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Abstract

We study the multiple-sets split feasibility problem that requires
to find a point closest to a family of closed convex sets in one space
such that its image under a linear transformation will be closest to
another family of closed convex sets in the image space. By casting
the problem into an equivalent problem in a suitable product space
we are able to present a simultaneous subgradients projections algo-
rithm that generates convergent sequences of iterates in the feasible
case. We further derive and analyze a perturbed projection method
for the multiple-sets split feasibility problem and, additionally, furnish
alternative proofs to two known results.
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1 Introduction

1.1 The multiple-sets split feasibility problem

The multiple-sets split feasibility problem requires to find a point closest to
a family of closed convex sets in one space such that its image under a linear
transformation will be closest to another family of closed convex sets in the
image space. It serves as a model for inverse problems where constraints are
imposed on the solutions in the domain of a linear operator as well as in
the operator’s range. It generalizes the convex feasibility problem and the
two-sets split feasibility problem. Formally, given nonempty closed convex
sets Ci ⊆ Rn, i = 1, 2, . . . , t, in the n-dimensional Euclidean space Rn, and
nonempty closed convex sets Qj ⊆ Rm, j = 1, 2, . . . , r, and an m × n real
matrix A, the multiple-sets split feasibility problem (MSSFP) is

find a vector x∗ ∈ C := ∩ti=1Ci such that Ax∗ ∈ Q := ∩ri=1Qj. (1)

Such MSSFPs, formulated in [14], arise in the field of intensity-modulated
radiation therapy (IMRT) when one attempts to describe physical dose con-
straints and equivalent uniform dose (EUD) constraints within a single model,
see [12]. In the present paper we (i) cast the MSSFP into an equivalent prob-
lem in a suitable product space, (ii) formulate a simultaneous subgradient
algorithm for solving the MSSFP and study its convergence, and (iii) propose
a perturbed projection algorithm for the MSSFP. En route we give alterna-
tive proofs of two earlier results, shading further light on the problem. The
real-world application of IMRT inspired us to investigate this problem but
we present in this report only theoretical results of algorithmic developments
and convergence theorems. Our experimental computational work in [12],
which involves nonlinear convex sets, shows the practical viability of this
class of algorithms.
The problem with only a single set C in Rn and a single set Q in Rm

was introduced by Censor and Elfving [13] and was called the split feasibility
problem (SFP). They used their simultaneous multiprojections algorithm (see
also [17, Subsection 5.9.2]) to obtain iterative algorithms for the SFP. Their
algorithms, as well as others, see, e.g., Byrne [5], involve matrix inversion at
each iterative step, which is time-consuming, particularly if the dimensions
are large. Therefore, Byrne [6] devised the CQ-algorithm with the iterative
step:

xk+1 = PC
¡
xk + γAT (PQ − I)(Axk)

¢
, (2)
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where xk and xk+1 are the current and the next iteration vectors, respectively,
γ ∈ (0, 2/λ) where λ is the spectral radius (in our case, the largest eigenvalue)
of the matrix ATA (T stands for matrix transposition), I is the unit matrix
or operator and PC and PQ denote the orthogonal projections onto C and Q,
respectively.
The CQ-algorithm converges to a solution of the two-sets-SFP, for any

starting vector x0 ∈ Rn, whenever the two-sets-SFP has a solution. When the
two-sets-SFP has no solutions, the CQ-algorithm converges to a minimizer
of kPQ(Ax)−Axk over all x ∈ C, whenever such a minimizer exists. The
MSSFP, posed and studied in [14], was handled, for both the feasible and
the infeasible cases, with a proximity function minimization approach. If
the MSSFP problem is consistent then unconstrained minimization of the
proximity function yields the value 0, otherwise, in the inconsistent case, it
finds a point which is least violating the feasibility by being “closest” to all
sets, as “measured” by the proximity function.
In Section 2 we formulate a simultaneous subgradient projections algo-

