector x ∈ RI such that

, (16)D x a D j Jj i ij
i

I

j≤ ≤ =
=
∑

1
1 2. , , ...,

D D j Jj j j≤ [ ] ≤ =� ρ , , , ...,1 2

D r D D r Dj j j j j j, ,θ θ( ) = ( ) =and

D r u w r D r for all r, , , , , ,θ ρ θ θ θ( ) ≤ ( )[ ]( ) ≤ ( ) ( ) ∈� Ω
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. (17)

where aij are as in (8).
Let the set of pixels in the discretized patient’s cross-section be denoted by N =

{1, 2, . . . , J}, so that the jth pixel is identified with the jth grid point at (rj , θj ). Organs
within the patient’s cross-section are then defined as subsets of N. The subsets Bl ⊂
N, where l = 1, 2, . . . , L, denote L critical organs that have to be spared from exces-
sive radiation. Let the values bl denote the corresponding upper bounds on the dose
permitted in each critical organ. The subsets Tq ⊂ N, where q = 1, 2, . . . , Q, denote Q
target regions. Let the values tq denote the corresponding prescribed lower bounds for
the absorbed dose in each target organ. All the Bl and Tq are pairwise disjoint. The set
of pixels inside the patient’s cross-section that are not in any Bl or Tq are called the
complement, denoted as the subset C ⊂ N, and c is the upper bound for the permitted
dose there. It is assumed that the definition of all subsets Bl and Tq and C and the
prescription of all bl, tq, and c are given by the radiotherapist as input data for the treat-
ment planning process. Problem (16)–(17) then becomes the following system of linear
inequalities.

, (18)

, (19)

(20)

. (21)

With bl, tq, and c given and the aij’s pre-calculated from (8) with a forward problem
solver, the mathematical question represented by the basic model (18)–(21) is to find
a nonnegative solution vector x* = (xi

*) for a system of linear inequalities. This fully
discretized feasibility inverse problem appeared in Altschuler and Censor (1984) and
Censor, Altschuler, and Powlis (1988a).

x i Ii ≥ =0 1 2, , , ...,for all

a x c j Cij i
i

I

=
∑ ≤ ∈

1
, for all

t a x j T q Qq ij i
i

I

q≤ ∈ =
=
∑

1
1 2, , , , ...,for all

a x b j B l Lij i l
i

I

l≤ ∈ =
=
∑

1
1 2, , , , ...,for all

x i Ii ≥ =0 1 2, , , ...,
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Optimization Formulations

We use the term optimization as it is used in the field of mathematical optimization,
namely to designate a situation where an objective function (also called: cost function
or merit function) has to be optimized (i.e., minimized or maximized). This explains
why the feasibility approach, discussed above, is not called optimization, although in
the field of IMRT the term optimization is frequently used in a more general manner
to refer to the process of treatment planning where the treatment has to be “optimized”
even if the underlying mathematical model is a feasibility model where no objective
function appears. When it comes to discussing an optimization approach to IMRT we
must distinguish between two different kinds of optimization problems depending on
the space in which they are formulated. One possibility is to define an objective func-
tion f: RI → R over the space of radiation intensity vectors x and use either the system
(12) or the constraints (18)–(21) as the feasible set (i.e., the constraints set). For exam-
ple, choosing f(x) = (1/2) x 2 (where · stands for the Euclidean norm) and solving
a minimization problem

, (22)

leads to a minimum-norm solution vector x*; i.e., a feasible vector closest to the origin
so that the total radiation intensity is smallest possible in the Euclidean norm sense.
This was recently studied via a special-purpose iterative minimization method in Xiao
et al. (2003a).

Regardless of the specific choice of f, in this approach the interval-constrained
optimization problem

(23)

where α ≤ Ax ≤ β represents the system (18)−(20), with appropriately defined α, β ∈ RI,
is still aiming at a solution of the fully discretized formulation of the inverse problem.
A solution vector x* will represent a radiation field that will deliver a dose which is
both feasible (i.e., adheres to the upper and lower dose bounds imposed by the physi-
cian) and is optimal in the sense that it minimizes the objective function f. This
approach of optimization in the space of radiation intensity vectors is called radiation
intensity optimization.

