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An algorithmic scheme for the solution of convex feasibility problems is proposed in
which the end�points of strings of sequential projections onto the constraints are averaged�
The scheme� employing Bregman projections� is analyzed with the aid of an extended
product space formalism� For the case of orthogonal projections we give also a relaxed
version� Along with the well�known purely sequential and fully simultaneous cases� the
new scheme includes many other inherently parallel algorithmic options depending on
the choice of strings� Convergence in the consistent case is proven and an application to
optimization over linear inequalities is given�

�� INTRODUCTION

In this paper we present and study a new algorithmic scheme for solving the convex
feasibility problem of 
nding a point x� in the nonempty intersection C � �mi��Ci of 
nitely
many closed and convex sets Ci in the Euclidean space Rn� Algorithmic schemes for this
problem are� in general� either sequential or simultaneous or can also be block�iterative
�see� e�g�� Censor and Zenios ���� Section ���� for a classi
cation of projection algorithms
into such classes� and the review paper of Bauschke and Borwein ��� for a variety of speci
c
algorithms of these kinds��
We now explain these terms in the framework of the algorithmic scheme proposed in

this paper� For t � �� 
� � � � �M� let the string It be an ordered subset of f�� 
� � � � � mg of
the form

It � �it�� i
t
�� � � � � i

t
m�t��� ���
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with m�t� the number of elements in It� We will assume that� for any t� the elements of It
are distinct from each other� however� the extension of all that we say below to the case
without this assumption is trivial �it only complicates the notation�� Suppose that there
is a set S � Rn such that there are operators R�� R�� � � � � Rm mapping S into S and an
operator R which maps SM into S�

Algorithmic Scheme

Initialization� x��� � S is arbitrary�

Iterative Step� given the current iterate x�k��
�i� calculate� for all t � �� 
� � � � �M�

Ttx
�k� � Rit

m�t�
� � � Rit�

Rit�
x�k�� �
�

�ii� and then calculate

x�k��� � R�T�x
�k�� T�x

�k�� � � � � TMx
�k��� ���

For every t � �� 
� � � � �M� this algorithmic scheme applies to x�k� successively the opera�
tors whose indices belong to the tth string� This can be done in parallel for all strings and
then the operator R maps all end�points onto the next iterate x�k���� This is indeed an al�
gorithm provided that the operators fRigmi�� and R all have algorithmic implementations�
In this framework we get a sequential algorithm by the choiceM � � and I� � ��� 
� � � � � m�
and a simultaneous algorithm by the choice M � m and It � �t�� t � �� 
� � � � �M�

We demonstrate the underlying idea of our algorithmic scheme with the aid of Figure ��
For simplicity� we take the convex sets to be hyperplanes� denoted by H�� H�� H�� H�� H	�

and H
� and assume all operators fRig to be orthogonal projections onto the hyperplanes�
The operator R is taken as a convex combination

R�x�� x�� � � � � xM� �
MX
t��

�tx
t� ���

with �t � �� for all t � �� 
� � � � �M� and
PM

t�� �t � ��
Figure ��a� depicts a purely sequential algorithm� This is the so�called POCS �Projec�

tions Onto Convex Sets� algorithm which coincides� for the case of hyperplanes� with the
Kaczmarz algorithm� see� e�g�� Algorithms ��
�� and ������ respectively� in ���� and Gubin�
Polyak and Raik �
���
The fully simultaneous algorithm appears in Figure ��b�� With orthogonal re�ections

instead of orthogonal projections it was 
rst proposed� by Cimmino ����� for solving linear
equations� Here the current iterate x�k� is projected on all sets simultaneously and the
next iterate x�k��� is a convex combination of the projected points�
In Figure ��c� we show how a simple averaging of successive projections �as opposed