rithm for the MSSFP. Such projections are actually not projections onto the
convex sets of the problem but onto half-spaces determined by the subgra-
dient of the function that defines the convex set, calculated at the current
(available) iterate. The algorithm is inherently parallel, and hence, suit-
able for implementation on multiple-processors machines. The use of such
subgradient projections to replace projections onto convex sets in various
projection algorithms was done before by several authors, see Censor and
Lent [16], Bauschke and Borwein [2, Section 7] and references therein, and
Yang [28] for the two-sets-SFP. We analyze the algorithm in a suitable prod-
uct space framework. This same framework enables also an alternative proof
for the convergence theorem in [14].
In Section 3 we formulate a perturbed projections algorithm for the

MSSFP that allows to do orthogonal projections onto a sequence of supersets
of the original sets of the problem instead of projections onto the latter. This
development is based on results of Santos and Scheimberg [25] and includes
earlier findings of Zhao and Yang [31] as a special case.
Finally, in the Appendix at the end of the paper, we supply an alterna-

tive proof, based on properties of averaged operators, of Yang’s convergence
result [28, Theorem 1]. We moved this proof to the appendix because it cur-
rently contains a nonempty-interior assumption that is not present in Yang’s
result. We conjecture that this extra assumption can be removed — but do
not know at this time how to do so. Additional recent developments on the
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split feasibility problem appear in Cegielski [9, 10], where the linear split
feasibility problem is studied, in Qu and Xiu [23] who modify algorithms by
adopting Armijo-like searches, in Yang [29] where algorithms that do not de-
pend on the calculation of the spectral radius of the matrix ATA are derived,
in Yang and Zhao [30] where the algorithms for the SFP are shown to be
special instances of more general algorithms designed to solve a variational
inequalities problem (VIP), and in Byrne and Censor [8].

1.2 Projection methods and their advantage

The reason why the MSSFP is looked at from the viewpoint of projection
methods can be appreciated from the following brief comments that we made
in earlier publications regarding projection methods in general. Projections
onto sets are used in a wide variety of methods in optimization theory but not
every method that uses projections really belongs to the class of projection
methods. Projection methods are iterative algorithms that use projections
onto sets while relying on the general principle that when a family of (usually
closed and convex) sets is present then projections onto the given individual
sets are easier to perform then projections onto other sets (intersections,
image sets under some transformation, etc.) that are derived from the given
individual sets.
A projection algorithm reaches its goal that is related to the whole fam-

ily of sets by performing projections onto the individual sets. Projection
algorithms employ projections onto convex sets in various ways. They may
use different kinds of projections and, sometimes, even use different projec-
tions within the same algorithm. They serve to solve a variety of problems
which are either of the feasibility or the optimization types. They have dif-
ferent algorithmic structures, of which some are particularly suitable for par-
allel computing, and they demonstrate nice convergence properties and/or
good initial behavior patterns. This class of algorithms has witnessed great
progress in recent years and its member algorithms have been applied with
success to fully-discretized models of problems in image reconstruction and
image processing, see, e.g., Stark and Yang [26], Bauschke and Borwein [2]
and Censor and Zenios [17].
Apart from theoretical interest, the main advantage of projection meth-

ods, which makes them successful in real-world applications, is computa-
tional. They commonly have the ability to handle huge-size problems of di-
mensions beyond which other, more sophisticated currently available, meth-
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ods cease to be efficient. This is so because the building bricks of a projection
algorithm are the projections onto the given individual sets (assumed and ac-
tually easy to perform) and the algorithmic structure is either sequential or
simultaneous (or in-between). Sequential algorithmic structures cater for
the row-action approach (see Censor [11]) while simultaneous algorithmic
structures favor parallel computing platforms, see, e.g., Censor, Gordon and
Gordon [15]. The field of projection methods is vast and we can only mention
here a few recent works that can give the reader some good starting points.
Such a list includes, among many others, the works of Crombez [18, 19],
the connection with variational inequalities, see, e.g., Aslam Noor [21], Ya-
mada’s [27] which is motivated by real-world problems of signal processing,
and the many contributions of Bauschke and Combettes, see, e.g., Bauschke,
Combettes and Kruk [3] and references therein.

