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I ntroduction

We consider intensity-modul ated radiation therapy (IMRT) where beams of penetrat-
ing radiation are directed at the lesion (tumor) from externa sources. Based on
understanding of the physics and biology of the situation, there are two principal
aspects of radiation teletherapy that call for mathematical modeling. The first is the
calculation of the radiation dose, which is a measure of the actua energy absorbed
per unit mass everywherein theirradiated tissue. |n dose cal culation the rel evant phys-
ical, geometric and biological characteristics of the irradiated object and the relevant
information about the radiation source (geometry, physical nature, intensity, etc.) serve
asinput data. Theresult of the calculation isadose function (distribution) whose values
are the dose absorbed as a function of location inside the irradiated body. This dose
calculation is the forward problem of IMRT.

The second aspect is, mathematically speaking, the inverse problem of the first.
In addition to the availability of the physical and biological parameters of the irradi-
ated object we assume here that the relevant information about the capabilities and
specifications of the available treatment machine (i.e., radiation source) isgiven. Based
on medical diagnosis, knowledge, and experience, the physician prescribes adesired
dose function to the case. The output of a solution method for the inverse problem
should be aradiation intensity function, whose values are the radiation intensities at
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the sources as a function of source location, that would result in a dose function that
isidentical to the desired one. To be of practical value, this resulting radiation inten-
sity function must beimplementable, in aclinically acceptable form, on the available
treatment machine.

Historically, working in two dimensions (2-D) where only a single plane through
the center of the target is considered, the treatment planning was done (and is still
frequently done) in atrial-and-error fashion. A machine setup that givesriseto acertain
externa radiation intensity field (function) is picked up and then, using aforward-prob-
lem-solver software package, the resulting dose function is determined. If the
discrepancy between this dose function and the prescribed dose function is unaccept-
able, then some changes are made to the externa radiation intensity field (i.e., the
machine setup parameters) and the process is repeated until the physician and
dosimetrist are satisfied with the resulting dose function. Only then is actual patient
treatment performed.

Such 2D-RTTP (radiation therapy treatment planning) has achieved success due
to accumulated experience and also because of the ever-increasing quality, sophisti-
cation, and speed of forward-problem-solvers. However, automated solution of the
inverse problem of IMRT should be useful in handling difficult planning cases, partic-
ularly in three dimensions (3-D) (seefigure 1). There, it would be much more difficult
to reach an acceptable plan by trial-and-error because of the multitude of potential
directionsfrom which the 3-D object can beirradiated. Nonetheless, even a2-D discus-
sion, as given here, is enough to expose the nature of the dilemmas that we consider
in the sequel.

In the next section we present the continuous forward and inverse problems and
then we give their discretizations. The feasibility approach is formulated and opti-
mization formulationsare given in later sections. Finally, we very briefly discuss some
of the methods and techniquesthat have been applied to the inverse problem of IMRT,
namely, global optimization (including simulated annealing), multi-objective opti-
mization, linear and mixed integer programming, and projection methods (including
Cimmino’salgorithm). This paper iswritten asatutorial and thereis neither an inten-
tion to present a full survey of optimization methods in RTTP, nor an attempt to
properly cover the literature. We also admit a slight bias in space alocation below
towards projection methods, which are our own main field of research.



Mathematical Optimization For The Inverse Problem Of IMRT 27

30 dosa disirbotion kel
ra ponbours

1
i 1
]

r , |

/ A |

/ < Cegan ! __,.-""lll,-'"' § \\\ A0 aetermal
; | |

s i
i I

r & "'H-"% redeatien Rkl
A W
r _|"r L ___.-'_-\. -..__.-"-

T =

= " | L _,;'?: m—"k 1 '-l—-""ilr?- ™ J
b |“" ‘[-"‘ I"":-—-.'E':I"--' .-;:_ﬂl"-_....r\. - -rl- -------
WA (= = Y 1
R 7
! R .-___.-"' Tagal / T !

II"-. L ST el = — - ____,.-'i'" - .IIII_."I

N, fﬁ” J
\\\R ‘30 cross saction ____.-"'f
,
~_ %

Figure 1. A 3-D cross-section, external radiation field, and dose distribution
for 3-D IMRT planning.

Problem Definition And The Continuous M odel

Let D(r, 6) be a real-vaued nonnegative function, of the polar coordinates r and 6,
whosevalueisthe dose absorbed at apoint in the patient’s planar cross-section Q coin-
cident with the plane of the machine’s gantry motion. Thisisthe dose function, or dose
distribution. A ray is a directed line along which radiated energy travels away from
the source (the teletherapy source ). Rays are parametrized by variables u and w in
some well-defined way and the real-valued nonnegative function p(u, w) represents
the radiation intensity along the ray (u, w) due to a point source on the gantry circle,
located at (u, w).

Problem 1. The continuous forward problem of IMRT. Assume that the cross-
section Q of the patient and itsradiation absor ption characteristics are known. Given
an external radiation intensity function p(u, w), for 0< u<2mand -W<w< W, find
the dose function D(r, 8), for all (r, 6) (X2 , fromthe formula
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D(r,6) = D[ p(u,w)|(r. 6) @

where ® is the dose operator which relates the dose function to the radiation inten-
sity function.

