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Abstract

A computationally-efficient method for recovering sparse signals from a series of noisy
observations, known as the problem of compressed sensing (CS), is presented. The theory of
CS usually leads to a constrained convex minimization problem. In this work, an alternative
outlook is proposed. Instead of solving the CS problem as an optimization problem, it is
suggested to transform the optimization problem into a convex feasibility problem (CFP),
and solve it using feasibility-seeking Sequential and Simultaneous Subgradient Projection
methods, which are iterative, fast, robust and convergent schemes for solving CFPs. As
opposed to some of the commonly-used CS algorithms, such as Bayesian CS and Gradient
Projections for sparse reconstruction, which become inefficient as the problem dimension and
sparseness degree increase, the proposed methods exhibit robustness with respect to these
parameters. Moreover, it is shown that the CFP-based projection methods are superior to
some of the state-of-the-art methods in recovering the signal’s support. Numerical exper-
iments show that the CFP-based projection methods are viable for solving large-scale CS
problems with compressible signals.

1 Introduction

Recent studies have shown that sparse signals can be recovered accurately using less observations
than predicted by the Nyquist/Shannon sampling principle; the resulting theory is known as
compressed sensing (CS) [6, 8]. The essence of this new theory is a data acquisition formalism
in which compression plays a fundamental role.

Sparse – and more generally – compressible signals arise naturally in many fields of science
and engineering. Typical problems include the reconstruction of images from under-sampled
Fourier data, biomedical imaging and astronomical observations [24, 29]. Other applications
include model-reduction methods enforcing sparseness for reducing computational complexity
and storage capacities. The reader is referred to [8] and [6] for an extensive overview of CS
theory.
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of Engineering, Nanyang Technological University, Singapore
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The issue of computational efficiency is important for large-scale CS problems. Ideally, a
computational scheme for recovering sparse and/or compressible signals should be computation-
ally efficient and accurately identify the signal support. Additional desirable features would
be simple and transparent implementation (no “black boxes”); scalability; robustness with re-
spect to some sparsensess/compressibility measure; and ubiquitous applicability to real-world
problems.

In this paper, we propose to look at the CS problem as a Convex Feasibility Problem (CFP)
rather than a minimization problem. This different approach leads us to the use of different
algorithms, namely, feasibility–seeking rather than minimization algorithms. CFPs are aimed
at finding a point in the intersection set of a family of closed convex sets, and are not aimed
at optimizing a performance index. The CFP is a fundamental modeling approach in numerous
fields, see, e.g., [17, 18] and references therein. It has been used to model real-world problems
in image reconstruction from projections [25], in radiation therapy treatment planning [10], and
many more areas, see [11, Section 1].

Most often, CFPs are solved by performing projections onto the individual closed convex sets.
This is carried out in various ways, by using different projection methods, resulting in a myriad of
algorithms that usually exhibit good convergence while consuming low computational resources.
Some of the projection algorithms may even provide predictable performance when the solution
set of the CFP is empty [4]. In the language of [11]: “The main advantage of projection methods
[for the CFP], which makes them successful in real-world applications, is computational. They
commonly have the ability to handle huge-size problems of dimensions beyond which more
sophisticated methods cease to be efficient or even applicable due to memory requirements.
This is so because the building bricks of a projection algorithm are the projections onto the
given individual sets, which are assumed to be easy to perform, and because the algorithmic
structure is either sequential or simultaneous, or in-between, as in the block-iterative projection
methods or in the more recently invented string-averaging projection methods.” We refer the
reader to [41] for a discussion on the connection between projection methods and variational
inequalities; to [19,20] for some specific developments of projection methods; to [13, Chapter 5]
for a textbook presentation; and to [3] for an extensive review.

However, projections onto convex sets may be difficult to perform when the individual con-
straints sets are nonlinear (i.e., not hyperplanes or half-spaces). This is so because computing
orthogonal projections onto arbitrary convex sets requires a separate, inner-loop minimization
for finding the distance minimizer between a given point and the set, a process that usually
involves a considerable computational effort. An elegant alternative is to use subgradient projec-
tions. Subgradient projections only require the instantaneous subgradient in order to perform
the next iteration. The projection is performed onto an intermediate point, and not directly
onto the convex set. Some of the subgradient projection methods, such as Cyclic Subgradient
Projections (CSP) [12] have a convergence proof when the intersection set of all the convex
constraints is nonempty.

Here we use both CSP and Simultaneous Subgradient Projections (SSP) for efficiently solv-
ing the CS problem. The proposed algorithms are characterized by their (i) computational
efficiency; (ii) accuracy in the sense of signal support recovery; (iii) robustness to varying com-
pressibility and sparseness levels; and (iv) straightforward, transparent implementation. By
using extensive numerical evaluations, we illustrate the advantages of the proposed scheme –
in terms of computational efficiency and accuracy – compared to some other commonly-used
methods for solving the CS problem.

2 Related Work

The recovery of sparse signals consists of solving an NP-hard minimization problem [8, 14].
State-of-the-art methods for addressing this optimization problem commonly utilize convex re-
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laxations, non-convex local optimization and greedy search mechanisms. Convex relaxations are
used in various methods such as Least Absolute Shrinkage and Selection Operator (LASSO) [37],
Least Angle Regression (LARS) [22], the Dantzig Selector (DS) [5], Basis Pursuit (BP) and BP
de-noising [16]. The LASSO and LARS schemes are essentially homotopy methods that exploit
pivoting operations on submatrices from the complete sensing matrix (i.e., sub-sensing matrices)
for yielding a solution path to the convex optimization problem. These methods turn out to
be very efficient whenever the sparseness level is relatively high, owing to the fact that only a
few submatrices need to be provided, corresponding to the instantaneous support of the under-
lying reconstructed signal. The DS and the BP variants, recast a linear program and employ
either simplex or interior-point techniques for obtaining an optimal solution. Similarly to the
homotopy-based approaches, these methods become computationally intensive when the number
of elements in the support of the underlying signal increases.

Non-convex optimization approaches include Bayesian methodologies such as the Relevance
Vector Machine (RVM), also known as Sparse Bayesian Learning [38], as well as stochastic
search algorithms, which are mainly based on Markov Chain Monte Carlo (MCMC) tech-
niques [31,32,40]. In virtue of their Bayesian mechanism and in contrast to other optimization
approaches, these methods provide a complete statistical solution to the CS problem by means
of a probability density function. Nevertheless, the intensive computational requirements of
these methods render their applicability questionable in high-dimensional problems.

Recently, the Bayesian framework was utilized to create efficient CS schemes [9, 27]. The
Bayesian CS algorithm proposed in [27] exploits both a sparseness-promoting hierarchical prior
and an RVM mechanism for deriving point estimates and statistical error bounds. This method
was shown to outperform some of the commonly-used greedy schemes both in accuracy and
speed. The work in [9] derived a pseudo-measurement-based Kalman filtering algorithm for
recovering sparse signals from noisy observations in a sequential manner. This approach extends
CS to accommodate stochastic linear filtering problems and, similarly to the aforementioned
Bayesian methods, yields a complete statistical solution to the problem (a Gaussian distribution).