2 A simultaneous subgradient algorithm for
the MSSFP

In some cases, notably when the convex sets are not linear, the exact com-
putation of the orthogonal projections calls for the solution of a separate
optimization problem for each projection. In such cases the efficiency of
methods that use orthogonal projections is seriously reduced. Yang [28]
proposed a relaxed CQ-algorithm where orthogonal projections onto convex
sets are replaced by subgradient projections. The latter are orthogonal pro-
jections onto, well-defined and easily derived, half-spaces that contain the
convex sets, and are, therefore, easily executed. We use a product space
formulation of the MSSFP. Assume, without loss of generality, that the sets
Ci and Qj are expressed as

Ci = {x ∈ Rn | ci(x) ≤ 0} and Qj = {y ∈ Rm | qj(y) ≤ 0} , (3)

where ci : Rn → R, and qj : Rm → R are convex functions for all i =
1, 2, . . . , t, and all i = 1, 2, . . . , r, respectively. For convenience reasons only
we introduce yet another set as follows.

Definition 1 [14] Given an additional closed convex set Ω ⊆ Rn, the constr-
ained multiple-sets split feasibility problem (CMSSFP) is to find
an x∗ ∈ Ω such that x∗ solves (1).
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We define the product spaces V =Rn andW = RS, where S = tn+ rm
with r, t, n and m as in the CMSSFP and adopt the notational convention
that the product spaces and all objects in them are represented in boldface
type. Define the product set

Q: =

Ã
tY
i=1

√
αiCi

!
×
Ã

rY
j=1

p
βjQj

!
, (4)

and the block-matrix

A : =
³√

α1I,
√
α2I, . . . ,

√
αtI,

p
β1A

T ,
p

β2A
T , . . . ,

p
βrA

T
´T
, (5)

where αi > 0, for i = 1, 2, . . . , t, and βj > 0, for j = 1, 2, . . . , r, are arbitrary.
This yields a two-sets split feasibility problem, with the sets Ω ⊆ V and
Q ⊆W and the matrix A, whose solution solves the original CMSSFP. We
represent the norm in W by ||| · |||, meaning that if w ∈ W has the form
w = (y1, y2, . . . , yt, z1, z2, . . . , zr) then |||w|||2 =

Pt
i=1 kyik

2
+
Pr

j=1 kzjk
2
.

Projections in the product space W can be calculated by the following
lemma.

Lemma 2 Let M = Πsl=1Ml be a product, of s convex subsets of Rn, in
a product space U =Rns and let y ∈ U have the form y = (y1, y2, . . . , ys).
Then

PM(y) = (PM1(y
1), PM2(y

2), . . . , PMs(y
s)). (6)

Proof. See Pierra [22, Lemma 1.1(i)] or [17, Lemma 5.9.2].
For the relaxed CQ-algorithm the sets C and Q in the two-sets split

feasibility problem are given by

C = {x ∈ Rn | c(x) ≤ 0} and Q = {x ∈ Rm | q(x) ≤ 0} , (7)

where c : Rn → R and q : Rm → R are convex functions, whose subdifferen-
tial sets are denoted by ∂c and ∂q, respectively.

Algorithm 3 [28] The relaxed CQ-algorithm
Initialization: Let x0 be arbitrary.
Iterative step: For k ≥ 0 let

xk+1 = PCk
¡
xk + γAT (PQk − I)(Axk)

¢
. (8)
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Here γ ∈ (0, 2/λ), where λ is the spectral radius of ATA,

Ck =
©
x ∈ Rn | c(xk) +

­
ξk, x− xk

®
≤ 0

ª
, (9)

where ξk is a subgradient of c at the point xk, i.e., ξk ∈ ∂c(xk), and

Qk =
©
x ∈ Rm | q(xk) +

­
ηk, y −Axk

®
≤ 0

ª
, (10)

where ηk ∈ ∂q(Axk).