to averaging of parallel projections in Figure ��b�� works� In this case M � m and
It � ��� 
� � � � � t�� for t � �� 
� � � � �M� This scheme� appearing in Bauschke and Borwein
���� inspired our proposed Algorithmic Scheme whose action is demonstrated in Figure
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Figure �� �a� Sequential projections� �b� Fully simultaneous projections� �c� Averaging
sequential projections� �d� The new scheme� combining end�points of sequential strings�
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��d�� It averages� via convex combinations� the end�points obtained from strings of se�
quential projections� This proposed scheme o�ers a variety of options for steering the
iterates towards a solution of the convex feasibility problem� It is an inherently paral�
lel scheme in that its mathematical formulation is parallel �like the fully simultaneous
method mentioned above�� We use this term to contrast such algorithms with others
which are sequential in their mathematical formulation but can� sometimes� be imple�
mented in a parallel fashion based on appropriate model decomposition �i�e�� depending
on the structure of the underlying problem�� Being inherently parallel� our algorithmic
scheme enables �exibility in the actual manner of implementation on a parallel machine�
We have been able to prove convergence of the Algorithmic Scheme for two special

cases� In both cases it is assumed that �i� C � S �� � �where C � �mi��Ci and S is the
closure of S�� �ii� every element of f�� 
� � � � � mg appears in at least one of the strings It�
and �iii� all weights �t associated with the operator R are positive real numbers which
sum up to one�
Case I� Each Ri is the Bregman projection onto Ci with respect to a Bregman function

f with zone S and the operator R of ��� is a generalized convex combination� with weights
�t� to be de
ned in Section 
���
Case II� S � Rn and� for i � �� 
� � � � � m� Rix � x � �i�PCix � x�� with � � �i � 
�

where PCi is the orthogonal projection onto Ci and R is de
ned by ����
A generalization of this operator R was used by Censor and Elfving ��
� and Censor

and Reich ���� in fully simultaneous algorithms which employ Bregman projections� Our
proof of convergence for Case I is based on adopting a product space formalism which is
motivated by� but is somewhat di�erent from� the product space formalism of Pierra �����
For the proof of Case II we use results of Elsner� Koltracht and Neumann �
�� and Censor
and Reich �����
The details and proofs of convergence are given in Section 
� In Section � we describe

an application to optimization of a Bregman function over linear equalities� We conclude
with a discussion� including some open problems in Section �� The Appendix in Section
� describes the role of Bregman projections in convex feasibility problems�

�� PROOFS OF CONVERGENCE

We consider the convex feasibility problem of 
nding x� � C � �mi��Ci where� Ci � Rn�

for all i � �� 
� � � � � m� are closed convex sets and C �� �� The two Cases I and II�
mentioned in the introduction� are presented in detail and their convergence is proven�
For both cases we make the following assumptions�
Assumption �� C � S �� � where S is the closure of S� the domain of the algorithmic

operators R�� R�� � � � � Rm�

Assumption �� Every element of f�� 
� � � � � mg appears in at least one of the strings It�
constructed as in ����
Assumption �� The weights f�tgMt�� associated with the operator R are positive real

numbers and
PM

t�� �t � ��

���� Case I� An Algorithm for Bregman Projections

Let B�S� denote the family of Bregman functions with zone S � Rn �see� e�g�� Censor
and Elfving ��
�� Censor and Reich ����� or Censor and Zenios ���� for de
nitions� basic



�

properties and relevant references�� For a discussion of the role of Bregman projections
in algorithms for convex feasibility problems we refer the reader to the Appendix at the
end of the paper�
In Case I we de
ne� for i � �� 
� � � � � m� the algorithmic operator Rix to be the Bregman

projection� denoted by P
f
Ci
x� of x onto the set Ci with respect to a Bregman function f �

Recall that the generalized distance Df � S � S � R�n � R is

Df�y� x� � f�y�� f�x�� hrf�x�� y � xi� ���

where h�� �i is the standard inner product in Rn� The Bregman projection P
f
Qx onto a

closed convex set Q is then de
ned by

P
f
Qx � argminfDf�y� x� j y � Q � Sg� ���

Such a projection exists and is unique� if Q � S �� �� see ���� Lemma 
���
��
Following Censor and Reich ���� let us call an x which satis
es� for �x�� x�� � � � � xM� �

SM �

rf�x� �
MX
t��

�trf�x
t�� ���

a generalized convex combination of �x�� x�� � � � � xM� with respect to f�We further assume�
Assumption �� For any x � �x�� x�� � � � � xM � � SM and any set of weights f�tgMt��� as

in Assumption �� there is a unique x in S which satis
es ����
The operator R is de
ned by letting Rx be the x whose existence and uniqueness is

guaranteed by Assumption �� The applicability of the algorithm depends �similarly to
the applicability of its predecessors in ��
� and ����� on the ability to invert the gradient
rf explicitly� If the Bregman function f is essentially smooth� then rf is a one�to�one
mapping with continuous inverse �rf���� see� e�g�� Rockafellar ���� Corollary 
�������
We now prove convergence of the Algorithmic Scheme in Case I�

Theorem ��� Let f � B�S� be a Bregman function and let Ci � Rn be given closed
convex sets� for i � �� 
� � � � � m� and de�ne C � �mi��Ci� If P

f
Ci
x � S for any x � S and

Assumptions ��� hold� then any sequence fx�k�gk��� generated by the Algorithmic Scheme
for Case I� converges to a point x� � C � S�

Proof� Let V � Rn and consider the product space V � V M � V � V � � � � � V in
which� for any x � V � x � �x�� x�� � � � � xM� with xt � V� for t � �� 
� � � � �M� The scalar
product in V is denoted and de
ned by

hhx�yii �
MX
t��

hxt� yti� �	�

and we de
ne in V � for j � �� 
� � � � � m� the product sets

Cj �
MY
t��

Cj�t� ���
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with Cj�t depending on the strings It as follows�

Cj�t �

�
Citj

� if j � �� 
� � � � � m�t��

V� if j � m�t� � �� m�t� � 
� � � � � m�
����

Let

� � fx j x � �x� x� � � � � x�� x � V g� ����

and

� � V ��� ��x� � �x� x� � � � � x�� ��
�

The set � is called the diagonal set and the mapping � is the diagonal mapping� In view
of Assumption 
� the following equivalence between the convex feasibility problems in V

and V is obvious�

x� � C if and only if ��x�� � ��mj��Cj� ��� ����

The proof is based on examining Bregman�s sequential projections algorithm �see Breg�
man ��� Theorem �� or Censor and Zenios ���� Algorithm ��	���� applied to the convex
feasibility problem on the right�hand side of ���� in the product space V � This is done as
follows� With weights f�tgMt��� satisfying Assumption �� we construct the function

F �x� �
MX
t��

�tf�x
t�� ����

By ��
� Lemma ����� F is a Bregman function with zone S in the product space� i�e��

F � B�S�� where S � SM � Further� denoting by PFQx the Bregman projection of a point

x � V onto a closed convex set Q � Q� � Q� � � � � � QM � V � with respect to F � we
can express it� by ��
� Lemma ����� as

PFQx � �P f
Q�
x�� P

f
Q�
x�� � � � � P f

QM
xM�� ����

From �
�� ���� ���� and ���� we obtain

PFCm
� � �PFC�

PFC�
x � �T�x

�� T�x
�� � � � � TMx

M�� ����

Next we show that� for every x � V �

PF�x � ��x�� ����

with x � R�x�� By ���� ���� and ��
�� the x which satis
es ���� is

x � argminfDF ���y��x� j ��y� � Sg� ��	�
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where DF ���y��x� is the Bregman distance in V with respect to F � Noting that