The second possibility for introducing an optimization problem in IMRT is to use
(12) or (18)–(21) as constraints but choose an objective function g : RJ → R defined
over the space of dose vectors. Such objective functions may be either biological, or
physical. Biological objective functions represent knowledge (statistical or other) about
various biological mechanisms that affect our ability to control the disease. An example

min ,f x Ax x( ) ≤ ≤ ≥{ }α β 0

min /1 2 18 212( ) ( ) − ( ){ }x hold
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is the conditional probability of having tumor control without severe injury, denoted
in the literature by P+. Physical objective functions aggregate physical features which
are important for tumor control and prevention of normal tissue complications, such
as dose variance over target volume or peak dose to organs at risk. A thorough discus-
sion of biological and physical objective functions can be found in Brahme (1995),
see also Alber and Nüsslin (1999). Let us call this kind of optimization, over the space
of dose vectors, dose optimization.

Early work on dose optimization was not geared towards solving an optimization
problem but rather towards comparing rival plans. In this mode, several treatment
plans were compared, based on their score with respect to some pre-determined qual-
ity index. The treatment plans were all fixed prior to the comparison and, therefore,
the selection of the plan of choice depended largely on the choice of the quality index.
Various quality indices were proposed and advocated on different grounds; see, e.g.,
Wolbarst et al. (1980), Dritschilo et al. (1978) and Kartha et al. (1982). In general, the
dose optimization approach leads to a problem of the form

min {g(y)  α ≤ y ≤ β}, (24)

where g : RJ → R assigns real values to dose vectors whose jth compo-
nent yj is dose at pixel j. The question of feasibility versus optimization is not crucial
if only radiation intensity optimization is considered because both the feasibility
formulation and the optimization formulation [regardless of the particular choice of
the objective function f (x)] occur in the same space (of radiation intensity vectors) and,
thus, aim at a solution of the discretized inverse problem. Therefore, the difference
between these two formulations is, from the mathematical point of view, only techni-
cal. Raphael (1992) studied the inverse problem of RTTP as constrained optimization
in the L2 Hilbert space. Recently, Cho et al. (1997) reported on the advantage of the
feasibility approach over a global optimization model solved by simulated annealing;
see also Cho et al. (1998). In case when the composite function g(Ax) is simple enough
the approach of (24) can still be efficiently used for solving directly the discretized
inverse problem in its full generality. Otherwise, the inversion problem has to be aban-
doned and the optimization can be performed with respect to only few parameters of
the external radiation field. See, for example, Gustafsson (1996) and Gustafsson, Lind,
and Brahme (1994). This is done while other important parameters are left out of the
optimization problem and must be given as input to the process; see also the discus-
sion in Censor and Zenios (1997, section 11.7). The question whether to use biological
or physical objective functions in the space of dose vectors (and thereby possibly
compromise on the full generality of the inverse problem) remains unsettled.

Mathematical Optimization Techniques

A variety of mathematical optimization techniques have been applied to the inverse
problem of IMRT. Additional methods and approaches are being applied and tested
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as the collaboration between researchers in this field with experts in mathematical opti-
mization and operations research surges in recent years. This trend is evident from the
growing number of special issues devoted to the interface between optimization theory
and radiation therapy, e.g., Lee and Sofer (2003), Holder and Newman (2003), and
Ferris and Zhang (2003), and the recent dedicated site on the Internet (Holder 2003).
In this section we briefly review the following methods and approaches that have been
applied to solving the inverse problem of IMRT, with emphasis on more recent publi-
cations in each category: (1) Simulated annealing and global optimization, (2)
Multi-objective optimization, (3) Linear optimization and mixed integer programming
(MIP), and (4) Cimmino’s algorithm and other projection methods.