In other words, the forward problem amounts to the calculation of the total dose
absorbed at each point of apatient’s cross-section when all parameters of al radiation
beams are specified and the description of the patient’s cross-section is known. The
difficulties associated with the forward problem stem from the fact that to this date
there exists no closed-form analytic representation of the dose operator ©© that will
enable us to use equation (1) for the calculation of D(r, ). Although the interaction
between radiation and tissue is measured and understood at the atomic level, the situ-
ation is so complex that, to solve the forward problem in practice, a state-of -the-art
computer program, which represents a computational approximation of the operator
© and which enables reasonably good dose cal culations, must be used.

By stating that “there exists no closed-form analytic representation of the dose
operator ©” we mean that only if drastically simplifying assumptions are made about
the physics of the model aswell as of the particulars of the desired dose distribution,
then it is sometimes possible to express the dose operator in a closed-form analytic
formula. This has been donefirst by Brahme, Roos, and Lax (1982) and extended by
Cormack and co-workers; consult the review paper of Cormack and Quinto (1990) for
further references. See also Brahme's review (Brahme 1995) and Goitein's editorial
(Goitein 1990). In current practice of IMRT, when dose cal culations are performed to
verify the dose that will result from a proposed trestment plan, the goa is to obtain
results that are as accurate as possible. To achieve this, various empirical data, which
are often condensed in look-up tables, are incorporated into the forward calculation.
Thus, thetrue forward cal culation, or true dose operator, is not represented by a closed-
form analytic relation between the radiation intensity function p(u, w) and the dose
function D(r, 6), but by a software package that calculates D(r, 6) from p(u, w). We
choose to adhere to the software representation of ® rather than to compromise by
allowing simplifying assumptions that might lead to a closed-form analytic mathe-
matical formula at the expense of the physical and biological redlity of the forward
calculation.

Problem 2. The continuous inverse problem of IMRT. Assume that the cross-
section Q of the patient and its radiation absor ption characteristics are known. Given
a prescribed dose function D(r, 6), find a radiation intensity function p(u, w) such that
equation (1) holds, or, equivalently,

p(u,w) = D7D(r,6)], 2

where D7 isthe inverse operator of D.
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Solving problem 2 gives an external configuration and relative intensities of radi-
ation sources (i.e., the radiation field) that will deliver the prescribed radiation dose
distribution (or some acceptabl e approxi mation thereof). Thisinversion problem needs
to be solved, in a computationally tractable way, although no closed-form analytic
mathematical representation isavailablefor the dose operator 2. Without such amath-
ematical representation of ® it is impossible to employ mathematical methods for
analytic inversion to find the inverse operator ©. This is why full discretization of
the problem hasto be adopted, aswe did in Altschuler and Censor (1984) and Censor,
Altschuler, and Powlis (1988a).

The dose at (r, 6) isthe sum of the dose contributions from the sources at al the
different gantry angles. Thus,

D(r,6) = glysos(r,e) 3

where, foreachs=1, 2, ..., S thevaueD(r, 6) isthe dose deposited at point (r, 6)
by abeam of unit intensity from the sth source, and y is the time the sth beam is kept
on. It will be assumed here that the dose D4(r, 6) can be calculated accurately oncethe
beam parameters and patient’s cross-section information are specified. That is, we
assume that we can solve the forward problem and calculate D(r, 6) accurately from
(3). This assumption is confirmed by innumerabl e direct measurements in water and
tissue-equivalent phantoms. Whereas a dose distribution that solvesthe forward prob-
lem is aways obtained for a specified external radiation intensity field, the inverse
problem may have no solution at all, since some prescribed dose functions may be
unobtainable from any radiation field.

Discretization Of The Problem

In the approach presented here, we adhere to the computational approximation of the
dose operator ®. Full discretization of the problem at the outset is used to circumvent
the difficulties associated with the analytic inversion of ©. We also neglect in the
present description the effects of scattered radiation. The patient’s cross-section Q is
discretized into agrid of pointsrepresented by thepairs{ (r;, 8)(d =1, 2,...,J}. Define
D[] by

ole:=[2A(r.6) @

and call °®; adose functional, foreveryj =1, 2, ..., J. Acting on aradiation intensity
function p(u, w), the functional ®; provides ®; [p], which is the dose absorbed at the
jth grid point of the patient’s cross-section Q dueto the radiation intensity field p. To
continue the discretization process of the problem it is assumed that a set of | basis



30 Yair Censor

radiation intensity fields is fixed and that their nonnegative linear combinations can
give adequate approximations to any radiation intensity field we wish to specify. This
is done by discretizing the region 0 < u < 21T, “-W < w < Win the (u, w)-planeinto a
grid of pointsgiven by {(u, w)i =1, 2, ..., 1}. A radiation intensity function

B oif (uw)=(u,w)

, otherwise,

©)

oi(uw):=

isaunitintensity ray (or beamlet) and serves asamember of the set of basisradiation
intensity fieldsfori=1, 2, ..., 1. Inthisfully discretized model, a desired radiation
intensity function p that solves the inverse problem is always approximated by

pu,w) = i x0;(u,w) 6)

i=1

where x isthe intensity of theith ray and it is required to be nonnegative, i.e., x = 0
forali=1,2,...,1. Oncethegrid points are fixed, any radiation intensity function
p» that can be represented as anonnegative linear combination of therays, isuniquely
determined by theintensity coefficientsx. Thelatter form the components of the vector
X = XI%'/_ R in the I-dimensiona Euclidean space, referred to as the radiation
intensity vector.