The following convergence result was established by Yang.

Theorem 4 [28, Theorem 1] If the solution set of the [two-sets] SFP is
nonempty then any sequence

©
xk
ª∞
k=0
, generated by Algorithm 3, converges

to a solution of the SFP.

Applying Algorithm 3 to the two-sets split feasibility problem in the prod-
uct space setting with C = Rn andQ of (4), for sets given as in (3), we obtain
the following new simultaneous subgradient algorithm for the MSSFP.

Algorithm 5
Initialization: Let x0 be arbitrary.
Iterative step: For k ≥ 0 let

xk+1 = xk + γ

Ã
tX
i=1

αi
¡
PCi,k(x

k)− xk
¢
+

rX
j=1

βjA
T
¡
PQj,k(Ax

k)−Axk
¢!
.

(11)

Here γ ∈ (0, 2/L), with L =
Pt

i=1 αi + λ
Pr

j=1 βj, where λ is the spectral
radius of ATA, and

Ci,k =
©
x ∈ Rn | ci(xk) +

­
ξi,k, x− xk

®
≤ 0

ª
, (12)

where ξi,k ∈ ∂ci(x
k) is a subgradient of ci at the point xk, and

Qj,k =
©
x ∈ Rm | qj(xk) +

­
ηj,k, y −Axk

®
≤ 0

ª
, (13)

where ηj,k ∈ ∂qj(Ax
k).

Theorem 6 If the MSSFP has a nonempty solution set then any sequence©
xk
ª∞
k=0
, generated by Algorithm 5, converges to a solution of MSSFP.
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Proof. Applying Theorem 4 to the two-sets split feasibility problem in
the product space setting with C = Rn and Q of (4), for sets given as in (3),
the proof follows.
Algorithm 3 can be applied to the MSSFP in the consistent case in a

direct manner by defining

c(x) := sup {ci(x) | i = 1, 2, . . . , t} (14)

and

q(y) := sup {qj(y) | j = 1, 2, . . . , r} . (15)

But the resulting algorithm will be inferior to our Algorithm 5 because it will
have slow practical convergence due to the need to compare r + t constraint
violations at each iterative step.
Next we make a different use of the product space formulation to derive

an alternative proof of convergence for the projection algorithm presented in
[14]. Applying the CQ-algorithm (2) to the two-sets split feasibility problem,
with the sets Ω ⊆ V and Q ⊆W and the matrix A, we take an arbitrary
x0 ∈ V and use the iterative process

xk+1 = PΩ
¡
xk + γAT (PQ − I)Axk

¢
, k ≥ 0. (16)

By Byrne’s convergence theorem [6, Theorem 2.1], any sequence {xk}∞k=0,
generated in this manner, converges to

argmin{(1/2)|||PQ(Ax)−Ax|||2 | x ∈ Ω}, (17)

assuming such a minimum exists. Translating the iterative step (16), using
the relation

PQ(Ax) =
³√

α1PC1x, . . . ,
√
αtPCtx,

p
β1PQ1(Ax), . . . ,

p
βrPQr(Ax)

´T
,

(18)

which follows from Lemma 2, we rewrite (17) as

argmin {p(x) | x ∈ Ω} (19)

where the proximity function p(x) is

p(x) = (1/2)
tX
i=1

αi kPCi(x)− xk
2 + (1/2)

rX
j=1

βj
°°PQj(Ax)−Ax°°2 , (20)

and obtain the following algorithm.
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Algorithm 7 [14, Algorithm 1]
Initialization: Let x0 be arbitrary.
Iterative step: For k ≥ 0 let

xk+1 = PΩ

Ã
xk + γ

Ã
tX
i=1

αi
¡
PCi(x

k)− xk
¢
+

rX
j=1

βjA
T
¡
PQj(Ax

k)−Axk
¢!!

