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An algorithmic scheme for the solution of convex feasibility problems is proposed in
which the end-points of strings of sequential projections onto the constraints are averaged.
The scheme, employing Bregman projections, is analyzed with the aid of an extended
product space formalism. For the case of orthogonal projections we give also a relaxed
version. Along with the well-known purely sequential and fully simultaneous cases, the
new scheme includes many other inherently parallel algorithmic options depending on
the choice of strings. Convergence in the consistent case is proven and an application to
optimization over linear inequalities is given.

1. INTRODUCTION

In this paper we present and study a new algorithmic scheme for solving the convex
feasibility problem of finding a point x* in the nonempty intersection C' = N*, C; of finitely
many closed and convex sets C; in the Euclidean space R". Algorithmic schemes for this
problem are, in general, either sequential or simultaneous or can also be block-iterative
(see, e.g., Censor and Zenios [15, Section 1.3] for a classification of projection algorithms
into such classes, and the review paper of Bauschke and Borwein [3] for a variety of specific
algorithms of these kinds).

We now explain these terms in the framework of the algorithmic scheme proposed in
this paper. For t = 1,2,..., M, let the string I; be an ordered subset of {1,2,...,m} of
the form

Iy = (Ziﬂzéﬂilfn(t))? (1)
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with m(¢) the number of elements in ;. We will assume that, for any ¢, the elements of I
are distinct from each other; however, the extension of all that we say below to the case
without this assumption is trivial (it only complicates the notation). Suppose that there
is a set S C R" such that there are operators Ry, Rs, ..., R,, mapping S into S and an
operator R which maps S™ into S.

Algorithmic Scheme
Initialization: (%) € S is arbitrary.

Iterative Step: given the current iterate (¥,
(i) calculate, for all t =1,2,..., M,

Ttx(k) = Rit

m(t)

(ii) and then calculate

For every t = 1,2,..., M, this algorithmic scheme applies to 2(*) successively the opera-
tors whose indices belong to the tth string. This can be done in parallel for all strings and
then the operator R maps all end-points onto the next iterate z(*+Y. This is indeed an al-
gorithm provided that the operators { R;}™, and R all have algorithmic implementations.
In this framework we get a sequential algorithm by the choice M = 1and I; = (1,2,...,m)
and a simultaneous algorithm by the choice M = m and I, = (¢), t =1,2,..., M.

We demonstrate the underlying idea of our algorithmic scheme with the aid of Figure 1.
For simplicity, we take the convex sets to be hyperplanes, denoted by H,, Hy, H3, Hy, Hs,
and Hg, and assume all operators { R;} to be orthogonal projections onto the hyperplanes.
The operator R is taken as a convex combination

M
R(z', 2%, ..., 2M) :Zwtxt, (4)
t=1

with w, > 0, forall t = 1,2,..., M, and 3 w;, = 1.

Figure 1(a) depicts a purely sequential algorithm. This is the so-called POCS (Projec-
tions Onto Convex Sets) algorithm which coincides, for the case of hyperplanes, with the
Kaczmarz algorithm, see, e.g., Algorithms 5.2.1 and 5.4.3, respectively, in [15] and Gubin,
Polyak and Raik [26].

The fully simultaneous algorithm appears in Figure 1(b). With orthogonal reflections
instead of orthogonal projections it was first proposed, by Cimmino [16], for solving linear
equations. Here the current iterate z(*) is projected on all sets simultaneously and the
next iterate z(**1) is a convex combination of the projected points.

In Figure 1(c) we show how a simple averaging of successive projections (as opposed
to averaging of parallel projections in Figure 1(b)) works. In this case M = m and
I, =(1,2,...,t), for t =1,2,..., M. This scheme, appearing in Bauschke and Borwein
[3], inspired our proposed Algorithmic Scheme whose action is demonstrated in Figure
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Figure 1. (a) Sequential projections. (b) Fully simultaneous projections. (c) Averaging
sequential projections. (d) The new scheme: combining end-points of sequential strings.



1(d). It averages, via convex combinations, the end-points obtained from strings of se-
quential projections. This proposed scheme offers a variety of options for steering the
iterates towards a solution of the convex feasibility problem. It is an inherently paral-
lel scheme in that its mathematical formulation is parallel (like the fully simultaneous
method mentioned above). We use this term to contrast such algorithms with others
which are sequential in their mathematical formulation but can, sometimes, be imple-
mented in a parallel fashion based on appropriate model decomposition (i.e., depending
on the structure of the underlying problem). Being inherently parallel, our algorithmic
scheme enables flexibility in the actual manner of implementation on a parallel machine.