Further, assume that the dose functionals ©; are linear and continuous. This
assumption cannot be mathematically verified due to the absence of an analytic repre-
sentation of either © or ), but it is a reasonable assumption based on the empirical
knowledge of ;. Using linearity and continuity of all ®,'s, we can write

|
®,[p 0Dy(p) = 2 % D[] ©
Forj=1,2,...,J,andi=1,2,...,I, denote by
3 := 9j[o}] 8

the dose deposited at the jth grid point (r;, 8)), in the patient’s cross-section Q, due to
aunit intensity ray oi(u, w), and define vectors al = (a1J )' ORforj=1,2,...,J.
Then the right-hand side of (7) becomes equal to the inner product <aJ x> = Z a1J
in R. The desired dose functional is also discretized by defining

b:=D(r, 8) foralj=1,2,...,J )
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Problem 3. Thefully discretized inverse problem of IMRT. Let a; beasin (8) and
let b, bethedesired dosesasin (9),forj=1,2,...,J,andi=1,2,...,l.Findaradi-
ation intensity vector X [0 R such that

<w,{>=bpfmj=L2pmJ, (10)

andx =0, fori=12,...,1. (11)

Defining the J x | matrix A asthe matrix whose transpose A" has & in its jth column,
J .
and the Jth dimensional vector b = (bj )j " the system (10)—(11) can be rewritten as

AX =band X 0. (12)

Thisfully discretized model calls for the quantities a; which can be precal culated
with any state-of-the-art forward-problem-solver. Numerous iterative techniques are
available for the solution of (12), some of which are discussed in the sequel. The
tendency to make the discretization finer resultsin very large values of | and J. If the
available treatment machine cannot deliver such finely discretized radiation intensity
fields, by shooting energy along rays, we need an additional computational step after
asolution vector X (or an approximation thereof) of the system (12) has been obtained.
Thisisa“consolidation” step in which aclinically acceptable machine setup, usually
with few (up to 5 to 6) beam positions, is derived from the fully discretized solution
vector X' by using theindividual ray intensitiesto rank the prominence of beams; see,
e.g., Censor, Altschuler, and Powlis (1988a). Modern computer-controlled multileaf
collimator (MLC) technology, capable of generating arbitrary intensity modulation,
fillsin the gap that existed between the fully discretized beaml et-based solution of the
inverse problem and the delivery capabilities; see, e.g., Cho and Marks (2000) and
references therein. To sum up, the fully discretized model is not difficulties-free, but
it offers a route of circumventing the inversion problem of the computational dose
operator © without compromising on any of the heuristics and empiricism involved
in advanced dose calculations. Brahme (1995) reaches also a conclusion in favor of
full discretization and says: “...In either caseit isvery useful to transform the relevant
integral equation into an algebraic form by discretizing the transport quantities along
the coordinates of the free variables”
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The Feasibility Approach

Thefeasibility formulation relaxesthe equality in (1). Let D = D(r,6) and D =D(r, 6)
be two dose functions whose values represent upper and lower bounds, respectively,
on the permitted and required dose inside the patient’s cross-section.

Problem 4. The feasibility formulation for the continuous inverse problem of
IMRT. Assume that the cross-section Q of the patient and its radiation absorption
characteristics are known. Given prescribed dose functions D(r, 8), and D(r, ), find
aradiation intensity function p(u, w) such that

D(r,6) < D[ p(u,w)](r,6) < D(r, 6), for all (r, §) 0Q, (13)

where ©© is the dose operator.

A radiation therapist defines D(r, 6) and D(r, 6) for each given case and will accept
asasolutionto the IMRT inverse problem any radiation intensity function p(u, w) that
satisfies (13). In target regions (tumors) the lower bound D is usually the important
factor because the dose there should exceed that given value. In critical organs and
other healthy tissues D(r, 6) =0, and D(r, 6) isthe dosethat cannot be exceeded. Any
solution p(u, w) that fulfills (13), for given D and D, isafeasible solution to the IMRT
continuous inverse problem 4. In order to discretize (13) we must specify the dose
functions D and D at the grid points by giving, forall j=1,2,...,J,

b(r,.6)=D; and Dfr;.6)=D, (19

thus, converting (13) into afinite system of interval inequalities

D, <®i[p<D;, j=12..,3. (15)

Denoting hereafter by D (D) the J-dimensional column vector whose jth component
is Dy(D)), the inverse problem of IMRT can be restated as follows:

Problem 5. The feasibility formulation for the fully discretized inverse problem
of IMRT. Assume that the cross-section Q of the patient and its radiation absorption
characteristics are known. Given vectors D = (D;) and D = (D)) of permitted and
required doses, respectively, at J grid points in the patient’s cross-section Q, find a
radiation intensity vector x [0 R such that

| —
Dj< 3 xa; <D j=12..3, (16)
i=
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x 20, i=12,..,1. 17

where g; areasin (8).