,

(21)

where γ ∈ (0, 2/L), L =
Pt

i=1 αi + λ
Pr

j=1 βj and λ is the spectral radius of
the matrix ATA.

Our alternative convergence proof, based on the formulations presented
above, now follows.

Theorem 8 [14, Theorem 3] Let Ci, i = 1, 2, . . . , t and Qj, j = 1, 2, . . . , r
be nonempty closed convex sets in Rn and Rm, respectively, let Ω ⊆ Rn

be a nonempty closed convex set, and let A be an m × n real matrix. If
αi, i = 1, 2, . . . , t and βj, j = 1, 2, . . . , r are some positive scalars, and
γ ∈ (0, 2/L) where L =

Pt
i=1 αi + λ

Pr
j=1 βj then any sequence {xk}∞k=0,

generated by Algorithm 7, converges to a minimizer of the function (20) if
such a minimizer exists.

Proof. Applying Byrne’s result [6, Theorem 2.1] to the problem (17)
with the algorithm (16) the proof follows.

3 A perturbed projection method

In this section we derive a perturbed projection method for the MSSFP. Our
work is based on Santos and Scheimberg [25] who suggested replacing each
nonempty closed convex set of the convex feasibility problem by a convergent
sequence of supersets. If such supersets can be constructed with reasonable
efforts and if projecting onto them is simpler then projecting onto the original
convex sets then a perturbed algorithm becomes useful. Here we devise an
algorithm for the CMSSFP, based on Algorithm 7. We will need the following
definitions.

Definition 9 (i) Let N and {Nk}∞k=0, be operators on Rn. If for all x ∈ Rn,
limk→∞ kNk(x)−N(x)k = 0 then we say that {Nk}∞k=0 converges to N .
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(ii) Given any ρ ≥ 0, the ρ-distance between two operators N1 and N2 on
Rn is defined by

Dρ(N1, N2) := sup{kN1(x)−N2(x)k | kxk ≤ ρ}. (22)

The following notion of convergence of sequences of sets in Rn is called
Mosco-convergence (see, e.g., [2]).

Definition 10 Let C and {Ck}∞k=0 be a subset and a sequence of subsets of
Rn, respectively. The sequence {Ck}∞k=0 is said to be Mosco-convergent to
C, denoted by Ck

M→ C, if
(i) for every x ∈ C, there exists a sequence {xk}∞k=0 with xk ∈ Ck for all

k = 0, 1, 2, . . . , such that, limk→∞ xk = x, and
(ii) for every subsequence

©
xkj
ª∞
j=0

with xkj ∈ Ckj for all j = 0, 1, 2, . . . ,
such that limj→∞ xkj = x one has x ∈ C.

Using the notation NCCS(Rn) for the family of nonempty closed convex
subsets of Rn, let C and Ck, for k = 0, 1, 2, . . . , belong to NCCS(Rn). If
the sequence {Ck}∞k=0 converges to C in the Mosco sense, then the sequence
of projections {PCk}

∞
k=0 converges to PC (see, e.g., [2, Lemma 4.2]).

Definition 11 Let C1 and C2 belong to NCCS(Rn). The ρ-distance between
C1 and C2 is defined by

dρ(C1, C2) := sup{kPC1(x)− PC2(x)k | kxk ≤ ρ}. (23)

The following theorem which generalizes the Krasnoselskii—Mann (KM)
theorem (see, e.g., [31, Theorem 2.1]) is necessary for our convergence anal-
ysis.