We have been able to prove convergence of the Algorithmic Scheme for two special
cases. In both cases it is assumed that (i) C NS # § (where C = N™,C; and S is the
closure of S), (ii) every element of {1,2,...,m} appears in at least one of the strings I,
and (iii) all weights w; associated with the operator R are positive real numbers which
sum up to one.

Case I. Each R; is the Bregman projection onto C; with respect to a Bregman function
f with zone S and the operator R of (3) is a generalized convex combination, with weights
wy, to be defined in Section 2.1.

Case II. S = R" and, for i = 1,2,...,m, Rjx =z + 0;(Pc,x — x), with 0 < 0; < 2,
where Pg, is the orthogonal projection onto C; and R is defined by (4).

A generalization of this operator R was used by Censor and Elfving [12] and Censor
and Reich [14] in fully simultaneous algorithms which employ Bregman projections. Our
proof of convergence for Case I is based on adopting a product space formalism which is
motivated by, but is somewhat different from, the product space formalism of Pierra [31].
For the proof of Case I we use results of Elsner, Koltracht and Neumann [25] and Censor
and Reich [14].

The details and proofs of convergence are given in Section 2. In Section 3 we describe
an application to optimization of a Bregman function over linear equalities. We conclude
with a discussion, including some open problems in Section 4. The Appendix in Section
5 describes the role of Bregman projections in convex feasibility problems.

2. PROOFS OF CONVERGENCE

We consider the convex feasibility problem of finding z* € C' = N",C; where, C; C R",
for all © = 1,2,...,m, are closed convex sets and C' # (). The two Cases I and II,
mentioned in the introduction, are presented in detail and their convergence is proven.
For both cases we make the following assumptions.

Assumption 1. C' NS # () where S is the closure of S, the domain of the algorithmic
operators Ry, Ry, ..., Ry.

Assumption 2. Every element of {1,2,...,m} appears in at least one of the strings I,
constructed as in (1).

Assumption 3. The weights {w;}, associated with the operator R are positive real
numbers and M w, = 1.

2.1. Case I: An Algorithm for Bregman Projections
Let B(S) denote the family of Bregman functions with zone S C R™ (see, e.g., Censor
and Elfving [12], Censor and Reich [14], or Censor and Zenios [15] for definitions, basic



properties and relevant references). For a discussion of the role of Bregman projections
in algorithms for convex feasibility problems we refer the reader to the Appendix at the
end of the paper.

In Case I we define, for i = 1,2,...,m, the algorithmic operator R;x to be the Bregman
projection, denoted by Pé[ix, of = onto the set C; with respect to a Bregman function f.

Recall that the generalized distance Dy : SxS CR™ 3 Ris
Dy(y,x) = f(y) — flz) = (V[f(z),y — ), (5)

where (-,-) is the standard inner product in R™. The Bregman projection Péx onto a
closed convex set () is then defined by

P(’;x = argmin{D;(y,z) |y € QN S}. (6)
Such a projection exists and is unique, if Q@ N'S # (), see [15, Lemma 2.1.2].
Following Censor and Reich [14] let us call an x which satisfies, for (z',z?%,...,2") €
SM
M
Vi)=Y wVf), (7)
t=1
a generalized convexr combination of (z', 22, ..., x™) with respect to f. We further assume:

Assumption 4. For any & = (z',2%,...,2™) € S™ and any set of weights {w;}M,, as
in Assumption 3, there is a unique z in S which satisfies (7).

The operator R is defined by letting Ra be the x whose existence and uniqueness is
guaranteed by Assumption 4. The applicability of the algorithm depends (similarly to
the applicability of its predecessors in [12] and [14]) on the ability to invert the gradient
V f explicitly. If the Bregman function f is essentially smooth, then V f is a one-to-one
mapping with continuous inverse (V f)~!, see, e.g., Rockafellar [33, Corollary 26.3.1].

We now prove convergence of the Algorithmic Scheme in Case I.

Theorem 2.1 Let f € B(S) be a Bregman function and let C; C R™ be given closed
convez sets, for 1 =1,2,...,m, and define C = N>,C;. If chiix €S for any x € S and
Assumptions 1—4 hold, then any sequence {IL’(k)}kZO, generated by the Algorithmic Scheme
for Case I, converges to a point x* € C'N S.