Notable greedy search algorithms are the Matching Pursuit (MP) [30], the Orthogonal
MP (OMP) [33], and the Orthogonal Least Squares (OLS) [15]. Both MP and OMP mini-
mize the reconstruction error by iteratively choosing elements from the sensing matrix. The
OMP involves an additional orthogonalization stage and is known to outperform the conven-
tional MP. The OLS works in a similar fashion, employing an orthogonal transformation of the
original sensing matrix. The greedy algorithms are advantageous in terms of computational cost
compared to other optimization schemes when the basis projections are sufficiently incoherent,
and the number of elements in the support is relatively small. This, in turn, implies that their
performance may deteriorate dramatically in common realistic settings wherein the underlying
signals are compressible rather than sparse.

The scalability of a CS technique essentially refers to its viability for high-dimensional set-
tings. This issue is the focus of [23], wherein a new Gradient Projection (GP)-based method
is proposed for solving possibly large-scale CS problems. As pointed out by [23], large-scale
methods require only matrix-vector products involving the sensing matrix. As demonstrated
in [23], the GP algorithm is efficient in high-dimensional settings compared to the aforemen-
tioned methods. However, similarly to the homotopy methods, the practical implementation of
the GP algorithm requires a delicate tuning of the l1-norm bounding parameter, which greatly
affects its convergence and optimality.

Finally, the theory of CS has drawn much attention to the convex relaxation methods. It
has been shown that the convex l1 relaxation yields an exact solution to the recovery problem
provided that two conditions are met: (i) the signal is sufficiently sparse, and (ii) the sensing
matrix obeys the Restricted Isometry Property (RIP) at a certain level. Another complementary
result ensures high accuracy when dealing with noisy observations. Further analysis of this
result subsequently yielded its probabilistic version, which is characterized by recovery ‘with
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overwhelming probability’ [8].

3 Sparse Signal Recovery and Compressed Sensing

3.1 Support Identification

Formally, the CS problem can be divided into two main subproblems: (i) support identification;
and (ii) recovery of entries in the identified support [6]. The relationship between these two
subproblems is quite obvious. As long as the actual support is accurately identified, the lowest
attainable reconstruction error would be reached. In practice, however, many CS methods fail
to reach the lowest attainable reconstruction error even after correctly identifying the support
of the underlying signal. Fortunately, this issue can be circumvented by employing a simple
least squares (LS) scheme based on the obtained support [5]. If the support dimension is small
compared to the number of observations (which is necessary for obtaining reasonable recovery
errors [6]), the application of an additional LS scheme will only slightly increase the concomitant
computational overhead.

The CFP-based methods suggested in this paper turn out to be highly efficient for identi-
fying the support within a relatively small number of iterations, irrespectively of the problem
dimension and sparseness degree. In some cases, however, the recovery accuracy may be inad-
equate, depending on tuning. However, as mentioned above, this problem can be alleviated by
employing an LS scheme based on the identified support.

In many practical applications, the recovery accuracy may not always be very important; in
these cases, sparse quantities facilitate selective procedures for moderating the computational
burden, preventing overfitting, and reducing energy requirements. Some of these applications
include sensor networks [28], multiagent and complex systems [34], random fields and Bayesian
networks for pattern recognition [36], multiple object tracking and system identification [39],
to name only a few. Typically, in such applications the exact magnitudes of the nonzero sig-
nal entries are not as important as identifying the support. Consequently, for applications in
which the efficiency of support identification is a key issue, our CFP-based approaches can be
competitive with – and even preferable to – some of the state-of-the-art CS methods.

Throughout this work, we choose to quantify the support identification performance of the
examined CS methods by computing their associated LS recovery errors, that is, the errors ob-
tained after applying an LS scheme based on the identified support (a procedure that essentially
consists of thresholding the recovered entries. See Section 1.6 in [5] for further details).

3.2 Problem Formulation

Consider a signal represented by a vector in the n-dimensional Euclidean space χ ∈ R
n, which is

sparse in some domain, i.e., it can be represented using a relatively small number of projections
in some known, possibly orthonormal, basis, ψ ∈ R

n×n. Thus, we may write

χ = ψx =
n∑

i=1

xiψi =
∑

xj∈supp(x)

xjψj, ‖x‖0 < n, (1)

where supp(x) and ‖x‖0 (the zero norm) are the respective notations for the support of x and
its dimension (i.e., the number of non-zero components of x), and ψi is the i-th column of the
transpose ψT of the matrix ψ. The problem of compressed sensing considers the recovery of x
(and therefore of χ) from a limited number, m < n, of incoherent and possibly noisy measure-
ments (or, in other words, sensing a compressible signal from a limited number of incoherent
measurements) [8]. The measurements/observations vector y obeys a linear relation of the form

y = H ′χ = Hx (2)
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where H ∈ R
m×n and H = H ′ψ. In many practical applications, the observation vector y may

be either inaccurate or contaminated by noise. In this case, which will be referred to as the
stochastic CS problem, an additional noise term is added to the right-hand side of (2).

In general, under certain limitations on the sparseness degree of x, denoted by

s := ‖x‖0, (3)

an exact solution to the recovery problem can be obtained by solving a subset-selection problem
of the form {

min
x

‖x‖0
subject to ‖y −Hx‖22 ≤ ε

(4)

for a sufficiently small ε. However, problem (4) is known to be NP-hard, which implies that in
practice, an optimizer cannot be computed efficiently.

In the late 1990’s, the l1-norm was suggested as a sparseness-promoting term in the seminal
works that introduced the LASSO operator [37] and the BP [16]. Recasting the sparse recovery
problem (4) using the l1-norm provides a convex relaxation, making an efficient solution possible
using a myriad of well-established optimization techniques. Commonly, there are two convex
formulations that are proposed to replace (4): The quadratically-constrained linear program,
which takes the form

{
min
x

‖x‖1
subject to ‖y −Hx‖22 ≤ ε

(5)

or the quadratic program
{

min
x

‖y −Hx‖22
subject to ‖x‖1 ≤ ε′

(6)

Recently, it has been shown [6, 8] that an accurate solution of (4) can almost always be
obtained by solving the convex relaxation (5) provided that the sensing matrix H obeys the
RIP. Roughly, the RIP implies that the columns of a given matrix nearly form an orthonormal
basis. This property can be obtained by several random constructions, which guarantee the
uniqueness of the sparse solution. In particular, an exact recovery is highly probable when using
such matrices provided that

s = O(m/ log(n/m)) (7)

For an extensive overview of several RIP constructions and their role in CS, the reader is referred
to [6, 8].

In practice, the unknown signal x = (xi)
n
i=1 may be nearly sparse, in the sense of having many

relatively small components, which are not identically zero. Such representations, frequently
encountered in real-world applications, are termed compressible. Most of the results in the
CS literature naturally extend to the compressible case, assuming some behavior of the small
nonzero components. Such a behavior is suggested in [6], where the compressible components
sequence is assumed to decay according to the power law

|xi| ≤ κi(−1/r), |xi| ≥ |xi+1|, (8)

where κ > 0 and r > 0 are the radius of a weak lr-ball to which x is confined, and a decay
factor, respectively. In this case, a measure of the signal sparseness degree can be obtained as

ŝ = n− card{i | 1 ≤ i ≤ n, |xi| ≤ ε} (9)

for some sufficiently small ε > 0, where ‘card’ denotes the cardinality of a set.
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4 Subgradient Projections for Compressed Sensing

In this section, we outline the convex feasibility problem and two algorithms for a solution
thereof: The cyclic subgradient projections (CSP) and the simultaneous subgradient projections
(SSP). We explain how these algorithms and their variants, collectively referred to as projection
methods for the convex feasibility problems [3], are implemented for efficiently solving the convex
CS problem described by Eqs. (5) or (6).