Theorem 12 Let N and Nk, for k = 0, 1, 2, . . . , be nonexpansive operators
on a Hilbert space H, with limk→∞Nk = N and let {εk}∞k=0 be a sequence in
(0, 1) satisfying

∞X
k=0

εk(1− εk) = +∞. (24)

Then the sequence
©
xk
ª∞
k=0
, defined by the iterative step

xk+1 = (1− εk)x
k + εkNk(x

k) (25)
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converges weakly to a fixed point of N , provided that
∞P
k=0

εkDρ(Nk, N) < +∞
for any ρ > 0, whenever such fixed points exist.

Now we return to the CMSSFP. Let Ωk and Ω be sets in NCCS(Rn),

such that, Ωk
M→ Ω as k → ∞. Let Ci and Ci,k be sets in NCCS(Rn), for

i = 1, 2, . . . , t and Qj and Qj,k
be sets in NCCS(Rm), for j = 1, 2, . . . , r, such

that, Ci,k
M→ Ci, and Qj,k

M→ Qj as k →∞. Define the operators

N(x) := PΩ

(
x+ s

Ã
tX
i=1

αi(PCi(x)− x) +
rX
j=1

βjA
T (PQj(Ax)−Ax)

!)
,

(26)

Nk(x) := PΩk

(
x+ s

Ã
tX
i=1

αi(PCi,k(x)− x) +
rX
j=1

βjA
T (PQj,k(Ax)−Ax)

!)
.

(27)

From [14, Theorem 2] we know that the operator

tX
i=1

αi(PCi − I) +
rX
j=1

βjA
T (PQj − I)A (28)

is Lipschitz continuous with Lipschitz constant L =
tP
i=1

αi + λ
rP
j=1

βj, where

λ is the spectral radius of ATA. Therefore, it is ν-inverse strongly monotone
(ν-ism) with ν = 1/L (see (40) in the Appendix), and so are the operators
tP
i=1

αi(PCi,k−I)+
Pr

j=1 βjA
T (PQj,k−I)A, for k = 0, 1, 2, . . . . Combining these

facts with [31, Proposition 2.1], and using Definition 16 in the Appendix, we
obtain the following conclusion.

Lemma 13 Let Ωk and Ω be sets in NCCS(Rn), such that, Ωk
M→ Ω as

k → ∞. Let Ci and Ci,k be sets in NCCS(Rn), for i = 1, 2, . . . , t and Qj
and Q

j,k
be sets in NCCS(Rm), for j = 1, 2, . . . , r, such that Ci,k

M→ Ci, and

Q
j,k

M→ Qj as k → ∞. Then the operators N and Nk, defined in (26) and
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(27), are nonexpansive operators for 0 < s < 2/L, where L =
tP
i=1

αi+λ
rP
j=1

βj

and λ is the spectral radius of ATA. Moreover, the operator sequence {Nk}∞k=0
converges to N.

Algorithm 14 The perturbed projection algorithm for the CMSSFP
Initialization: Let x0 ∈ Rn be arbitrary.
Iterative step: For k ≥ 0, given the current iterate xk, calculate the

next iterate xk+1 by

xk+1 = (1− εk)x
k + εkNk(x

k), (29)

where Nk and εk are as defined above.

The next theorem provides a convergence result for this algorithm.

Theorem 15 If the assumptions of Lemma 13 are satisfied and εk ∈ (0, 1)
for k = 0, 1, 2, . . . , then any sequence

©
xk
ª∞
k=0
, generated by Algorithm 14,

converges to a fixed point of N , provided that such fixed point exists and that

∞X
k=0

εk

(
d_ρ(Ωk,Ω) + s

Ã
tX
i=1

αid_ρ(Ci,k, Ci) + λ1/2
rX
j=1

βjd_ρ(Qj,k, Qj)

!)
<∞

(30)

for any
_
ρ > 0, and any {εk}∞k=0 for which

∞P
k=0

εk(1− εk) = +∞.