Other optimization models and methods, not mentioned here, were also used in
RTTP in recent years; see Shepard et al. (2000), Xing and Chen (1996), Bortfeld et al.
(1990) and the gradient and gradient-like methods of Spirou and Chui (1998) and others.

Simulated Annealing And Global Optimization

The NEOS (Network Enabled Optimization System) Guide Optimization Tree (at:
http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/index.html) uses, in its Introduction to
Global Optimization, the following definition: “Global optimization is the task of find-
ing the absolutely best set of admissible conditions to achieve your objective,
formulated in mathematical terms. It is the hardest part of a subject called nonlinear
programming (NLP).” It goes on to supply references and links to the field that are
most useful to anyone who wishes to learn about it. A general mathematical opti-
mization problem has the form

min{f(x)  x ∈ Q}, (25)

where

Q = {x ∈ RI  x ∈ Γ , gj (x) ≤ 0, ( j = 1, 2, . . . , J ), hm(x) = 0, (m = 1, 2, . . . , M )}(26)

is the feasible set of the problem, represented by a set-constraint Γ and equality hm(x)
= 0 and inequality gj (x) ≤ 0 constraints. A point x* ∈ Q is a global optimal solution
(global minimizer) of (25) if

f(x*) ≤ f(x), for all x ∈ Q. (27)
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A point is a local optimal solution (local minimizer) of (25) if there exists a
neighborhood U ⊂ RI of so that

. (28)

The problem (25) is multi-extremal if it has multiple local minimizers with different
objective function values. The occurrence of multiple extrema makes problem solv-
ing in nonlinear optimization a hard task. Without supplying global information, which
is usually unavailable, the search for a global optimizer is not simple. There are
stochastic methods and deterministic methods for global optimization, but one can also
classify different methods based on their underlying philosophy, as Rinnooy Kan and
Timmer (1989) do, as follows. (a) Partition and search: the feasible set Q is partitioned
into successively smaller subregions among which the global minimum is sought. (b)
Approximation and search: the objective function f is replaced by an increasingly better
approximation that is easier from a computational point of view. (c) Global decrease:
in this class of methods the aim is for permanent improvement in the values of f, culmi-
nating in arrival at the global minimum. (d) Improvement of local minima: exploiting
the availability of an efficient local search routine, these methods seek to generate a
sequence of local minima of decreasing function values. (e) Enumeration of local
minima: here one strives to reach a complete enumeration of all local minima or, at
least, of a promising subset of them.

Simulated annealing (SA) is a global optimization method. Its fundamental idea
appears in Metropolis et al. (1953) and was applied to optimization problems by Kirk-
patrick, Gelatt, and Vecchi (1983). The underlying principle of SA is to simulate the
cooling process of material in a heat bath and it uses this simulation to systematically
search for feasible points in a way that makes the generated sequence converge to a
global minimum. Webb first introduced the SA algorithm into the field of RTTP (Webb
1989); see also his book (Webb 2001). A concise description of Webb’s application
of SA appears in his book (Webb 1993, subsection 2.5.4).

Global optimization can be used also for the IMRT inverse problem when the
trajectories of the leaves of the MLC are integrated into the model. This has been
recently done by Trevo et al. (2003) who arrived at a very high-dimensional
constrained nonlinear global optimization problem and solved it by a, commercially
available, software package called LGO (Lipschitz (continuous) Global Optimizer).