4.1 The Convex Feasibility Problem

Given p closed convex subsets Q1, Q2, · · · , Qp ⊆ R
n of the n-dimensional Euclidean space,

expressed as
Qi = {z ∈ R

n | fi(z) ≤ 0} , (10)

where fi : R
n → R is a convex function, the convex feasibility problem (CFP) is

find a point z∗ ∈ Q := ∩p
i=1Qi, (11)

consequently, it solves the system of convex inequalities

fi(z) ≤ 0, i = 1, 2, . . . , p. (12)

If Q 6= ∅ then the CFP is said to be consistent. The context of convex inequalities gives rise to
the realm of subdifferential calculus, in which the definitions of subgradients and subdifferentials
play a fundamental role. Given the convex function fi : R

n → R, a vector t ∈ R
n is called a

subgradient of fi at point z
0 ∈ R

n if

fi(z)− fi(z
0) ≥ 〈t, z − z0〉, for all z ∈ R

n. (13)

The subdifferential of fi at z
0, denoted by ∂fi(z

0), is the nonempty compact convex set

∂fi(z
0) :=

{
t | fi(z)− fi(z

0) ≥ 〈t, z − z0〉, ∀z ∈ R
n.
}

(14)

If fi is differentiable at z
0, then the subgradient is unique and equal to the gradient t = ∇fi(z0).

4.2 Subgradient Projections

Subgradient projections have been incorporated into iterative algorithms for the solution of
CFPs; see, e.g., [3, Section 7]. The algorithms can be roughly divided into two main categories,
sequential and simultaneous. The cyclic subgradient projections (CSP) method for the CFP is
a sequential subgradient projections algorithm, see [12], and is summarized in Algorithm 1.

A convergence result for the CSP method in the consistent case can be found in [13, The-
orem 5.3.1], where it was shown that if the functions fi(z) are continuous and convex on R

n

for all i; Q := ∩p
i=1Qi 6= ∅; and the subgradients are uniformly bounded, then any sequence

{zk}∞k=0 produced by Algorithm 1 converges to a solution of the CFP, i.e., limk→∞ zk = z∗. The
convergence proof in [13, Chapter 5] is based on the concept of Fejér-monotonicity: A sequence
{zk}∞k=0 is Fejér monotone with respect to some fixed set Q ⊆ R

n, if for any z ∈ Q

‖zk+1 − z‖2 ≤ ‖zk − z‖2, ∀k ≥ 0. (16)

Sequential projection methods for solving CFPs usually have simultaneous counterparts.
The simultaneous subgradient projections (SSP) method (see, e.g., [21, 26]) is a simultaneous
variant of the CSP, and is given in Algorithm 2. Convergence analyses for these algorithms are
available for consistent (Q 6= ∅) CFPs.
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Algorithm 1 The method of cyclic subgradient projections (CSP)

Initialization: z0 ∈ R
n is arbitrary.

Iterative step: Given zk calculate the next iterate zk+1 by

zk+1 =







zk − αk
fi(k)(z

k)

‖ tk ‖22
tk, if fi(k)(z

k) > 0,

zk, if fi(k)(z
k) ≤ 0,

(15)

where tk ∈ ∂fi(k)(z
k) is a subgradient of fi(k) at the point zk, and the relaxation parameters

{αk}∞k=0 are confined to an interval ǫ1 ≤ αk ≤ 2− ǫ2, for all k ≥ 0, with some, arbitrarily small,
ǫ1, ǫ2 > 0.
Constraint-Index Control: The sequence {i(k)}∞k=0 is cyclic, that is, i(k) = k mod p+1 for
all k ≥ 0, where p is the number of sets in the CFP.

Algorithm 2 The method of simultaneous subgradient projections (SSP)

Initialization: z0 ∈ R
n is arbitrary.

Iterative step:

i. Given zk calculate, for all i ∈ {1, 2, . . . , p}, intermediate iterates ζk+1,i by

ζk+1,i =







zk − αk
fi(x

k)

‖ tk ‖2 t
k, if fi(z

k) > 0,

zk, if fi(z
k) ≤ 0,

(17)

where tk ∈ ∂fi(z
k) is a subgradient of fi at the point zk, and the relaxation parameters

{αk}∞k=0 are confined to an interval ǫ1 ≤ αk ≤ 2 − ǫ2, for all k ≥ 0, with some, arbitrarily
small, ǫ1, ǫ2 > 0.

ii. Calculate the next iterate zk+1 by

zk+1 =

p
∑

i=1

wiζ
k+1,i (18)

where wi are fixed, user-chosen, positive weights with
∑p

i=1wi = 1.
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4.3 CSP and SSP for Compressed Sensing

Based on Eqs. (5) and (6), we reformulate the CS problem as follows: Given a real-valued
m × n matrix H, a measurement vector y ∈ R

m, a user-chosen ε > 0, and sparseness (or
compressibility) information on the unknown vector x ∈ R

n,







find x∗ ∈ R
n

such that

y = Hx∗

‖x∗‖1 ≤ ε

(19)

This problem is not equivalent to the optimization formulations in (5) or (6). It proposes a
different problem formulation for the CS problem that we further translate into the language of
CFP. To do this, we define the m closed convex sets Q1, Q2, · · · , Qm ⊆ R

n by the hyperplanes

Qi =
{
x ∈ R

n | yi = 〈hi, x〉
}
, (20)

where 〈·, ·〉 is the inner product and hi is the i-th column of the matrix HT . For these sets,
fi = yi − 〈hi, x〉 in the notation of (10), and for i = 1, 2, . . . ,m, the subgradient is t = ∇(yi −
〈hi, x〉) = hi. An additional closed convex set Qm+1 ⊆ R

n is defined as

Qm+1 = {x ∈ R
n | ‖x‖1 − ε ≤ 0} . (21)

For fm+1 = ‖x‖1 − ε, using the notation of (10), we note that a subgradient (according to the
definition of Eq. (13)) at the origin can be chosen so that

t ∈ ∂fm+1(0), t = 1 (22)

where 1 is the n-dimensional vector of ones. A subgradient t of fm+1 = ‖x‖1−ε at an arbitrary
x ∈ R

n can be chosen so that
t = sign(x) and ‖t‖22 = n, (23)

where the vector sign(x) is defined by

for all 1 ≤ j ≤ n: (sign(x))j = sign(xj) =

{
1, if xj ≥ 0,
−1, if xj < 0.