Let the set of pixelsin the discretized patient’s cross-section be denoted by N =
{1,2,...,J}, sothat thejth pixd isidentified with the jth grid point at (r;, 6,). Organs
within the patient’s cross-section are then defined as subsets of N. The subsets B, [
N,wherel =1,2,...,L, denoteL critical organsthat have to be spared from exces-
sive radiation. Let the values by denote the corresponding upper bounds on the dose
permitted in each critical organ. The subsets T, O N, whereq=1, 2,.. ., Q, denote Q
target regions. Let the valuest, denote the corresponding prescribed lower bounds for
the absorbed dose in each target organ. All the B, and T, are pairwise digoint. The set
of pixelsinside the patient’s cross-section that are not in any B, or T, are called the
complement, denoted as the subset C [0 N, and c is the upper bound for the permitted
dose there. It is assumed that the definition of all subsets B, and T, and C and the
prescription of al b, t,, and c are given by the radiotherapist asinput datafor thetreat-
ment planning process. Problem (16)—(17) then becomesthe following system of linear
inequalities.

|
Zaijxislq, foral jOB,E 12,...,L, (18)
i=1
I .
tqszlaijxi, foral jOT,, ¢ 12,...,Q, (19)
1=
| (20)
> g <sc foraljlC
i=1
x =20, fordli=12...,1. (21)

With b, t,, and ¢ given and the a;’s pre-calculated from (8) with a forward problem
solver, the mathematical question represented by the basic model (18)—(21) isto find
a nonnegative solution vector X = (x") for a system of linear inequalities. This fully
discretized feasibility inverse problem appeared in Altschuler and Censor (1984) and
Censor, Altschuler, and Powlis (1988a).
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Optimization Formulations

We use the term optimization asit is used in the field of mathematical optimization,
namely to designate a situation where an objective function (also called: cost function
or merit function) has to be optimized (i.e., minimized or maximized). This explains
why the feasibility approach, discussed above, is not called optimization, althoughin
thefield of IMRT the term optimization is frequently used in a more general manner
to refer to the process of treatment planning where the treatment hasto be * optimized”
even if the underlying mathematical mode is afeasibility model where no objective
function appears. When it comes to discussing an optimization approach to IMRT we
must distinguish between two different kinds of optimization problems depending on
the space in which they are formulated. One possibility isto define an objective func-
tionf: R - Rover the space of radiation intensity vectors x and use either the system
(12) or the constraints (18)—(21) asthefeasible set (i.e., the constraints set). For exam-
ple, choosing f(X) = (1/2) [ x[F (wherell -1 standsfor the Euclidean norm) and solving
aminimization problem

minf(L/2) | x|* | (28) - (21) hold]}, 22)

leads to aminimum-norm solution vector X; i.e., afeasible vector closest to theorigin
so that the total radiation intensity is smallest possible in the Euclidean norm sense.
Thiswasrecently studied viaa special-purposeiterative minimization method in Xiao
et a. (2003a).

Regardless of the specific choice of f, in this approach the interval-constrained
optimization problem

min{f(x)|asAxsﬁ, xz(} (23)

where a < Ax < Brepresentsthe system (18)—(20), with appropriately defined a, S 0R,
isstill aiming at asolution of the fully discretized formulation of theinverse problem.
A solution vector X will represent a radiation field that will deliver a dose which is
both feasible (i.e., adheres to the upper and lower dose boundsimposed by the physi-
cian) and is optimal in the sense that it minimizes the objective function f. This
approach of optimization in the space of radiation intensity vectorsiscalled radiation
intensity optimization.

The second possibility for introducing an optimization problemin IMRT isto use
(12) or (18)—(21) as constraints but choose an objective function g : R* —» R defined
over the space of dose vectors. Such objective functions may be either biological, or
physical. Biological objective functions represent knowledge (statistica or other) about
various biologica mechanismsthat affect our ability to control the disease. An example
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is the conditional probability of having tumor control without severe injury, denoted
intheliterature by P.. Physical objective functions aggregate physical featureswhich
are important for tumor control and prevention of normal tissue complications, such
asdose variance over target volume or peak doseto organsat risk. A thorough discus-
sion of biological and physical objective functions can be found in Brahme (1995),
seea soAlber and Nisslin (1999). Let uscall thiskind of optimization, over the space
of dose vectors, dose optimization.

Early work on dose optimization was not geared towards solving an optimization
problem but rather towards comparing rival plans. In this mode, several treatment
plans were compared, based on their score with respect to some pre-determined qual -
ity index. The treatment plans were all fixed prior to the comparison and, therefore,
the selection of the plan of choice depended largely on the choice of the quality index.
Various quality indices were proposed and advocated on different grounds; see, e.g.,
Wolbarst et al. (1980), Dritschilo et al. (1978) and Karthaet al. (1982). In general, the
dose optimization approach leads to a problem of the form

min{g(y) Da<y<f}, (24)

whereg: R - Rassignsreal valuesto dosevectorsy = (y]- )?—1 a Rthosejth compo-
nent y; isdose at pixel j. The question of feasihility versus 6bti mization is not crucial
if only radiation intensity optimization is considered because both the feasibility
formulation and the optimization formulation [regardless of the particular choice of
the objective function f (X)] occur in the same space (of radiation intensity vectors) and,
thus, aim at a solution of the discretized inverse problem. Therefore, the difference
between these two formulations is, from the mathematical point of view, only techni-
cal. Raphael (1992) studied the inverse problem of RTTP as constrained optimization
in the L2 Hilbert space. Recently, Cho et a. (1997) reported on the advantage of the
feasibility approach over aglobal optimization model solved by simulated annealing;
seealso Cho et al. (1998). In case when the composite function g(Ax) is simple enough
the approach of (24) can still be efficiently used for solving directly the discretized
inverse probleminitsfull generality. Otherwise, theinversion problem hasto be aban-
doned and the optimization can be performed with respect to only few parameters of
theexterna radiation field. See, for example, Gustafsson (1996) and Gustafsson, Lind,
and Brahme (1994). Thisis done while other important parameters are |eft out of the
optimization problem and must be given as input to the process; see also the discus-
sionin Censor and Zenios (1997, section 11.7). The question whether to use biological
or physical objective functions in the space of dose vectors (and thereby possibly
compromise on the full generality of the inverse problem) remains unsettled.