Multi-Objective Optimization

Multi-objective (also called multicriteria) optimization handles problems in which
more then one objective function is defined over the feasible set. The standard form
of such a problem is

min{F (x)  x ∈ Q}, (29)

f x f x x Q U˜ ,( ) ≤ ( ) ∈ ∩for all
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where F (x) is a vector of (objective) functions, i.e., for S ≥ 2,

(F(x))T = (f1(x), f2(x), . . . , fS (x)), (30)

and for each s = 1, 2, . . . , S, the function fS(x) maps RI → R. We denote by Q ⊂ RI the
feasible set that may be defined by equality constraints, inequality constraints, set
constraints, or any mixture of them, as in (26). An optimal point for problem (29) is
a point that is feasible (x ∈ Q) and minimizes F(x). But what does it mean to mini-
mize a vector of functions? Moving from one point x1 in RI to another point x2 may
cause some function values to decrease while others increase; so how should one
decide if a move is acceptable? The situation thus differs from the case of scalar opti-
mization, when S = 1, because the vector of functions F(x) induces on the feasible set
Q a partial order and not a linear order, i.e., not every two points are ordered by their
F values. Therefore, the solution (or solutions) to problem (29) depends a priori on
which solution concept is adopted for solving the problem; see, e.g., Censor (1977).
One way to handle this is by employing scalarization. This refers to the conversion
of the multi-objective problem into a family of scalar optimization problems. This
family has the form

, (31)

where is a parameter vector whose components γs are the weights of
relative importance which combine all scalar functions fs(x) into the linear combina-
tion. The difficulty here is that one usually does not know how to choose appropriately
a vector γ by which a specific scalar optimization problem of the form (31) will be
picked out of the family of all possible such problems. Obviously, this choice strongly
affects the final outcome.

An alternative approach to multi-objective optimization is to preserve the multi-
objective nature of the problem and use a solution concept that does not involve
scalarization. A frequently used such concept is the Pareto optimality, also termed
Pareto efficiency.

Definition 6. A point x* ∈ RI is called Pareto optimal (efficient) for problem (29)
if x* ∈ Q and there is no other x ≠ x* such that x ∈ Q, for which fs(x) ≤ fs(x*) for all s =
1, 2, . . . , S, with a strict inequality for at least one s, 1 ≤ s ≤ S.

This means that x* is Pareto efficient if it is impossible to decrease the value of any
individual scalar objective function from its value at x* without increasing at least one
other scalar objective function. See, e.g., Ehrgott’s recent book (Ehrgott 2000). In a
recent paper, Hamacher and Küfer (2002) propose and investigate a linear multicri-
teria programming (LMP) problem for the inverse problem in RTTP. The concept of
multicriteria optimization without prior scalarization is indeed tempting to work with.

min γ s s
s

S
f x x Q( ) ∈







=

∑
1
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It has been utilized in a variety of real-world problems in other technological and scien-
tific fields. In operations research and the management sciences, multiple criteria
decision making has developed into a solid body of literature in the past 30 years. The
International Society on Multiple Criteria Decision Making (MCDM) offers relevant
software solutions (at: http://www.mit.jyu.fi/MCDM/soft.html). Further scientific
research and evaluation are needed to gauge the usefulness of this methodology in the
field of RTTP. Küfer et al. (2003) develop this approach further and find that they must
use adaptive reduction by appropriate approximation schemes to cope with the large
scale nature of the LMP problem.

Linear Optimization And Mixed Integer Programming (MIP)

Linear optimization (traditionally called linear programming) is the field of study of
optimization problems in which all constraints as well as the objective function are
linear. The literature of this field is vast and the leading algorithms for solving such
problems are the famous SIMPLEX method and primal-dual interior point methods.
We direct the reader to Shepard et al. (1999, subsection 4.1) and to Holder (2003) for
recent works that describe this approach and supply many useful references. An early
application of linear optimization to radiotherapy treatment planning is Bahr et al.
(1968) where the approach is used to optimize the treatment plan with respect to just
a few setup parameters which are kept free after the plan has been obtained by the trial
and error methods of those days. Rosen et al. (1991) critically compares linear opti-
mization approaches, as used until 1990, with simulated annealing and with projection
methods for the feasibility approach.