(24)

The next stage is to implement the CSP algorithm in order to seek a feasible solution
x∗ ∈ Q := ∩m+1

i=1 Qi for the CFP reformulation of the CS problem (19). Following the recipe of
Algorithm 1, using the relationships (22), (23) and (24), this is formulated in Algorithm 3. The
iterations “pass” sequentially over the m sets Qi followed by an iteration with respect to Qm+1

and then cyclically repeats the process.
An application of Algorithm 2 for the CS problem (19), termed SSP-CS, is done in a similar

manner, yielding Algorithm 4.
Note that the inactive step of Algorithms 1 and 2, i.e., when the current iterate remains

unchanged, is unnecessary if the constraints are linear equations (cf. [13, Chapter 6]). This
fact helps to increase the computational efficiency. In the same context, it is worth noting that
without using the 1-norm constraint implemented in Eq. (26), the recovery of x from the linear
set of equations y = Hx is possible, under certain regularity conditions, using the well-known
algorithm of Kaczmarz [13, Chapter 6]. In this case, the obtained solution x∗ would minimize
‖x‖2 if x0 is chosen to be in the range of HT . However, adding the 1-norm constraint is key to
a successful recovery when x is sparse (or compressible).

The convergence of Algorithms 3 and its SSP variant, Algorithm 4, to some feasible solution
x∗ is guaranteed, provided that the CFP is consistent (i.e., the solution set is nonempty).
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Algorithm 3 Cyclic subgradient projections for compressed sensing (CSP-CS)

Initialization: Select a starting point x0 ∈ R
n.

Iterative Step: For k = 0, 1, 2, . . . , given the current iterate xk, compute the next iterate xk+1

as follows:

1. Set z1 = xk

2. For ℓ = 1, 2, . . . ,m, given zℓ calculate

zℓ+1 = zℓ − αℓ,k

〈
hℓ, zℓ

〉
− yℓ

‖hℓ‖2
hℓ (25)

3. From zm compute the next iterate xk+1

xk+1 =

{

zm+1 − αm+1,k
‖zm+1‖1 − ε

n sign(zm+1), if ‖zm+1‖1 > ε,
zm+1, if ‖zm+1‖1 ≤ ε.

(26)

and return to 1.

Relaxation parameters: The user-chosen relaxation parameters {αℓ,k}m+1, ∞
ℓ=1, k=0 are such that,

for all ℓ and all k, ǫ1 ≤ αℓ,k ≤ 2− ǫ2 for some arbitrary ǫ1, ǫ2 > 0.

Algorithm 4 Simultaneous subgradient projections for compressed sensing (SSP-CS)

Initialization: Select a starting point x0 ∈ R
n.

Iterative Step: For k = 0, 1, 2, . . . , given the current iterate xk, compute the next iterate xk+1

as follows:

1. For ℓ = 1, 2, . . . ,m, calculate

zk,ℓ = xk − αℓ,k

〈
hℓ, xk

〉
− yℓ

‖hℓ‖2
hℓ (27)

2. Compute the vector zk,m+1

zk,m+1 =

{

xk − αm+1,k
‖xk‖1 − ε

n sign(xk), if ‖xk‖1 > ε,
xk, if ‖xk‖1 ≤ ε.

(28)

3. the next iterate xk+1 is the convex combination of the intermediate vectors {zk,ℓ}m+1
ℓ=1 , i.e.,

xk+1 =
m+1∑

ℓ=1

wℓz
k,ℓ (29)

where wℓ are fixed user-chosen positive weights with
∑m+1

ℓ=1 wℓ = 1.

Relaxation parameters: The user-chosen relaxation parameters {αℓ,k}m+1, ∞
ℓ=1, k=0 are such that,

for all ℓ and all k, ǫ1 ≤ αℓ,k ≤ 2− ǫ2 for some arbitrary ǫ1, ǫ2 > 0.
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However, for real-world large-scale problems, it is not useful to invest resources to determine a
priori whether a given value of ε renders the CFP consistent. The behavior of the subgradient
projections algorithms for the inconsistent case was investigated in [4], where it was shown that
simultaneous subgradient projections methods usually behave better in the inconsistent case.
However, simultaneous projection methods tend to converge slower than sequential methods; it
is thus a good idea to combine these two methods in order to fight instabilities and obtain fast
convergence. This issue is discussed in the next section.

4.4 Convergence Analysis

As previously mentioned both methods, the CSP and the SSP, are convergent as long as the
constraints are consistent (see, e.g., [21, 26]). The proposed approach may, however, be incon-
sistent due to an unrefined setting of ε in either (26) or (28). In such a case Fejeér monotonicity
can be restored by properly choosing the relaxation parameters {αm+1,k}k≥0. In particular, we
consider the following cases.

4.4.1 Random Ensemble Sensing Matrices

We propose a sensible approach for computing an upper bound on αm+1,k. For example, when-
ever the sensing matrix satisfies the property (called low distortion embedding)

∣
∣‖Hx‖22 − 1

∣
∣ ≤ δ (30)

for every unit-norm and s-sparse x ∈ R
n (i.e., x contains not more than s significant entries), and

some δ ∈ (0, 1). Under some restrictions on the underlying dimensions, many random matrices
are most likely to obey (30). These account for the Gaussian and Bernoulli ensembles, which
are frequently encountered in the CS literature [2,7]. In general, however, similar properties can
be obtained for any random ensemble matrix irrespective of the distribution of its entries [35].

Consider an ensemble sensing matrix HT ∈ R
n×m for which the columns hi, i = 1, 2, . . . ,m

are realizations of a random vector h ∈ R
n. For such a matrix the following theorem provides a

computable upper bound on αm+1,k.

Theorem 1 (Deterministic Version) Let HT be a random ensemble matrix for which the
columns are sampled from an arbitrary zero-mean distribution with a covariance 1

mIn×n. Then,
setting

αm+1,k ≤ 2

(

1−
√
d√

1− δ

E
{
‖y‖22

}1/2

‖xk‖1

)

(31)

where the right-hand side term in this inequality is positive, renders the output of either the
CSP-CS or SSP-CS Fejér monotone (cf. (16)) with respect to the convex set defined by the
problem’s constraints. The expectation operator, denoted as E{·}, is taken with respect to the
entries of H. In addition, d ∈ [s, n], and δ ∈ (0, 1) is an isotropic coefficient pertaining to the
matrix H. Particularly, for s = O(m/ log n)

δ = c

√

log n

m
E
{

‖h‖logm2

}1/ logm
< 1 (32)

where c > 0.

In cases where the statistics of the measurements cannot be determined and hence E
{
‖y‖22

}
is

unspecified in (31), an alternative – probabilistic – variant of Theorem 1 is given as follows.
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Theorem 2 (Probabilistic Version) Consider a Gaussian ensemble sensing matrix or oth-
erwise a sensing matrix whose (zero-mean) entries are uniformly distributed with a variance 1

m .
Let also

αm+1,k ≤ 2

(

1−
√
d√

1− δ

‖y‖2
‖xk‖1

)

(33)

where the right-hand side term in this inequality is assumed to be positive. If in addition s =
O(m/ log n) then with probability exceeding 1−O(e−γn), γ > 0, the output of either the CSP-CS
or SSP-CS is Fejér monotone (cf. (16)) with respect to the convex set defined by the problem’s
constraints.

The proofs of both theorems are provided in the Appendix. Lastly, we note that reasonable
values for δ are below 0.5, where for Gaussian ensembles δ ≈ 0.5 (see for example [7] and [2]).