Mathematical Optimization Techniques

A variety of mathematical optimization techniques have been applied to the inverse
problem of IMRT. Additional methods and approaches are being applied and tested
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asthe collaboration between researchersin thisfield with expertsin mathematical opti-
mization and operations research surgesin recent years. Thistrend isevident from the
growing number of special issuesdevoted to the interface between optimization theory
and radiation therapy, e.g., Lee and Sofer (2003), Holder and Newman (2003), and
Ferris and Zhang (2003), and the recent dedicated site on the Internet (Holder 2003).
In this section we briefly review the following methods and approaches that have been
applied to solving the inverse problem of IMRT, with emphasis on more recent publi-
cations in each category: (1) Simulated annealing and global optimization, (2)
Multi-objective optimization, (3) Linear optimization and mixed integer programming
(MIP), and (4) Cimmino’s agorithm and other projection methods.

Other optimization models and methods, not mentioned here, were also used in
RTTPin recent years; see Shepard et a. (2000), Xing and Chen (1996), Bortfeld et al.
(1990) and the gradient and gradient-like methods of Spirou and Chui (1998) and others.

Simulated Annealing And Global Optimization

The NEOS (Network Enabled Optimization System) Guide Optimization Tree (at:
http://mww-fp.mces.anl .gov/otc/Guide/OptWeb/index.html) uses, inits Introduction to
Global Optimization, thefollowing definition: “ Global optimization isthetask of find-
ing the absolutely best set of admissible conditions to achieve your objective,
formulated in mathematical terms. It is the hardest part of a subject called nonlinear
programming (NLP).” It goes on to supply references and links to the field that are
most useful to anyone who wishes to learn about it. A general mathematical opti-
mization problem has the form

min{ f(x) Ox O Q}, (25)
where
Q={xORDxO ,g(X<0,(j=1,2,...,3),h(x)=0,(m=1,2,...,M)}(26)

isthe feasible set of the problem, represented by a set-constraint I and equality h.(X)
=0 and inequality g (X) < 0 congtraints. A point X [ Q isaglobal optimal solution
(globa minimizer) of (25) if

f(x) < f(x), for al x 0 Q. 27)
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A point X JQ isalocal optimal solution (local minimizer) of (25) if there exists a
neighborhood U 0 R of X so that

f(%)< f(x), foral xOQ U, (29)

The problem (25) is multi-extremal if it has multiple local minimizers with different
objective function values. The occurrence of multiple extrema makes problem solv-
ing in nonlinear optimization ahard task. Without supplying global information, which
is usualy unavailable, the search for a global optimizer is not smple. There are
stochastic methods and deterministic methods for global optimization, but one can also
classify different methods based on their underlying philosophy, as Rinnooy Kan and
Timmer (1989) do, asfollows. (a) Partition and search: thefeasible set Q is partitioned
into successively smaller subregions among which the global minimum is sought. (b)
Approximation and search: the objective function f isreplaced by an increasingly better
approximation that is easier from a computational point of view. (c) Global decrease:
inthisclass of methodstheaimisfor permanent improvement in the values of f, culmi-
nating in arrival at the global minimum. (d) Improvement of local minima: explaiting
the availability of an efficient local search routine, these methods seek to generate a
sequence of local minima of decreasing function values. () Enumeration of local
minima: here one strives to reach a complete enumeration of al local minimaor, at
least, of apromising subset of them.

Smulated annealing (SA) isaglobal optimization method. Its fundamental idea
appearsin Metropoliset al. (1953) and was applied to optimization problems by Kirk-
patrick, Gelatt, and Vecchi (1983). The underlying principle of SA isto simulate the
cooling process of material in aheat bath and it usesthis simulation to systematically
search for feasible pointsin away that makes the generated sequence convergeto a
global minimum. Webb first introduced the SA algorithminto thefield of RTTP (Webb
1989); see aso his book (Webb 2001). A concise description of Webb's application
of SA appearsin hisbook (Webb 1993, subsection 2.5.4).

Global optimization can be used also for the IMRT inverse problem when the
trgjectories of the leaves of the MLC are integrated into the moddl. This has been
recently done by Trevo et a. (2003) who arrived at a very high-dimensiona
constrained nonlinear global optimization problem and solved it by a, commercially
available, software package called LGO (Lipschitz (continuous) Global Optimizer).