Proof. Let V = R" and consider the product space V.=VM =V x V x ... x V in
which, for any € € V, ¢ = (2',2%, ..., M) with 2t € V, for t = 1,2,..., M. The scalar
product in V is denoted and defined by

M

((2,y) = (o' 9", (8)

t=1

and we define in V', for j = 1,2,...,m, the product sets

M
C; =[G (9)
t=1



with C; depending on the strings I; as follows:

Cit :{ g ij;ln(i)+1mn(;()t)+2m (10)
Let

A={z|z=(z,z,...,2), x €V} (11)

and

§: VoA, §x)=(z,x,...,1). (12)

The set A is called the diagonal set and the mapping ¢ is the diagonal mapping. In view
of Assumption 2, the following equivalence between the convex feasibility problems in V'
and V is obvious:

z* € C if and only if §(z*) € (N}L,C;) NA. (13)
The proof is based on examining Bregman’s sequential projections algorithm (see Breg-
man [7, Theorem 1] or Censor and Zenios [15, Algorithm 5.8.1]) applied to the convex

feasibility problem on the right-hand side of (13) in the product space V. This is done as
follows. With weights {w;}},, satisfying Assumption 3, we construct the function

F(z)=) wf(z"). (14)

By [12, Lemma 3.1], F' is a Bregman function with zone S in the product space, i.e.,
F € B(S), where § = S™. Further, denoting by Pgaz the Bregman projection of a point
x € V onto a closed convex set Q = Q1 X Q2 X -+ X Qpr € V, with respect to F', we

can express it, by [12, Lemma 4.1], as
F
Poe = (P}, 2", PL2? - P} ™). (15)
From (2), (9), (10) and (15) we obtain
PE - PE PE 2= (T2 Ta?, - Ty, (16)
Next we show that, for every x € V,
F
Paz=6(x), (17)
with x = R(x). By (6), (11) and (12), the = which satisfies (17) is

v = argmin{D p(3(y), ) [ d(y) € S}, (18)



where D (d(y), x) is the Bregman distance in V' with respect to F. Noting that
VF(z) = (i Vf(z"),woVf(a?),...,wuVfa)), (19)
we have, by (5), (8) and (14), that

Dp(3(y),2) =) wi(fy) = f(=") = (Vf(z"),y —a")). (20)

Since a Bregman distance is convex with respect to its first (vector) variable (see, e.g.,
[15, Chapter 2]), at the point x where (20) achieves its minimum, the gradient (with
respect to y) must be zero. Thus, differentiating the right-hand side of (20), we get that
this x must satisfy (7) and, therefore, by Assumption 4, it is in fact R(x).

The convergence ([7, Theorem 1] or [15, Algorithm 5.8.1]) of Bregman’s sequential
algorithm guarantees, by taking £(® = §(z(®) with (¥ € S and, for k > 0, iterating

k+1) _ pF pF  pF pF (k)
xr _PAPCm P02P01m s (21)

that lim_oz® = 2* € (N7,C;) N A. Observing (3), (16), and the fact that the = of
(17) is R(z), we get by induction that, for all & > 0, *) = §(z®)). By (13), this implies
that limg_o2z® =2* € C. B

2.2. Case II: An Algorithm for Relaxed Orthogonal Projections

The framework and method of proof used in the previous subsection do not let us
introduce relaxation parameters into the algorithm. However, drawing on findings of
Elsner, Koltracht and Neumann [25] and of Censor and Reich [14] we do so for the special
case of orthogonal projections.

In Case II we define, for i =1,2,...,m, the algorithmic operators

Rix = x + 0;(Po,x — x), (22)

where Pg,x is the orthogonal projection of z onto the set C; and 6, are periodic relaxzation
parameters. By this we mean that the 6; are fixed for each set C; as in Eggermont,
Herman and Lent [23, Theorem 1.2]. The algorithmic operator R is defined by (4) with
weights w; as in Assumption 3. Equation (4) can be obtained from (7) by choosing the
Bregman function f(z) = ||z||3 with zone S = R". In this case Pgi = P, is the orthogonal
projection and the Bregman distance is Dy (y, x) = ||y —z||3, see, e.g., [15, Example 2.1.1].
The convergence theorem for the Algorithmic Scheme in Case II now follows.

Theorem 2.2 [f Assumptions 1-3 hold and if, for alli =1,2,...,m, we have 0 < 6; < 2,
then any sequence {IL’(k)}kZO, generated by the Algorithmic Scheme for Case II, converges
to a point x* € C.