Proof. Denote

yk := x+ s

Ã
tX
i=1

αi(PCi,k(x)− x) +
rX
j=1

βjA
T (PQj,k(Ax)−Ax)

!
(31)

and

y := x+ s

Ã
tX
i=1

αi(PCi(x)− x) +
rX
j=1

βjA
T (PQj(Ax)−Ax)

!
. (32)

For any x ∈ Rn with kxk ≤ ρ, ρ > 0, we have

kNk(x)−N(x)k =
°°PΩk(yk)− PΩ(y)°°

≤
°°PΩk(yk)− PΩk(y)°°+ kPΩk(y)− PΩ(y)k . (33)
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By the nonexpansiveness of orthogonal projections, we obtain°°PΩk(yk)− PΩk(y)°° ≤ s°°yk − y°° . (34)

Substituting (31) and (32) into (33) and using (34) we get

kNk(x)−N(x)k ≤ s
Ã

tX
i=1

αi
°°PCi,k(x)− PCi(x)°°

+
rX
j=1

βj
°°AT (PQj,k(Ax)− PQj(Ax))°°

!
+ kPΩk(y)− PΩ(y)k . (35)

Applying to the norm in the second summand above the well-known relation
hBx, xi ≤ ρ(B) kxk2 , which holds for any matrix B and its spectral radius
ρ(B), we obtain

kNk(x)−N(x)k ≤ s
Ã

tX
i=1

αi
°°PCi,k(x)− PCi(x)°°

+ λ1/2
rX
j=1

βj
°°PQj,k(Ax)− PQj(Ax)°°

!
+ kPΩk(y)− PΩ(y)k . (36)

Finally, from (22) and (23) we obtain

Dρ(Nk, N) ≤ d_ρ(Ωk,Ω) + s
Ã

tX
i=1

αid_ρ(Ci,k, Ci) + λ1/2
rX
j=1

βjd_ρ(Qj,k, Qj)

!
,

(37)

where
_
ρ ≥ max (kyk , kAxk , kyk) . Therefore, from Theorem 12 and (30) the

result follows.
The last theorem shows that any sequence generated by Algorithm 14

converges to a minimizer of the function (20) over the set Ω, provided that
such minimizers exist, just as in the case of Algorithm 7. Zhao and Yang
in [31] developed a perturbed projections method for the SFP based on the
CQ-algorithm. Their method can be viewed as a special case of Algorithm
14.
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Appendix: Applying averaged operators
In this Appendix we furnish an alternative and shorter proof of Yang’s

convergence result [28, Theorem 1], that uses properties of averaged opera-
tors. To the best of our knowledge, the term “averaged mapping” to describe
operators of the form T = (1 − α)I + αN , was first used by Reich and co-
workers [1, 4], see also Reich [24]. However, in this route we are forced to
make an additional assumption on the two-sets-SFP that is not present in
Yang’s work and which we are unable to get rid of at this time. The addi-
tional assumption is that the solution set Θ of the two-sets-SFP must have
a nonempty interior, i.e.,

intΘ := int {x ∈ C | Ax ∈ Q} 6= ∅. (38)

In the sequel we use definitions and results on averaged operators and their
properties as they appear in Bauschke and Borwein [2] and in Byrne [7],
which are also sources for references on the subject.

Definition 16 An operator N : Rn → Rn is called nonexpansive (abbrevi-
ated, ne) if kN(x)−N(y)k ≤ kx− yk , for all x and y in Rn.

Definition 17 Given an ne operator N, let T := (1 − α)I + αN for some
α ∈ (0, 1). The operator T is called averaged operator (abbreviated, av).

Lemma 18 If A and B are av then T := AB is av.

Any operator T is related to its complement G = I − T by

kx− yk2 − kT (x)− T (y)k2 = 2 hG(x)−G(y), x− yi− kG(x)−G(y)k2 .
(39)

An operatorG is called ν−inverse strongly monotone ( ν-ism) (see, e.g., [20])
if there is a ν > 0, such that,

hG(x)−G(y), x− yi ≥ ν kG(x)−G(y)k2 . (40)
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From (39) follows that N is ne if and only if its complement G = I −N is a
(1/2)-ism. It is also true that if G is a ν-ism and γ > 0 than the operator
γG is a (ν/γ)-ism.