There are several ways to apply linear optimization to the IMRT inversion prob-
lem, depending mainly on the choice of the objective function. For example, if we
choose to minimize the total dose to all pixels in the patient’s cross-section while obey-
ing the upper and lower bounds on organs we may consider the linear optimization
problem

. (32)

Alternatively, one can use an organ-weighted total dose objective function of the form

, (33)

and minimize it over (18)–(21) after choosing user-specified weights of importance

and γ. See, e.g., Shepard et al. (1999, subsection 4.1) for other formulations.
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Mixed integer programming (MIP) occurs when some variables in an optimiza-
tion problem are restricted to take only integer values. In the case of linear
optimization, the MIP problem has the general form

, (34)

where c ∈ RI , the matrix A, and the vectors b ∈ RJ, l, u, ∈ RI , are given, see, e.g., Bixby
et al. (2000). In RTTP the need for this kind of optimization arises in a natural way
when dose-volume constraints (also called partial volume constraints) are considered.
Such constraints appear when the oncologist is willing to sacrifice a portion of a region
at risk in order to improve the probability of curing the disease. In such a case, in addi-
tion to the upper and lower bounds on required and permitted radiation doses, as
formulated in (18)–(21), he might state that “up to �% of all pixels inside a certain
organ Bl in (18) might be allowed to exceed bl by �%”, without specifying a priori
which of the pixels in Bl will actually use this relaxed upper bound. The MIP formu-
lation reached at in this way can be found in Langer et al. (1996) and also in Shepard
et al. (1999, p. 737). Other applications of MIP in this field include Lee, Fox, and
Crocker (2000) who used it for radiosurgery treatment planning, Boland, Hamacher,
and Lenzen (2002) who employed a nonlinear MIP formulation to incorporate MLC
settings within the treatment planning, and Bednarz et al. (2002) who compared MIP
performance with that of Cimmino’s algorithm. Ferris, Meyer, and D’Souza (2002)
give details of the mathematical formulations and algorithmic approaches as well as
pointers to supporting literature for MIP-based approaches to problems of RTTP. As
Ferris, Meyer, and D’Souza correctly notice, the main difficulty associated with the
MIP approach is that these formulations can become quickly impractical due to large
numbers of voxels in the region of interest (i.e., the number J, above). These difficul-
ties have then to be attacked by approximate techniques.

Cimmino’s Algorithm And Other Projection Methods

The convex feasibility problem is to find a (i.e., any) point in the nonempty intersec-
tion of a family of closed convex subsets Cj ⊆ RI, 1 ≤ j ≤ J, of the
I-dimensional Euclidean space. It is a fundamental problem in many areas of mathe-
matics and the physical sciences, see, e.g., Combettes (1993, 1996) and references
therein. It has been used to model significant real-world problems such as image recon-
struction from projections [see, e.g., Herman (1980)] and crystallography [see Marks,
Sinkler, and Landree (1999)] and has been used under additional names such as set
theoretic estimation or the feasible set approach. A common approach to such prob-
lems is to use projection algorithms; see, e.g., Bauschke and Borwein (1996).
Projection algorithms employ projections onto convex sets in various ways. They may
use different kinds of projections and, sometimes, even use different projections within

min , , ,c x Ax b l x u xi= ≤ ≤{ }and some or all are integers
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the same algorithm. They serve to solve a variety of problems, which are either of the
feasibility or the optimization types. They have different algorithmic structures, of
which some are particularly suitable for parallel computing, and they demonstrate nice
convergence properties and/or good initial behavior patterns. This class of algorithms
has witnessed great progress in recent years and its member algorithms have been
applied with success to fully discretized models of problems in image reconstruction
and image processing; see, e.g., Stark and Yang (1998), Censor and Zenios (1997).