Proof. By [25, Example 2] a relaxed projection operator of the form (22) is strictly
nonexpansive with respect to the Euclidean norm, for any 0 < ; < 2. By this we mean
that [25, Definition 2], for any pair z,y € R™,

either ||Rjx — Ryl < ||z —yl|l2 or Rz — Ry=uz—y. (23)



Further, since every finite composition of strictly nonexpansive operators is a strictly non-
expansive operator [25, p. 307], any finite composition of relaxed projections operators of
the form (2) is strictly nonexpansive. Consequently, each such Tj is also a paracontracting
operator in the sense of [25, Definition 1]), namely, 7; : R® — R is continuous and for
any fized point y € R" of Ty, i.e., Tyy = y, and any z € R"”

| Ty —ylla < ||z —yll2 or Tz == (24)

From Censor and Reich [14, Section 4] we then conclude the convergence of any sequence
generated by

M
g+ — Zthtl‘(k), (25)
t=1

to a common fixed point z* of the family {7;}Y,, which in our case means convergence
to a feasible point in C'. This is so because, for each t = 1,2,..., M, T; is a product of
the paracontractions R;, given by (2.18), for all i € I;, and [25, Corollary 1] then implies
that z* is a fixed point of each R;, thus of each Pg,. The periodic relaxation and the
fixed strings guarantee the finite number of paracontractions, thus enabling the use of the
convergence results of [14]. W

3. APPLICATION TO OPTIMIZATION OVER LINEAR EQUALITIES

In this application, we use the fact that the Algorithmic Scheme for Case I solves the
convex feasibility problem to prove its nature as an optimization problem solver. Let f
be a Bregman function with zone S C R", let A be a matrix and let d € R(A) be a vector
in the range of A. Consider the following optimization problem

min{f(z) | x € S, Az =d}. (26)

We will show that the Algorithmic Scheme for Case I can be used to solve this problem.
Let the matrix A be of order mxn, withm = " | ;, and partition it into m row-blocks
of sizes v; as follows,

AT = (AT, AL, ..., AT), (27)
where we denote vector and matrix transposition by 7, and let

Ci={zeR"| Aixz=d,;, d; e R"}, i=1,2,...,m, (28)
where d” = (d7,d},...,d"). Partitioning a system of linear equations in this way has
been shown to be useful in real-world problems, particularly for very large and sparse

matrices, see, e.g., Eggermont, Herman and Lent [23].
We prove the following optimization result.



Theorem 3.1 If f € B(S) satisfies the assumptions in Theorem 2.1 and
V(=) e R(AT), (29)

then the Algorithmic Scheme for Case I, applied to the sets C; of (28), generates a sequence
which converges to a solution x* of (26).

Proof. Applying the Algorithmic Scheme for Case I to the convex feasibility problem
with the sets (28), convergence towards a point z* € C' N S is guaranteed by Theorem
2.1. Defining

Z ={r €S |3z € R™such that Vf(z) = A" 2}, (30)
and
U={reR"| Axr =d, v € S}, (31)

we will use the result in [7, Lemma 3], which says that if z* € U N Z then z* is a solution
of (26). Therefore, we show now that 2¥) € Z, for all k > 0, from which 2* € Z follows.

For any f € B(S) and C = {z € R" | Az = d} such that P/z belongs to S, for any
x € S, it is the case that Vf(Plz) — Vf(z) is in the range of A”. This follows from
[12, Lemma 6.1] (which extends [15, Lemma 2.2.1]). Using this and the fact that, for all
j=1,2,...,m(t),

R(A%) C R(A"). (3)
we deduce that
VH(Ta®) = v f (W) (33)

is in the range of AT. Multiplying (33) by w; and summing over ¢ we obtain, using (7)
M
and ) ,~, w; = 1, that

Vf(®) = v (W) e R(AT). (34)

Using the initialization (29), we do induction on k with (34) and obtain that z*) € Z, for
allt>0.1

4. DISCUSSION AND SOME OPEN PROBLEMS

All algorithms and results presented here apply, in particular to orthogonal unrelaxed
projections, because those are a special case of Bregman projections (see the comments
made before Theorem 2.2) as well as of the operators in (22). Thus our Algorithmic
Scheme generalizes the method described by Bauschke and Borwein [3, Examples 2.14
and 2.20] where they define an operator T = L(P, + PP, +--- 4 P,,--- P,P;), with P,
orthogonal projections onto given sets, for 7 = 1,2,...,m, and show weak convergence in
Hilbert space of {T*z(®},- to some fixed point of T, for every z(©).
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Earlier work concerning the convergence of (random) products of averaged mappings is
due to Reich and coworkers; see, e.g., Dye and Reich [21], Dye and Reich [20, Theorem
5] and Dye et al. [22, Theorem 5]. In the infinite-dimensional case they require some
conditions on the fixed point sets of the mappings which are not needed in the finite-
dimensional case. The above-mentioned method of Bauschke and Borwein can also be
understood by using the results of Baillon, Bruck and Reich [6, Theorems 1.2 and 2.1],
Bruck and Reich [9, Corollary 1.3], and Reich [32, Proposition 2.4]. A more recent study
is Bauschke [2].