4.5 Practical Implementation

A few issues concerning our practical implementation of the CSP-CS and SSP-CS algorithms
are elaborated below.

1. Stopping Criteria: The CSP-CS and SSP-CS routines are terminated when either some
predetermined maximal number of iterations is exceeded, or when there is no significant
difference between two consecutive estimates, viz. ‖ xk+1−xk ‖2≤ γ for some small γ > 0.

2. Refinements: As mentioned in the previous section, in some cases the family of con-
straints may not be consistent due to the setting of ε, which in turn implies that the
convergence of the CSP method is not guaranteed. Typically, in such scenarios the esti-
mated parameters persistently fluctuate around some nominal value. The reconstructed
signal itself can be highly accurate; however, its entries do not attain a fixed value. This
problem can be alleviated by heuristically incorporating an additional refinement stage,
according to one of the following methods:

(a) Gauss-CSP (LS-augmented CSP): After a given number of CSP-CS iterations,
the support of the unknown signal can be readily approximated based on the magni-
tudes of the estimated elements. As soon as the support is given, the signal can be
accurately reconstructed following a simple LS procedure. This approach is inspired
by the strategy adopted in [5] for correcting the bias inherent to the Dantzig Selector
(the corrected scheme was referred to in [5] as the Gauss-Dantizg Selector).

(b) A slightly different implementation of the Gauss-CSP: Referred to as alter-
nating Guass-CSP ; this implementation often dramatically improves the convergence
properties of the CSP method. It consists of incorporating the LS stage directly into
the CSP algorithm in an alternating manner. This is done by interlacing the LS
routine whenever the iteration index k in Algorithm 3 reaches an arbitrary predeter-
mined value. In our experience, this variant of the Gauss-CSP typically converged
much faster than any other alternative.

(c) CSP-SSP: Normally, running a few SSP iterations subsequently to the termination
of the CSP routine improves the accuracy of recovery. This stems from the improved
behavior of the SSP method in the inconsistent case, discussed previously.

3. Block-iterative projections: In some programming environments, it might be more
computationally efficient to process a group of q observations

yi = 〈hi, x〉, i = j, j + 1, . . . , j + q (34)

at each iteration rather than a single one (as in CSP) or all (as in SSP). Such an approach
was termed in the literature of projection methods for CFPs Block-Iterative Projections
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(BIP), see, e.g., [1, 3]. Our own implementation of the CSP-CS exploits this idea for
alleviating the workload on the MATLAB R© interpreter, which may become prohibitively slow
when loops are involved. This approach does not require any considerable modification of
the original algorithm. In practice, this is accomplished by running the cyclic index from
1 to p/q+1 while the CSP-CS update (25) is repeated for q observations at each iteration.

5 Illustrative Examples

In this section, our newly-proposed algorithms are assessed based on extensive comparisons with
some of the commonly-used methods for CS. The algorithms considered herein consist of the
homotopy method LARS [22], the two greedy algorithms, OMP [33] and BP [16], the Gradient
Projection (GP)-based method of [23], and the Bayesian CS (BCS) of [27]. The Web links for
the MATLAB R© implementations of these methods are provided in the Appendix.

5.1 Performance Measures

In order to highlight the weaknesses and virtues of the various methods, we examine here both
synthetic and realistic scenarios, associated with the two signal types frequently encountered in
CS applications: Sparse and compressible (nearly sparse in the sense of (9)). An indicator for
the difficulty of recovery is assigned to each problem based on its unique settings (dimension and
sparseness degree). This measure, termed here the recovery index, is derived from the relation [8]
m ≥ c(s log n) (for some c > 0), and is given by

ρ := (s/m) log n. (35)

This index essentially refers to the probability of recovery assuming the sensing matrix obeys
the RIP up to a certain sparseness degree. As was already pointed out in [8], as this measure
increases, an exact recovery becomes less probable.

Throughout this section, the signal reconstruction error e is computed as

e :=

√

‖ x− x∗ ‖22
d(x)

(36)

where x∗ is the reconstructed signal and the normalizing term d(x) is determined according to
the signal type,

d(x) :=

{ ∑n
i=1 min(x2i , σ

2), for sparse x,
‖ x ‖22, for compressible x,

(37)

with σ being the standard deviation of the observation noise. The formulation (37) corresponds
to both the ideal (sparse x) and the normalized (compressible x) recovery measures that are used
for assessing the reconstruction accuracy in [5] and [27], respectively. The mean reconstruction
error ē is computed in a similar fashion over N runs as

ē :=

√
√
√
√N−1

N∑

i=1

e2(i), (38)

where e(i) denotes the error in the i-th run.

5.2 Sparse Signal Recovery

In the first scenario, the various methods are applied for the recovery of a sparse signal from
noisy observations.

12



The sensing matrix H ∈ R
m×n used here consists of normalized random entries sampled

from a zero-mean Gaussian distribution with a standard deviation of 1/
√
m. This type of

random construction has been shown to obey the RIP up to a reasonable sparseness level [6].
We examine the recovery performance of the CS algorithms in various settings consisting of
different problem dimensions, ranging from 512 × 1024 through 1024 × 2048 and 2048 × 4096
to 3072 × 6144, and different sparseness levels. The original signal x is composed of only few
nonzero random components, which are uniformly sampled over [−1, 1], and of which the indices
are randomly picked between 1 and n. In all runs, the measurement noise standard deviation
is set to 0.01. The various algorithms’ tuning parameters are taken as those that minimize the
recovery error based on tuning runs. The CSP-CS parameters are set to

αℓ,k = 1.8, for ℓ = 1, 2, . . . ,m, ε = 10−4, (39)

and
αm+1,k

n
=

{
70−2, If k ≤ 2000,
100−2(1 + k/104)−1, Otherwise,

(40)

which yielded the best accuracy and convergence time. The CSP routine is terminated when
either the number of iterations exceeds 5000 or when the normed difference between two con-
secutive estimates satisfies ‖ xk+1 − xk ‖2< γ, where γ = 0.01 for the low-dimensional problems
and γ = 0.5 otherwise.

The averaged performance over 50 Monte Carlo runs of the various methods for the problem
dimension of 512×1024 is depicted in Fig. 1 for different recovery indices (cf. (35)) ranging from
ρ = 0.1 to ρ = 0.7. This figure shows both the mean ideal recovery error (cf. (37) and (38))
and the corresponding mean convergence time along with their standard deviations, which are
illustrated using error bars. Observing the top left panel in this figure reveals a performance
hierarchy that places the CSP-CS as the 2nd worst right after the LARS and just a bit before
the BP. The remaining methods attain higher accuracy in this case.

Nevertheless, the story completely changes when examining the LS-augmented methods in
the top right panel. Here the CSP-CS attains the best accuracy over the entire range of sparseness
degrees. Following the argument in Section 3.1, this detail readily implies that the CSP-CS
exhibits improved support identification capabilities compared to the other CS methods.