rF �x� � ���rf�x
��� ��rf�x

��� � � � � �Mrf�x
M��� ����

we have� by ���� �	� and ����� that

DF ���y��x� �
MX
t��

�t�f�y�� f�xt�� hrf�xt�� y � xti�� �
��

Since a Bregman distance is convex with respect to its 
rst �vector� variable �see� e�g��
���� Chapter 
��� at the point x where �
�� achieves its minimum� the gradient �with
respect to y� must be zero� Thus� di�erentiating the right�hand side of �
��� we get that
this x must satisfy ��� and� therefore� by Assumption �� it is in fact R�x��
The convergence ���� Theorem �� or ���� Algorithm ��	���� of Bregman�s sequential

algorithm guarantees� by taking x��� � ��x���� with x��� � S and� for k 	 �� iterating

x�k��� � PF�P
F
Cm

� � �PFC�
PFC�

x�k�� �
��

that limk�� x
�k� � x� � ��mj��Cj� ��� Observing ���� ����� and the fact that the x of

���� is R�x�� we get by induction that� for all k 	 �� x�k� � ��x�k��� By ����� this implies
that limk�� x

�k� � x� � C� �

���� Case II� An Algorithm for Relaxed Orthogonal Projections

The framework and method of proof used in the previous subsection do not let us
introduce relaxation parameters into the algorithm� However� drawing on 
ndings of
Elsner� Koltracht and Neumann �
�� and of Censor and Reich ���� we do so for the special
case of orthogonal projections�
In Case II we de
ne� for i � �� 
� � � � � m� the algorithmic operators

Rix � x� �i�PCix� x�� �

�

where PCix is the orthogonal projection of x onto the set Ci and �i are periodic relaxation
parameters� By this we mean that the �i are 
xed for each set Ci as in Eggermont�
Herman and Lent �
�� Theorem ��
�� The algorithmic operator R is de
ned by ��� with
weights �t as in Assumption �� Equation ��� can be obtained from ��� by choosing the
Bregman function f�x� � jjxjj�� with zone S � Rn� In this case P f

Ci
� PCi is the orthogonal

projection and the Bregman distance is Df �y� x� � jjy�xjj��� see� e�g�� ���� Example 
������
The convergence theorem for the Algorithmic Scheme in Case II now follows�

Theorem ��� If Assumptions ��� hold and if� for all i � �� 
� � � � � m� we have � � �i � 
�
then any sequence fx�k�gk��� generated by the Algorithmic Scheme for Case II� converges
to a point x� � C�

Proof� By �
�� Example 
� a relaxed projection operator of the form �

� is strictly
nonexpansive with respect to the Euclidean norm� for any � � �i � 
� By this we mean
that �
�� De
nition 
�� for any pair x� y � Rn�

either jjRix� Riyjj� � jjx� yjj� or Rix�Riy � x� y� �
��



	

Further� since every 
nite composition of strictly nonexpansive operators is a strictly non�
expansive operator �
�� p� ����� any 
nite composition of relaxed projections operators of
the form �
� is strictly nonexpansive� Consequently� each such Tt is also a paracontracting
operator in the sense of �
�� De
nition ���� namely� Tt � R

n � Rn is continuous and for
any �xed point y � Rn of Tt� i�e�� Tty � y� and any x � Rn

jjTtx� yjj� � jjx� yjj� or Ttx � x� �
��

From Censor and Reich ���� Section �� we then conclude the convergence of any sequence
generated by

x�k��� �
MX
t��

�tTtx
�k�� �
��

to a common 
xed point x� of the family fTtg
M
t��� which in our case means convergence

to a feasible point in C� This is so because� for each t � �� 
� � � � �M� Tt is a product of
the paracontractions Ri� given by �
��	�� for all i � It� and �
�� Corollary �� then implies
that x� is a 
xed point of each Ri� thus of each PCi � The periodic relaxation and the

xed strings guarantee the 
nite number of paracontractions� thus enabling the use of the
convergence results of ����� �

�� APPLICATION TO OPTIMIZATION OVER LINEAR EQUALITIES

In this application� we use the fact that the Algorithmic Scheme for Case I solves the
convex feasibility problem to prove its nature as an optimization problem solver� Let f
be a Bregman function with zone S � Rn� let A be a matrix and let d � R�A� be a vector
in the range of A� Consider the following optimization problem

minff�x� j x � S� Ax � dg� �
��

We will show that the Algorithmic Scheme for Case I can be used to solve this problem�
Let the matrix A be of orderm�n� withm �

Pm

i�� �i� and partition it intom row�blocks
of sizes �i as follows�

AT � �AT
� � A

T
� � � � � � A

T
m�� �
��

where we denote vector and matrix transposition by T� and let

Ci � fx � Rn j Aix � di� di � R
�ig� i � �� 
� � � � � m� �
	�

where dT � �dT� � d
T
� � � � � � d

T
m�� Partitioning a system of linear equations in this way has

been shown to be useful in real�world problems� particularly for very large and sparse
matrices� see� e�g�� Eggermont� Herman and Lent �
���
We prove the following optimization result�
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Theorem ��� If f � B�S� satis�es the assumptions in Theorem ��� and

rf�x���� � R�AT �� �
��

then the Algorithmic Scheme for Case I� applied to the sets Ci of 	�
�� generates a sequence
which converges to a solution x� of 	����

Proof� Applying the Algorithmic Scheme for Case I to the convex feasibility problem
with the sets �
	�� convergence towards a point x� � C � S is guaranteed by Theorem

��� De
ning

Z � fx � S j 
z � Rm such that rf�x� � AT zg� ����

and

U � fx � Rn j Ax � d� x � Sg� ����

we will use the result in ��� Lemma ��� which says that if x� � U �Z then x� is a solution
of �
��� Therefore� we show now that x�k� � Z� for all k 	 �� from which x� � Z follows�
For any f � B�S� and C � fx � Rn j Ax � dg such that P f

Cx belongs to S� for any
x � S� it is the case that rf�P f

Cx� � rf�x� is in the range of AT � This follows from
��
� Lemma ���� �which extends ���� Lemma 
�
����� Using this and the fact that� for all
j � �� 
� � � � � m�t��

R�AT
itj
� � R�AT �� ��
�

we deduce that

rf�Ttx
�k���rf�x�k�� ����

is in the range of AT � Multiplying ���� by �t and summing over t we obtain� using ���
and
PM

t�� �t � �� that

rf�x�k�����rf�x�k�� � R�AT �� ����

Using the initialization �
��� we do induction on k with ���� and obtain that x�k� � Z� for
all k 	 �� �

�� DISCUSSION AND SOME OPEN PROBLEMS

All algorithms and results presented here apply� in particular to orthogonal unrelaxed
projections� because those are a special case of Bregman projections �see the comments
made before Theorem 
�
� as well as of the operators in �

�� Thus our Algorithmic
Scheme generalizes the method described by Bauschke and Borwein ��� Examples 
���
and 
�
�� where they de
ne an operator T � �

m
�P� � P�P� � � � �� Pm � � �P�P��� with Pi

orthogonal projections onto given sets� for i � �� 
� � � � � m� and show weak convergence in
Hilbert space of fT kx���gk�� to some 
xed point of T� for every x����
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Earlier work concerning the convergence of �random� products of averaged mappings is
due to Reich and coworkers� see� e�g�� Dye and Reich �
��� Dye and Reich �
�� Theorem
�� and Dye et al� �

� Theorem ��� In the in
nite�dimensional case they require some
conditions on the 
xed point sets of the mappings which are not needed in the 
nite�
dimensional case� The above�mentioned method of Bauschke and Borwein can also be
understood by using the results of Baillon� Bruck and Reich ��� Theorems ��
 and 
����
Bruck and Reich ��� Corollary ����� and Reich ��
� Proposition 
���� A more recent study
is Bauschke �
��
At the extremes of the �spectrum of algorithms�� derivable from our Algorithmic