Multi-Objective Optimization
Multi-objective (also called multicriteria) optimization handles problems in which

more then one objective function is defined over the feasible set. The standard form
of such aproblemis

min{ F (X) Ox O Q}, (29
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where F (x) isavector of (objective) functions, i.e., for S= 2,

(FOIN™= (), (), - . ., fs (X)), (30)

andforeachs=1,2,..., S thefunctionf(x) mapsR - R Wedenoteby Q 00 R the
feasible set that may be defined by equality constraints, inequality constraints, set
constraints, or any mixture of them, asin (26). An optimal point for problem (29) is
apoint that isfeasible (x 0 Q) and minimizes F(x). But what does it mean to mini-
mize a vector of functions? Moving from one point X* in R to another point x> may
cause some function values to decrease while others increase; so how should one
decide if amoveisacceptable? The situation thus differs from the case of scalar opti-
mization, when S= 1, because the vector of functions F(x) induces on the feasible set
Q apartial order and not alinear order, i.e., not every two points are ordered by their
F values. Therefore, the solution (or solutions) to problem (29) depends a priori on
which solution concept is adopted for solving the problem; see, e.g., Censor (1977).
One way to handle thisis by employing scalarization. This refers to the conversion
of the multi-objective problem into a family of scalar optimization problems. This
family has the form

s 0
mingy ysfs(x)| x 0Q0, 31)
(5=1 O

where y = ( ys)i , O RSisaparameter vector whose componentsyy. are the weights of
relative importance which combine all scalar functions f((x) into the linear combina
tion. The difficulty hereisthat one usually does not know how to choose appropriately
a vector y by which a specific scalar optimization problem of the form (31) will be
picked out of the family of all possible such problems. Obviously, thischoice strongly
affects the final outcome.

An alternative approach to multi-objective optimization is to preserve the multi-
objective nature of the problem and use a solution concept that does not involve
scalarization. A frequently used such concept is the Pareto optimality, also termed
Pareto efficiency.

Definition 6. Apoint X [0 R iscalled Pareto optimal (efficient) for problem (29)
if X 0 Q and thereisno other x # X" such that x 0 Q, for which f(x) < f(X) for all s=
1,2,...,Swithadrict inequality for at least ones, 1 <s< S

Thismeansthat X isPareto efficient if it isimpossibleto decrease the value of any
individual scalar objective function fromitsvalueat X without increasing at least one
other scalar objective function. See, e.g., Ehrgott’s recent book (Ehrgott 2000). In a
recent paper, Hamacher and Kifer (2002) propose and investigate a linear multicri-
teria programming (LMP) problem for the inverse problem in RTTP. The concept of
multicriteria optimization without prior scalarization isindeed tempting to work with.
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It has been utilized in avariety of rea -world problemsin other technological and scien-
tific fields. In operations research and the management sciences, multiple criteria
decision making has devel oped into asolid body of literaturein the past 30 years. The
International Society on Multiple Criteria Decision Making (MCDM) offers relevant
software solutions (at: http://www.mit.jyu.fi/MCDM/soft.html). Further scientific
research and eval uation are needed to gauge the useful ness of this methodology inthe
field of RTTPR. Kiifer et a. (2003) devel op this approach further and find that they must
use adaptive reduction by appropriate approximation schemes to cope with the large
scale nature of the LM P problem.

Linear Optimization And Mixed Integer Programming (MIP)

Linear optimization (traditionally called linear programming) is the field of study of
optimization problems in which all constraints as well as the objective function are
linear. The literature of thisfield is vast and the leading algorithms for solving such
problems are the famous SIMPLEX method and primal-dual interior point methods.
We direct the reader to Shepard et a. (1999, subsection 4.1) and to Holder (2003) for
recent works that describe this approach and supply many useful references. An early
application of linear optimization to radiotherapy treatment planning is Bahr et a.
(1968) where the approach is used to optimize the treatment plan with respect to just
afew setup parameters which are kept free after the plan has been obtained by thetria
and error methods of those days. Rosen et al. (1991) critically compares linear opti-
mi zation approaches, as used until 1990, with simulated annealing and with projection
methods for the feasibility approach.

There are severa ways to apply linear optimization to the IMRT inversion prob-
lem, depending mainly on the choice of the objective function. For example, if we
chooseto minimizethetota doseto all pixelsin the patient’s cross-section while obey-
ing the upper and lower bounds on organs we may consider the linear optimization
problem

- B3] =
mingy S a;x | (18)-(21) holdg, (32
=1li=1

Alternatively, one can use an organ-weighted total dose objective function of theform
L | Q | |
DA Yaxty Oy eyt v 2ai%, (33
= J =

I=1 jOBi=1 g=1 jmg#1 i

and minimize it over (18)—21) after choosing user-specified weights of importance

L Q
{'Bl} 1=1’ {GQ} g=1
and y. See, e.g., Shepard et al. (1999, subsection 4.1) for other formulations.
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Mixed integer programming (MIP) occurs when some variables in an optimiza-
tion problem are restricted to take only integer values. In the case of linear
optimization, the MIP problem has the general form

min{(c,x> | Ax=b, I sx<u, andsomeoral x; areintegers} , (34)