By observing the bottom panel of Fig. 1, it can be easily recognized that the CSP-CS is
the 3rd slowest method in this case. The other computationally intensive methods here are the
LARS and the BP. In this example, the convergence times of all methods excluding those of the
greedy OMP and the GP roughly stays unchanged over the entire range of sparseness levels.
The extreme slant of the OMP line is due to the nature of this algorithm, which tends to become
computationally intensive as the assumed maximal support size increases.

The above insights are further emphasized in Table 1, which focuses on the numerical values
obtained in these experiments for two nominal recovery indices, ρ = 0.1 and ρ = 0.6. The
boldface values in this table correspond to the averaged recovery errors of the LS-augmented
methods. Thus, it can be clearly seen that the CSP-CS attains the best accuracy in the sense
of support identification, yielding a mean associated recovery error of around 2.05.

The performance of the algorithms for the problem sizes of 2048 × 4096 and 3072 × 6144 is
illustrated in Fig. 2. Here we have excluded the computationally intensive methods, LARS and
BP, as their convergence time became prohibitively long. The performance of the remaining
methods for the various problem dimensions is illustrated via two types of panels. The upper
panel shows the convergence times for different sparseness levels, whereas the bottom panel
shows the corresponding ideal recovery errors averaged over 50 Monte Carlo runs. As before,
the standard deviations from the mean values are depicted using error bars.

By observing the upper panel in Fig. 2, we see that the CSP-CS method is faster than
the BCS over the entire range of sparseness levels for both problem dimensions. A similar
conclusion applies when comparing the CSP-CS with the OMP from a certain sparseness degree
corresponding to a recovery index of around 0.4. The CSP-CS turns out to be significantly faster
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Figure 1: The average performance (over 50 Monte Carlo runs) of the CS methods (including the
computationally intensive LARS and BP) for problem dimension 512x1024. The performance
in the sense of support identification is demonstrated using the LS-augmented variants in the
upper right figure.

than both the BCS and the OMP over almost the entire range of sparseness levels for the larger
problem dimension.

The associated recovery errors of the various methods are presented in the bottom panels
in Fig. 2. From these panels we notice that, as before, the CSP-CS exhibits the best support
recovery performance among the examined CS methods.

The above insights are supported by Table 2, which provides the timing and estimation
error values for two nominal recovery indices. It shows that the CSP-CS algorithm outperforms
the other methods in terms of support identification accuracy, as manifested by its associated
recovery error, and is also the 2nd fastest method (after the GP). Another interesting and
important detail that comes about from both Table 2 and Fig. 2 is related to the fact that,
as opposed to the GP the running time of which is highly sensitive to the sparseness degree,
the CSP-CS computation time remains almost unchanged with respect to this factor. This
observation could, in fact, be expected, as the CSP-CS mechanism does not really distinguish
between the elements in the support and the elements that are not. This feature renders the
CSP-CS highly robust and efficient when applied either to compressible problems or in such
scenarios where the recovery index is relatively large.
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Recovery Errors Convergence Times

Method ρ = 0.1 ρ = 0.6 ρ = 0.1 ρ = 0.6

LARS 12.19 12.19 6.07 6.07 22.28 (sec) 22.18 (sec)
BP 8.84 2.05 4.54 2.13 7.84 (sec) 8.93 (sec)
OMP 2.56 2.58 2.50 2.50 0.05 (sec) 1.03 (sec)
BCS 4.82 2.52 2.37 2.44 0.70 (sec) 0.83 (sec)
GP 3.95 2.40 4.58 2.12 0.20 (sec) 0.48 (sec)
CSP-CS 9.28 2.05 5.04 2.07 3.81 (sec) 3.64 (sec)

Table 1: Recovery of sparse signals. The ideal recovery error (left columns) and convergence time
(right columns) of the various methods for the problem dimension 512x1024. The bold values
correspond to the accuracy of the LS-augmented variants. Averaged over 50 Monte Carlo runs.
In this example the CSP-CS exhibits the best support identification capabilities as manifested
by its associated (bold) recovery errors.

Recovery Errors Convergence Times

Method ρ = 0.1 ρ = 0.6 ρ = 0.1 ρ = 0.6

OMP 2.62 2.52 11.89 (sec) 135.52 (sec)
BCS 2.53 2.45 39.18 (sec) 31.84 (sec)
GP 2.35 2.14 5.41 (sec) 8.18 (sec)
CSP-CS 2.08 1.92 16.79 (sec) 16.26 (sec)

Table 2: Attainable recovery errors after support identification. The ideal recovery error (left
columns) and convergence time (right columns) of the various methods for the problem dimension
3072x6144. Shown results are averaged over 50 Monte Carlo runs.

The support recovery performance of the CSP-CS after 160 iterations in a large-scale scenario
is illustrated in Fig. 3. In this example, the problem dimension is 3000 × 106 and the recovery
index is 0.23 (i.e., a support size of 50). This figure shows that the CSP-CS manages to identify
48 out of 50 of the most prominent non-zero entries.

A comparison of the various CSP implementations that were discussed in Section 4.5 is
provided in Fig. 4. This figure demonstrates the convergence properties of the methods based
on a single run for a problem dimension of 2048 × 4096. Thus, it can be easily recognized
that the plain CSP-CS attains the worst recovery error, as it begins to fluctuate around some
nominal value. As pointed out previously, this behavior indicates that the family of constraints
in this case is inconsistent, owing to an improper setting of the parameter ε. This problem
is alleviated in both of the variants, the CSP-SSP and the Gauss-CSP. Although both these
methods outperform the plain CSP-CS, it seems that the best attainable error is achieved by
using the Gauss-CSP, whereas the fastest convergence is obtained by using the alternating CSP-
LS scheme.

5.3 Compressible Examples

Compressible signals are of greater practical importance when it comes to real-world applica-
tions. As mentioned earlier, such signals are nearly sparse in the sense that they consist of many
relatively small elements that are not identically zero. Therefore, we consider here two realistic
experimental studies involving compressible signals. The first example, which is conducted in
the spirit of the previous synthetic one, consists of constructing the Discrete Fourier Trans-
form (DFT) of an undersampled time series. The second experiment involves the reconstruction
of the Shepp-Logan head phantom used for assessing the performance of recovery schemes in
tomography.
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Figure 2: Attainable recovery errors after support identification. The average performance of
the CS algorithms for two problem dimensions and sparseness degrees. Showing the convergence
time (upper panels) and the ideal recovery error (bottom panels). The computationally excessive
methods (LARS and BP) are not shown here.

5.3.1 Constructing a DFT from Undersampled Data

In this example we consider a discrete signal y in the time domain, which takes the form

yk =

nf∑

i=1

sin(ωitk), k = 1, 2, . . . , n (41)

where the frequencies ωi, i = 1, 2, . . . , nf are uniformly sampled over the interval [π, 10π]. Let
x = (xk)

n
k=1 ∈ R

n be the DFT of y, that is

xk = (1/
√
n)

n∑

j=1

yj exp (−2π(j − 1)(k − 1)i/n) (42)

which can be written compactly as x = Fy with F being the unitary DFT matrix. Now, suppose
that we wish to reconstruct x from a randomly sampled vector (yj)

m
j=1 for which m << n. In

other words, we attempt to reconstruct the DFT x from an undersampled time series. This is a
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Figure 3: Support identification performance after 160 iterations for a problem dimension of
3000 × 106.

classical CS problem, for which the sensing matrix H is given as a partial inverse DFT matrix
consisting of only m randomly-picked rows. Thus,

y = Hmx (43)

where Hm is composed of m randomly picked rows from F ∗ (where the asterisk denotes the
conjugate transpose), corresponding to the components of y. The vector x itself is expected to
be compressible, essentially comprised of decaying coefficients in the vicinity of those that are
associated with the underlying frequencies ωi, i = 1, 2, . . . , nf .