At the extremes of the “spectrum of algorithms,” derivable from our Algorithmic
Scheme, are the generically sequential method, which uses one set at a time, and the fully
simultaneous algorithm, which employs all sets at each iteration. The “block-iterative
projections” (BIP) scheme of Aharoni and Censor [1] (see also Butnariu and Censor [10],
Bauschke and Borwein [3], Bauschke, Borwein and Lewis [5] and Elfving [24]) also has
the sequential and the fully simultaneous methods as its extremes in terms of block struc-
tures. The question whether there are any other relationships between the BIP scheme
of [1] and the Algorithmic Scheme of this paper is of theoretical interest. However, the
current lack of an answer to it does not diminish the value of the proposed Algorithmic
Scheme, because its new algorithmic structure gives users a tool to design algorithms that
will average sequential strings of projections.

We have not as yet investigated the behavior of the Algorithmic Scheme, or special
instances of it, in the inconsistent case when the intersection C' = N>, C; is empty. For
results on the behavior of the fully simultaneous algorithm with orthogonal projections
in the inconsistent case see, e.g., Combettes [18] or Iusem and De Pierro [27]. Another
way to treat possible inconsistencies is to reformulate the constraints as ¢ < Az < d or
||Az—d|]2 < €, see e.g. [15]. Also, variable iteration-dependent relaxation parameters and
variable iteration-dependent string constructions could be interesting future extensions.

The practical performance of specific algorithms derived from the Algorithmic Scheme
needs still to be evaluated in applications and on parallel machines.

5. APPENDIX: THE ROLE OF BREGMAN PROJECTIONS

Bregman generalized distances and generalized projections are instrumental in several
areas of mathematical optimization theory. Their introduction by Bregman [7] was ini-
tially followed by the works of Censor and Lent [13] and De Pierro and Iusem [19] and,
subsequently, lead to their use in special-purpose minimization methods, in the proximal
point minimization method, and for stochastic feasibility problems. These generalized
distances and projections were also defined in non-Hilbertian Banach spaces, where, in
the absence of orthogonal projections, they can lead to simpler formulas for projections.

In the Euclidean space, where our present results are formulated, Bregman’s method for
minimizing a convex function (with certain properties) subject to linear inequality con-
straints employs Bregman projections onto the half-spaces represented by the constraints,
see, e.g., [13,19]. Recently the extension of this minimization method to nonlinear convex
constraints has been identified with the Han-Dykstra projection algorithm for finding the
projection of a point onto an intersection of closed convex sets, see Bregman, Censor and
Reich [8].
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It looks as if there might be no point in using non-orthogonal projections for solving the
convex feasibility problem in R” since they are generally not easier to compute. But this
is not always the case. In [29,30] Shamir and co-workers have used the multiprojection
method of Censor and Elfving [12] to solve filter design problems in image restoration
and image recovery posed as convex feasibility problems. They took advantage of that
algorithm’s flexibility to employ Bregman projections with respect to different Bregman
functions within the same algorithmic run.

Another example is the seminal paper by Csiszar and Tusnddy [17], where the central
procedure uses alternating entropy projections onto convex sets. In their “alternating
minimization procedure,” they alternate between minimizing over the first and second
argument of the Bregman distance (Kullback-Leibler divergence, in fact). These diver-
gences are nothing but the generalized Bregman distances obtained by using the negative
of Shannon’s entropy as the underlying Bregman function.

Recent studies about Bregman projections (Kiwiel [28]), Bregman/Legendre projections
(Bauschke and Borwein [4]), and averaged entropic projections (Butnariu, Censor and
Reich [11]) — and their uses for convex feasibility problems in R" discussed therein — attest
to the continued (theoretical and practical) interest in employing Bregman projections in
projection methods for convex feasibility problems. This is why we formulated and studied
Case I of our Algorithmic Scheme within the framework of such projections.
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