wherec O R, thematrix A, and thevectorsb O R, I, u, O R, aregiven, see, e.g., Bixby
et a. (2000). In RTTP the need for this kind of optimization arises in a natural way
when dose-volume constraints (al so called partial volume constraints) are considered.
Such constraints appear when the oncologist iswilling to sacrifice aportion of aregion
at risk in order to improve the probability of curing thedisease. In such acase, in addi-
tion to the upper and lower bounds on required and permitted radiation doses, as
formulated in (18)—(21), he might state that “up to ¢% of al pixelsinside a certain
organ B, in (18) might be allowed to exceed b by %", without specifying a priori
which of the pixelsin B, will actually use this relaxed upper bound. The MIP formu-
lation reached at in thisway can be found in Langer et a. (1996) and also in Shepard
et al. (1999, p. 737). Other applications of MIP in this field include Lee, Fox, and
Crocker (2000) who used it for radiosurgery treatment planning, Boland, Hamacher,
and L enzen (2002) who employed a nonlinear M1P formulation to incorporate MLC
settings within the treatment planning, and Bednarz et a. (2002) who compared MIP
performance with that of Cimmino’s algorithm. Ferris, Meyer, and D’ Souza (2002)
give details of the mathematical formulations and algorithmic approaches as well as
pointers to supporting literature for M1P-based approaches to problems of RTTP. As
Ferris, Meyer, and D’ Souza correctly notice, the main difficulty associated with the
MIP approach isthat these formulations can become quickly impractical dueto large
numbers of voxelsin the region of interest (i.e., the number J, above). These difficul-
ties have then to be attacked by approximate techniques.

Cimmino’sAlgorithm And Other Projection Methods

The convex feasibility problemisto find a (i.e., any) point in the nonempty intersec-
tionC:= nlecj # 0 of afamily of closed convex subsetsC, O R, 1<j < J, of the
I-dimensional Euclidean space. It is afundamenta problem in many areas of mathe-
matics and the physical sciences, see, e.g., Combettes (1993, 1996) and references
therein. It has been used to model significant real-world problems such asimage recon-
struction from projections|see, e.g., Herman (1980)] and crystallography [see Marks,
Sinkler, and Landree (1999)] and has been used under additional hames such as set
theoretic estimation or the feasible set approach. A common approach to such prob-
lems is to use projection agorithms; see, e.g., Bauschke and Borwein (1996).
Projection algorithms employ projections onto convex setsin variousways. They may
use different kinds of projections and, sometimes, even use different projectionswithin
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the same algorithm. They serveto solve avariety of problems, which are either of the
feasibility or the optimization types. They have different algorithmic structures, of
which some are particularly suitablefor parallel computing, and they demonstrate nice
convergence properties and/or good initial behavior patterns. This class of agorithms
has witnessed great progress in recent years and its member algorithms have been
applied with successto fully discretized models of problemsin image reconstruction
and image processing; see, e.g., Stark and Yang (1998), Censor and Zenios (1997).

Projection algorithms often employ orthogonal projections (i.e., nearest point
mappings) onto the individual sets C,. The orthogonal projection Pq(Z) of apoint z O
R onto aclosed convex set Q [0 R is defined by

PQ(Z)::argmin{ [z=x| |x DQ}. (35)
Frequently arelaxation parameter isintroduced so that
Pox(2) ;= (1= A)z+ APy(2) (36)

istherelaxed projection of zonto Q with relaxation A. Another problem that isrelated
to the convex feasibility problem is the best approximation problem of finding the
projection of a given point y [0 R onto the nonempty intersection C of a family of
closed convex subsets G, O R, 1 <j < J; seg, £g. Deutsch’s recent book (Deutsch
2001). In both problems the convex sets{Cj ___represent mathematical constraints
obtained from the modeling of the real-worl dr_c%bl em, e.g., in IMRT, each constraint
of (18)—(20) can be used to define a halfspace C. In the convex feasibility approach
any point in the intersection is an acceptable solution to the real-world problem
whereas the best approximation formulation is usually appropriate if some pointy [
R isgiven and onewishesto find the point in the intersection of the convex setswhich
is closest to the point y. Iterative projection agorithms for finding a projection of a
point onto the intersection of sets are more complicated than algorithms for finding
just any feasible point in the intersection. Thisis so because they must have, in their
iterative steps, some built-in “memory” mechanism to remember the origina point
whose projection is sought after. The sequential or parallel algorithms of Dykstra[see,
e.g., Bregman, Censor, and Reich (1999)], Haugazeau [see, e.g., Bauschke and
Combettes (2001)], Bauschke (1996), and others and their modifications employ
different such memory mechanisms.

Projection algorithmic schemes for the convex feasibility problem or for the best
approximation problem are, in general, either sequential or simultaneous or block-iter-
ative (see, e.g., Censor and Zenios (1997) for a classification of projection agorithms
into such classes, and the review paper of Bauschke and Borwein (1996) for avariety
of specific algorithms of these kinds). In what follows we explain and demonstrate
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these structures along with the recently proposed string-averaging structure. The
philosophy behind these algorithmsisthat it is easier to calculate projections onto the
individual sets C; than onto the whole intersection of sets. Thus, these algorithms call
for projections onto individual setsasthey proceed sequentially, simultaneously, or in
the block-iterative or the string-averaging algorithmic modes.

The Sring-Averaging Algorithmic Structure

The string-averaging agorithmic scheme was proposed by Censor, Elfving, and
Herman (2001). Fort =1, 2, . . ., M, let the string J, be an ordered subset of
{1,2,...,J} of theform

3= (it 150 (37)

with J(t) denoting the number of elementsin J.. Supposethat thereisaset Q [ R such
that thereare operators R, R,, . . ., Ry mapping Q into Q and an operator Rwhich maps
Q'=QxQx---xQ(Mtimes)into Q. Initializing the algorithm at an arbitrary x° (I
Q, the iterative step of the string-averaging algorithmic schemeis as follows. Given
the current iterate X, calculate, foral t=1,2,..., M,

(<) )

and then calculate
= R () (). T (). (39)