Similarly to the synthetic case, we apply the various non augmented CS methods (excluding
the computationally excessive ones) for different problem dimensions and sparseness levels. As
distinct from the previous example, here the recovery index (35) is computed based on the
effective sparseness measure (9) with ε = 0.05maxi |xi| (here, the maximum is taken with respect
to the actual signal entries, so the threshold value, used for determining the cardinality of the
support, is set to 5% of the largest peak). The CS algorithms’ tuning parameters are chosen
to maximize accuracy based on tuning runs. The CSP relaxation parameters and termination
conditions remain unchanged.

The averaged performance of the various methods over 50 Monte Carlo runs (in which a
new set of frequencies (wi)

nf

i=1 is sampled at the beginning of each run) is depicted in Fig. 5.
The upper panel in this figure shows the CS methods’ mean convergence times and their associ-
ated standard deviations (error bars) for different problem dimensions (ranging from 512×1024
through 1024×2048 to 2048×4096) and effective sparseness levels (corresponding to recovery
indices of between 0.1 to 0.8). The corresponding recovery errors of the various methods are
provided in the bottom panel of this figure.

By observing both these panels, we see that the CSP-CS method maintains the best tradeoff
between accuracy and computational load as the problem becomes more complex, as indicated
by both its dimensionality and sparseness degree. In virtue of its underlying mechanism, the
CSP-CS exhibits robustness with respect to both these factors as it attains recovery errors that
are comparable to those of the BCS and the OMP at a nearly fixed computational cost. This
renders it the fastest reliable method among the methods tested here as the problem dimension
increases. Although the GP is the fastest scheme in this case, its accuracy is extremely low with
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Figure 4: The ideal recovery error of the CSP variants. Single run, problem dimension
2048x4096.

recovery errors of nearly the magnitude of the signal itself. The LS-augmented GP does posses
a clear advantage over the unaugmented one; however, its performance is still unsatisfactory
(with recovery errors of almost twice than those of the other methods).

The above insights are further illustrated in Table 3, in which the timing and recovery error
values are repeated for the problem dimension 2048 × 4096. It can be seen from this table that
the CSP-CS attains a recovery error that is similar to those of the BCS and the OMP. The
advantage of the CSP-CS over the other methods becomes prominent as the recovery index
increases. Thus, the CSP-CS maintains a nearly fixed convergence time over the entire range of
recovery indices, essentially yielding the best accuracy and timing tradeoff among the methods
tested here for the extremal index value of 0.8.

Normalized Recovery Errors Convergence Times

Method ρ = 0.2 ρ = 0.8 ρ = 0.2 ρ = 0.8

OMP 0.10 0.17 7.20 (sec) 226.80 (sec)
BCS 0.10 0.18 15.40 (sec) 50.62 (sec)
GP 0.19 0.31 0.47 (sec) 0.53 (sec)
CSP-CS 0.10 0.17 12.87 (sec) 13.11 (sec)

Table 3: Recovering a DFT from undersampled data. The normalized recovery errors (left
columns) and convergence times (right columns) of the various methods for the problem dimen-
sion 2048 × 4096. Shown results are averaged over 50 Monte Carlo runs.

Figure 6 depicts the performance of the CSP-CS in recovering typical sparse and compressible
signals of nearly the same recovery index. This figure suggests that, in practice, though the
recovery indices are nearly the same, it might be more difficult to reconstruct a compressible
representation rather than a sparse one. This follows from the fact that the compressible estimate
on the right panel is less accurate than its companion on the left.

18



0.2 0.4 0.6 0.8 1 1.2 1.4
10

−2

10
−1

10
0

10
1

10
2

Recovery index

S
ec

 

 

CSP−CS
BCS
GP
OMP

(a) 1024x2048

0.2 0.4 0.6 0.8 1 1.2
10

−1

10
0

10
1

10
2

10
3

Recovery index

S
ec

 

 

CSP−CS
BCS
GP
OMP

(b) 2048x4096

0 0.2 0.4 0.6 0.8 1 1.2
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Recovery index

 

 

N
or

m
al

iz
ed

 R
ec

ov
er

y 
E

rr
or

CSP−CS
BCS
GP
OMP

(c) 1024x2048

0.2 0.4 0.6 0.8 1 1.2
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Recovery index

N
or

m
al

iz
ed

 R
ec

ov
er

y 
E

rr
or

 

 

CSP−CS
BCS
GP
OMP

(d) 2048x4096

Figure 5: Recovering a DFT from undersampled data. Showing the average performance of the
CS algorithms for two problem dimensions and effective sparseness degrees. The convergence
time and the normalized error are depicted in the upper and lower panels, respectively.

5.3.2 Image Recovery from Undersampled Radial Fourier Coefficients

In the last part of this section, we demonstrate the performance of some of the methods in
recovering an image using undersampled 2D Fourier coefficients that are computed along radial
lines. The example considered here follows along the lines of [5], where the Shepp-Logan phantom
head image is used. In our experiment, however, we use a low-dimensional 128× 128 version of
this image, which yields a signal of dimension 128× 128 = 16384. We examine the CS methods
for two scenarios in which the 2D-Fourier coefficients are sampled along either 32 or 64 radial
lines (corresponding to nearly 25% or 50% of the available data).

Three methods are applied for recovering the phantom head image: BCS, GP and CSP-CS
(unaugmented versions). However, the performance of only two of them, the GP and the CSP-
CS are shown in Figures 7 and 8 as the BCS exhibited poor performance, yielding recovery
errors of nearly the signal magnitude (specifically, around 0.9). Both these figures clearly show
the superiority of the CSP-CS over the GP in both scenarios.
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Figure 6: Illustration of the recovery performance of the CSP-CS method for sparse and com-
pressible signals.

(a) CSP-CS, e = 0.12 (b) GP, e = 0.19

(c) Original

Figure 7: The original and reconstructed Shepp-Logan phantom head. Showing the CSP-CS
and the GP methods. The recovery errors are based on 64 projections, which is equivalent to
50% undersampled data.
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(a) CSP-CS, e = 0.22 (b) GP, e = 0.28

(c) Original

Figure 8: The original and reconstructed Shepp-Logan phantom head. Showing the CSP-CS
and the GP methods. The recovery errors are based on 32 projections, which is equivalent to
25% undersampled data.

6 Conclusions

A new approach to compressed sensing (CS) was introduced. The new method utilized the in-
stantaneous subgradient for projecting the previous iterate on a convex set, thereby approaching
a feasible point of the underlying convex feasibility problem resulting from a family of possibly
nonlinear, convex constraint sets.

The Cyclic Subgradient Projection (CSP) method, constituting the heart of this approach,
facilitates the efficient solution of large-scale CS problems since it involves vector inner products
only. An extensive numerical comparison of our CSP-CS algorithm and its variants with some of
the state-of-the-art CS schemes demonstrates its advantages in high-dimensional compressible
settings.