Scheme� are the generically sequential method� which uses one set at a time� and the fully
simultaneous algorithm� which employs all sets at each iteration� The �block�iterative
projections� �BIP� scheme of Aharoni and Censor ��� �see also Butnariu and Censor �����
Bauschke and Borwein ���� Bauschke� Borwein and Lewis ��� and Elfving �
��� also has
the sequential and the fully simultaneous methods as its extremes in terms of block struc�
tures� The question whether there are any other relationships between the BIP scheme
of ��� and the Algorithmic Scheme of this paper is of theoretical interest� However� the
current lack of an answer to it does not diminish the value of the proposed Algorithmic
Scheme� because its new algorithmic structure gives users a tool to design algorithms that
will average sequential strings of projections�
We have not as yet investigated the behavior of the Algorithmic Scheme� or special

instances of it� in the inconsistent case when the intersection C � �m
i��Ci is empty� For

results on the behavior of the fully simultaneous algorithm with orthogonal projections
in the inconsistent case see� e�g�� Combettes ��	� or Iusem and De Pierro �
��� Another
way to treat possible inconsistencies is to reformulate the constraints as c � Ax � d or
jjAx�djj� � �� see e�g� ����� Also� variable iteration�dependent relaxation parameters and
variable iteration�dependent string constructions could be interesting future extensions�
The practical performance of speci
c algorithms derived from the Algorithmic Scheme

needs still to be evaluated in applications and on parallel machines�

�� APPENDIX� THE ROLE OF BREGMAN PROJECTIONS

Bregman generalized distances and generalized projections are instrumental in several
areas of mathematical optimization theory� Their introduction by Bregman ��� was ini�
tially followed by the works of Censor and Lent ���� and De Pierro and Iusem ���� and�
subsequently� lead to their use in special�purpose minimization methods� in the proximal
point minimization method� and for stochastic feasibility problems� These generalized
distances and projections were also de
ned in non�Hilbertian Banach spaces� where� in
the absence of orthogonal projections� they can lead to simpler formulas for projections�
In the Euclidean space� where our present results are formulated� Bregman�s method for

minimizing a convex function �with certain properties� subject to linear inequality con�
straints employs Bregman projections onto the half�spaces represented by the constraints�
see� e�g�� �������� Recently the extension of this minimization method to nonlinear convex
constraints has been identi
ed with the Han�Dykstra projection algorithm for 
nding the
projection of a point onto an intersection of closed convex sets� see Bregman� Censor and
Reich �	��
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It looks as if there might be no point in using non�orthogonal projections for solving the
convex feasibility problem in Rn since they are generally not easier to compute� But this
is not always the case� In �
����� Shamir and co�workers have used the multiprojection
method of Censor and Elfving ��
� to solve 
lter design problems in image restoration
and image recovery posed as convex feasibility problems� They took advantage of that
algorithm�s �exibility to employ Bregman projections with respect to di
erent Bregman
functions within the same algorithmic run�
Another example is the seminal paper by Csisz�ar and Tusn�ady ����� where the central

procedure uses alternating entropy projections onto convex sets� In their �alternating
minimization procedure�� they alternate between minimizing over the 
rst and second
argument of the Bregman distance �Kullback�Leibler divergence� in fact�� These diver�
gences are nothing but the generalized Bregman distances obtained by using the negative
of Shannon�s entropy as the underlying Bregman function�
Recent studies about Bregman projections �Kiwiel �
	��� Bregman�Legendre projections

�Bauschke and Borwein ����� and averaged entropic projections �Butnariu� Censor and
Reich ����� � and their uses for convex feasibility problems inRn discussed therein � attest
to the continued �theoretical and practical� interest in employing Bregman projections in
projection methods for convex feasibility problems� This is why we formulated and studied
Case I of our Algorithmic Scheme within the framework of such projections�
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