Projection algorithms often employ orthogonal projections (i.e., nearest point
mappings) onto the individual sets Cj. The orthogonal projection PΩ(z) of a point z ∈
RI onto a closed convex set Ω ⊆ RI is defined by

(35)

Frequently a relaxation parameter is introduced so that

PΩ,λ(z) := (1 − λ)z + λPΩ(z) (36)

is the relaxed projection of z onto Ω with relaxation λ. Another problem that is related
to the convex feasibility problem is the best approximation problem of finding the
projection of a given point y ∈ RI onto the nonempty intersection C of a family of
closed convex subsets Cj ⊆ RI, 1 ≤ j ≤ J; see, e.g., Deutsch’s recent book (Deutsch
2001). In both problems the convex sets represent mathematical constraints
obtained from the modeling of the real-world problem, e.g., in IMRT, each constraint
of (18)−(20) can be used to define a halfspace Cj. In the convex feasibility approach
any point in the intersection is an acceptable solution to the real-world problem
whereas the best approximation formulation is usually appropriate if some point y ∈
RI is given and one wishes to find the point in the intersection of the convex sets which
is closest to the point y. Iterative projection algorithms for finding a projection of a
point onto the intersection of sets are more complicated than algorithms for finding
just any feasible point in the intersection. This is so because they must have, in their
iterative steps, some built-in “memory” mechanism to remember the original point
whose projection is sought after. The sequential or parallel algorithms of Dykstra [see,
e.g., Bregman, Censor, and Reich (1999)], Haugazeau [see, e.g., Bauschke and
Combettes (2001)], Bauschke (1996), and others and their modifications employ
different such memory mechanisms.

Projection algorithmic schemes for the convex feasibility problem or for the best
approximation problem are, in general, either sequential or simultaneous or block-iter-
ative (see, e.g., Censor and Zenios (1997) for a classification of projection algorithms
into such classes, and the review paper of Bauschke and Borwein (1996) for a variety
of specific algorithms of these kinds). In what follows we explain and demonstrate
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these structures along with the recently proposed string-averaging structure. The
philosophy behind these algorithms is that it is easier to calculate projections onto the
individual sets Cj than onto the whole intersection of sets. Thus, these algorithms call
for projections onto individual sets as they proceed sequentially, simultaneously, or in
the block-iterative or the string-averaging algorithmic modes.

The String-Averaging Algorithmic Structure

The string-averaging algorithmic scheme was proposed by Censor, Elfving, and
Herman (2001). For t = 1, 2, . . . , M, let the string Jt be an ordered subset of
{1, 2, . . . , J} of the form

. (37)

with J(t) denoting the number of elements in Jt. Suppose that there is a set Q ⊆ RI such
that there are operators R1, R2, . . . , RJ mapping Q into Q and an operator R which maps
QM = Q × Q × · · · × Q (M times) into Q. Initializing the algorithm at an arbitrary x0 ∈
Q, the iterative step of the string-averaging algorithmic scheme is as follows. Given
the current iterate xk , calculate, for all t = 1, 2, . . . , M,

(38)

and then calculate

. (39)

For every t = 1, 2, . . . , M, this algorithmic scheme applies to xk successively the oper-
ators whose indices belong to the tth string. This can be done in parallel for all strings
and then the operator R maps all end-points onto the next iterate xk+1. This is indeed an
algorithm provided that the operators and R all have algorithmic implementa-
tions. In this framework we get a sequential algorithm by the choice M = 1 and J1 =
(1, 2, . . . , J). The well-known “Projections Onto Convex Sets” (POCS) algorithm for
the convex feasibility problem is such a sequential projection algorithm; see Bregman
(1965), Gubin, Polyak, and Raik (1967), Youla (1987), and the review papers by
Combettes (1993, 1996). Starting from an arbitrary initial point x0 ∈ RI, the POCS algo-
rithm’s iterative step is

, (40)x x P x xk k
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where {λk}k≥0 are relaxation parameters and {j(k)}k≥0 is a control sequence, 1 ≤ j(k) ≤
m, for all k ≥ 0, which determines the individual set Cj(k) onto which the current iter-
ate xk is projected. A commonly used control is the cyclic control in which j(k) = k mod
J + 1, but other controls are also available (Censor and Zenios 1997). This algorithm
was used in RTTP in Censor, Altschuler, and Powlis (1988b) and by Cho and Marks
and co-workers in Cho et al. (1997, 1998) and Cho and Marks (2000). The celebrated
ART (Algebraic Reconstruction Technique) of Gordon, Bender, and Herman (1970)
[see also Herman (1980)], is equivalent to the application of POCS to a system of linear
equations.