Foreveryt=1,2,..., M, thisalgorithmic scheme appliesto x* successively the oper-
atorswhose indices belong to the tth string. This can be donein parallel for all strings
and then the operator R maps all end-points onto the next iterate X*. Thisisindeed an
algorithm provided that the operators{ R} and Rall have algorithmic implementa-
tions. In this framework we get asequennél agorithm by the choiceM =1and J; =
1,2,...,J). Thewdl-known “Projections Onto Convex Sets’ (POCS) agorithm for
the convex feasibility problemissuch asequential projection algorithm; see Bregman
(1965), Gubin, Polyak, and Raik (1967), Youla (1987), and the review papers by
Combettes (1993, 1996). Starting from an arbitrary initial point X° [0 R, the POCS algo-
rithm’siterative step is

XK+l = yk +)\k(ch(k) (xk) - x"), (40)
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where { A} o are relaxation parameters and {j(k)} o is a control sequence, 1 < j(k) <
m, for al k = 0, which determines the individual set Cy,, onto which the current iter-
atex*isprojected. A commonly used control isthe cyclic control inwhich j(k) =k mod
J+ 1, but other controls are also available (Censor and Zenios 1997). This algorithm
was used in RTTP in Censor, Altschuler, and Powlis (1988b) and by Cho and Marks
and co-workersin Cho et a. (1997, 1998) and Cho and Marks (2000). The celebrated
ART (Algebraic Reconstruction Technique) of Gordon, Bender, and Herman (1970)
[see dso Herman (1980)], isequivalent to the application of POCSto asystem of linear
equations.

A simultaneous agorithm is obtained by the choice M =Jand J. = (t), t = 1,
2,..., M, and Cimmino's projections method isindeed such?n algorithm. Using relax-
ation parameters { A} o and weights of importance {Wj} - such that w, > 0 and
> J.lewj =1, theiterative step of Cimmino’s algorithm for the derivation of the next
iterate X* from the current one x“ is

0J O
k+1 _ Jk k) _ ok
X=X +Anglech (x ) X B (41)
For halfspaces as constraints sets, i.e.,

C ={x OR! ‘<aj,x>s dj}, foral j=12,...,J, (42)

the formula becomes:
n .
X=X+ A Y wig (xk)aJ : (43)

where

O d, -{al,x<\O
c;(x) = min ﬁﬁﬁ (@4

String-averaging schemes offer avariety of optionsfor steering theiterates towards a
solution of the convex feasibility problem. It is an inherently parallel scheme in that
itsmathematical formulationisparalld (like thefully s multaneous method mentioned
above). We use thisterm to contrast such algorithms with othersthat are sequentia in
their mathematical formulation but can, sometimes, beimplemented in aparallel fash-
ion based on appropriate model decomposition (i.e., depending on the structure of the
underlying problem). Being inherently parallel, this a gorithmic scheme enablesflex-
ibility in the actual manner of implementation on a parallel machine. At the extremes
of the“ spectrum” of possible specific algorithms, derivable from the string-averaging
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algorithmic scheme, are the generically sequential method, which uses one set a a
time, and the fully simultaneous algorithm, which employs al sets at each iteration.

The block-iterative projections (BIP) scheme of Aharoni and Censor (1989) also
hasthe sequential and the fully simultaneous methods asits extremesin terms of block
structures, but the string-averaging algorithmic structure gives users further options
to design new inherently parallel computational schemes. The behavior of the string-
averaging algorithmic scheme in the inconsistent case when the intersection
C=n J-J=1C]- isempty isnot known at thistime. For results on the behavior of thefully
simultaneous algorithm with orthogonal projectionsin the inconsistent case see, e.g.,
Combettes (1994). We demonstrate some of the algorithmic possibilities offered by
the general string-averaging method in figure 2. The constraints sets of the convex
feasibility problem are assumed in this special case to be the six hyperplanes H,, H.,
Hs, Ha, Hs, and He.

A sequential POCS agorithmic iterative step. A fully smultaneous Cimmino
algorithmic iterative step.
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Figure 2. Some algorithmic possibilities offered by the string-averaging method.
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Thefully simultaneous Cimmino agorithm, applied to halfspaces, defined by the
inegudlities of the system (18)—(20), wasfirst used in RTTP by Censor, Altschuler, and
Powlis (1988a) [see also Powlis et a. (1989)]. There are several advantages of the
simultaneous projections Cimmino algorithm over the sequential projections POCS
algorithm for the linear feasibility problem arising from the fully discretized model
of IMRT. When initialized at zero intensities it generates an approximate LI1F (least-
intensity feasible) solution; see Xiao et a. (2003a). It converges globally to afeasible
solution, if such asolution exists, or to aminimal value of aproximity functionin the
inconsistent case; see Combettes (1994) and Byrne and Censor (2001). It isan inher-
ently parallel iterative algorithm, thus, implementable on parallel computing
equipment regardless of problem structure. It can be accelerated by using strong over-
relaxation, see Hoffner et al. (1996), or by using it with oblique projections (i.e., the
CAV agorithm; see, e.g., [ Xiao et a. (2203b), appendix] and referencestherein). Itis
aspecial case of more general agorithmic schemes, such as BIP and the string-aver-
aging scheme, which allow processing of various sets of constraintsinstead of asingle
(POCYS) or dl (Cimmino) constraints, in each iterative step. It generates smoother
intensity patterns; see Xiao et a. (2003b).
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