Lemma 19 [7, Lemma 2.1] An operator T is av if and only if its complement
G = I − T is a ν-ism for some ν > 1/2.

Theorem 20 If (38) holds then any sequence
©
xk
ª∞
k=0
, generated by Algo-

rithm 3, converges to a solution of the SFP.

Proof. Define the following operators, which depend on the sequence©
xk
ª∞
k=0
,

Tk(x) := PCk
¡
x+ γAT (PQk − I)(Ax)

¢
. (41)

From [7, Lemma 8.1] follows that ifA is anm×nmatrix whose spectral radius
is λ and if Φ is a nonempty closed convex set, then for every γ ∈ (0, 2/λ) the
operator I + γAT (PΦ − I)A is av. Therefore, Lemma 18 shows that every
operator Tk is av with

Θ ⊆ Fix(Tk), (42)

for all k = 0, 1, . . . , where Fix stands for the fixed points set. Since Tk is av,
there is an ne operatorNk such that, for some α ∈ (0, 1), Tk = (1−α)I+αNk.
Taking a z ∈ Θ and using (42) we have Tk(z) = z. Denoting Gk = I − Tk we
get, from (39),°°z − xk°°2 − °°Tk(z)− xk+1°°2 = 2 ­Gk(z)−Gk(xk), z − xk®

−
°°Gk(z)−Gk(xk)°°2 . (43)

Lemma 19 guarantees that Gk is a (1/2)α-ism, thus, we have°°z − xk°°2 − °°z − xk+1°°2 ≥ ((1/α)− 1)°°xk − xk+1°°2 . (44)

Therefore, a sequence
©
xk
ª∞
k=0
, generated by Algorithm 3, is Fejér-monotone

with respect to Θ. Then, from the assumption (38) and [2, Lemma 2.16]
follows that

©
xk
ª∞
k=0

converges to some x∗ ∈ Rn.
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To complete the proof, we show that x∗ ∈ Θ by verifying that c(x∗) = 0
and q(Ax∗) = 0, where c and q are defined in (14) and (15), respectively. To
see that q(Ax∗) = 0, rewrite (44) as°°z − xk°°2 − °°z − xk+1°°2 ≥ ¡λγ2 − 2γ¢ °°(PQk − I)(Axk)°°2 . (45)

The left-hand side of the last inequality tends to 0 as k →∞, hence

lim
k→∞

°°(PQk − I)(Axk)°° = lim
k→∞

¯̄
q(Axk)

¯̄
kηkk = 0. (46)

The sequence
©°°ηk°°ª∞

k=0
, where ηk are the subgradients defined in (10), is

bounded by [2, Proposition 7.8], therefore, q(Ax∗) = 0. To see that c(x∗) = 0
denote

ϕk := γAT (PQk − I)(Axk), (47)

so that the iterative step (8) becomes

xk+1 = PCk
¡
xk + ϕk

¢
, (48)

where Ck is the half-space (9). Calculating the projection we obtain

xk+1 = xk + ϕk −
¡
c(xk + ϕk) +

­
ξk,ϕk

®¢ ³
ξk/

°°ξk°°2´ , (49)

where ξk are the subgradients defined in (9). In (49) we have: (i) the sequence©
ϕk
ª∞
k=0

tends to zero by (46) and (47), (ii) the Schwartz inequality shows
that

lim
k→∞

­
ξk,ϕk

®³
ξk/

°°ξk°°2´ = 0, (50)

(iii)
©
xk
ª∞
k=0

converges to x∗, as shown above, and (iv)

lim
k→∞

c(xk + ϕk) = c(x∗). (51)

Therefore, c(x∗) = 0.
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