A simultaneous algorithm is obtained by the choice M = J and Jt = (t), t = 1,

2, . . . , M, and Cimmino’s projections method is indeed such an algorithm. Using relax-

ation parameters {λk}k≥0 and weights of importance , such that wj > 0 and

, the iterative step of Cimmino’s algorithm for the derivation of the next

iterate xk+1 from the current one xk is

. (41)

For halfspaces as constraints sets, i.e.,

, (42)

the formula becomes:

, (43)

where

. (44)

String-averaging schemes offer a variety of options for steering the iterates towards a
solution of the convex feasibility problem. It is an inherently parallel scheme in that
its mathematical formulation is parallel (like the fully simultaneous method mentioned
above). We use this term to contrast such algorithms with others that are sequential in
their mathematical formulation but can, sometimes, be implemented in a parallel fash-
ion based on appropriate model decomposition (i.e., depending on the structure of the
underlying problem). Being inherently parallel, this algorithmic scheme enables flex-
ibility in the actual manner of implementation on a parallel machine. At the extremes
of the “spectrum” of possible specific algorithms, derivable from the string-averaging
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algorithmic scheme, are the generically sequential method, which uses one set at a
time, and the fully simultaneous algorithm, which employs all sets at each iteration.

The block-iterative projections (BIP) scheme of Aharoni and Censor (1989) also
has the sequential and the fully simultaneous methods as its extremes in terms of block
structures, but the string-averaging algorithmic structure gives users further options
to design new inherently parallel computational schemes. The behavior of the string-
averaging algorithmic scheme in the inconsistent case when the intersection

is empty is not known at this time. For results on the behavior of the fully
simultaneous algorithm with orthogonal projections in the inconsistent case see, e.g.,
Combettes (1994). We demonstrate some of the algorithmic possibilities offered by
the general string-averaging method in figure 2. The constraints sets of the convex
feasibility problem are assumed in this special case to be the six hyperplanes H1, H2,
H3, H4, H5, and H6.

A sequential POCS algorithmic iterative step. A fully simultaneous Cimmino 
algorithmic iterative step.

Averaging sequential strings of An example for a string-averaging 
consecutive projections. algorithmic iterative step.

Figure 2. Some algorithmic possibilities offered by the string-averaging method.
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The fully simultaneous Cimmino algorithm, applied to halfspaces, defined by the
inequalities of the system (18)–(20), was first used in RTTP by Censor, Altschuler, and
Powlis (1988a) [see also Powlis et al. (1989)]. There are several advantages of the
simultaneous projections Cimmino algorithm over the sequential projections POCS
algorithm for the linear feasibility problem arising from the fully discretized model
of IMRT. When initialized at zero intensities it generates an approximate LIF (least-
intensity feasible) solution; see Xiao et al. (2003a). It converges globally to a feasible
solution, if such a solution exists, or to a minimal value of a proximity function in the
inconsistent case; see Combettes (1994) and Byrne and Censor (2001). It is an inher-
ently parallel iterative algorithm, thus, implementable on parallel computing
equipment regardless of problem structure. It can be accelerated by using strong over-
relaxation, see Höffner et al. (1996), or by using it with oblique projections (i.e., the
CAV algorithm; see, e.g., [Xiao et al. (2203b), appendix] and references therein). It is
a special case of more general algorithmic schemes, such as BIP and the string-aver-
aging scheme, which allow processing of various sets of constraints instead of a single
(POCS) or all (Cimmino) constraints, in each iterative step. It generates smoother
intensity patterns; see Xiao et al. (2003b).
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