In particular, the CFP-based methods introduced here have been experimentally shown to
be efficient for identifying the support of a sparse signal. Since support identification is a
main difficulty in recovering sparse signals, the superior performance of the CSP-CS algorithm
in support identification constitutes a convenient stepping stone for the possible subsequent
application of refinement mechanisms, such as those based on least squares.

The proposed methods maintain a nearly fixed computational cost irrespective of the problem
dimension and sparseness level; moreover, they easily cope with realistic scenarios involving high-
dimensional compressible signals. Finally, extensive numerical comparisons show that the CSP-
CS maintains the best tradeoff between computational efficiency and accuracy as the problem

21



dimension and sparseness level increase.
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A Appendix

In order to prove the theorems we will need the following lemma.

Lemma 1 Let xk be either one of the CSP-CS or SSP-CS iterates preceding the CS stages (26)
or (28), respectively. Assume that ‖xk‖1 > ‖x∗‖1 where x∗ is the optimizer of the CS problem
(19). Then for

0 < αm+1,k ≤ 2

(

1− ‖x∗‖1
‖xk‖1

)

< 2 (44)

we have that
‖ xk+1 − x∗ ‖22≤‖ xk − x∗ ‖22, ∀k ≥ 0, (45)

where xk+1 denotes the iterate following the CS stage ( (26) or (28)).

Proof. Let

λk = αm+1,k
g(xk)

‖ tk ‖22
, (46)

where g(xk) = ‖xk‖1 − ε, and tk denotes a subgradient of g computed at xk. Following an
argument similar to that in [13, Theorem 5.3.1] we may write

‖ xk+1 − x∗ ‖22=‖ xk − λkt
k − x∗ ‖22=‖ xk − x∗ ‖22 +λ2k ‖ tk ‖22 +2λk〈tk, x∗ − xk〉. (47)

Recalling that the subgradient tk satisfies

〈tk, x∗ − xk〉 ≤ g(x∗)− g(xk) = ‖x∗‖1 − ‖xk‖1, (48)

(47) yields
‖ xk+1 − x∗ ‖22≤‖ xk − x∗ ‖22 +λ2k ‖ tk ‖22 +2λk(‖x∗‖1 − ‖xk‖1). (49)

Further, substituting (46) into (49) and rearranging, we obtain

‖ xk+1 − x∗ ‖22≤‖ xk − x∗ ‖22 +

(

α2
m+1,k − 2αm+1,k + 2αm+1,k

‖x∗‖1
‖xk‖1

)
g2(xk)

‖ tk ‖22
. (50)

Since ‖x∗‖1
‖xk‖1

≤ 1, (45) readily follows.

Note that the bound on αm+1,k in (44) becomes tighter as the optimal solution x∗ is ap-
proached which essentially entails slower and refined convergence assuming αm+1,k is properly
regulated. Yet, since the optimizer is unknown this bound does not really convey useful infor-
mation about how large αm+1,k can be in practice. This premise can be changed however by
considering Theorems 1 and 2 whose proofs are given next.
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A.1 Proof of Theorem 1

The underlying ensemble matrix approximates a convex body in a nearly isotropic position [35].
Using the key theorem from [35] we observe that

E
{∣
∣‖Hx‖22 − ‖x‖22

∣
∣
}
= E

{∣
∣xT (HTH − In×n)x

∣
∣
}
≤ E

{∥
∥HTH − In×n)

∥
∥
σ

}
‖x‖22

≤ c

√
log n√
m

E
{

‖h‖logm2

}1/ logm

︸ ︷︷ ︸

δ

‖x‖22 (51)

where ‖ · ‖σ denotes the matrix spectral norm. As pointed out in [35], this inequality holds for
δ < 1 which entails m ≥ cn log n. A much better lower bound on m is obtained upon recalling
that x is s-sparse. Thus, following a rationale similar to that in [35] it can be readily verified
that (51) holds for m ≥ cs log n, or otherwise s = O(m/ log n).

Invoking Jensen’s inequality, (51) yields
∣
∣E
{
‖Hx‖22

}
− ‖x‖22

∣
∣ ≤ E

{∣
∣‖Hx‖22 − ‖x‖22

∣
∣
}
≤ δ‖x‖22 (52)

implying
(1− δ)‖x∗‖22 ≤ E

{
‖y‖22

}
≤ (1 + δ)‖x∗‖22 (53)

owing to the fact that y = Hx∗ where x∗ is the optimizer of the CS problem. Hence,

‖x∗‖1 ≤
√
d‖x∗‖2 ≤

√
d√

1− δ
E
{
‖y‖22

}1/2
(54)

where the left-hand side inequality is due to the equivalence of l1 and l2 norms. The parameter
d therefore indicates the support cardinality of x∗ which can be between s and n. Finally,
substituting (54) into (44), Lemma 1 yields the theorem.

A.2 Proof of Theorem 2

Under the conditions of the theorem, and in particular for s = O(m/ log n), the considered
sensing matrix H obeys the restricted isometry property [7]

∣
∣‖Hx‖22 − ‖x‖22

∣
∣ ≤ δ‖x‖22 (55)

for every s-sparse x ∈ R
n with probability of at least 1 − O(e−γn) (for the actual values of γ

see [6]). Recalling that y = Hx∗ where x∗ is the unknown optimizer of the problem, (55) implies

‖x∗‖1 ≤
√
d‖x∗‖2 ≤

√
d√

1− δ
‖y‖2 (56)

where the left-hand side inequality is due to the equivalence of l1 and l2 norms. The parameter
d therefore indicates the support cardinality of x∗ which can be between s and n. Finally,
substituting (56) into (44), Lemma 1 yields the theorem.

A.3 Web Locations of Relevant CS Algorithms

The MATLAB R© files implementing our new algorithms are available at
http://www.technion.ac.il/ pgurfil/csp-cs/. All the other source files for the various CS
algorithms implemented herein can be found at the following locations:

Least Angle Regression (LARS) :
http://www.mathworks.com/matlabcentral/fileexchange/23186-lars-algorithm

Basis Pursuit (BP): http://www.acm.caltech.edu/l1magic/
Bayesian CS (BCS): http://people.ee.duke.edu/ lihan/cs/

Gradient Projection for Sparse Reconstruction (GPSR):
http://www.lx.it.pt/ mtf/GPSR/

23



References

[1] R. Aharoni and Y. Censor. Block-iterative projection methods for parallel computation of
solutions to convex feasibility problems. Linear Algebra and Its Applications, 120:165–175,
1989.

[2] R. G. Baraniuk, M. A. Davenport, D. Ronald, and M. B. Wakin. A simple proof of the
restricted isometry property for random matrices. Constructive Approximation, 28:253–263,
Dec. 2008.

[3] H. H. Bauschke and J. M. Borwein. On projection algorithms for solving convex feasibility
problems. SIAM Review, 38:367–426, 1996.

[4] D. Butnariu, Y. Censor, P. Gurfil, and E. Hadar. On the behavior of subgradient pro-
jections methods for convex feasibility problems in Euclidean spaces. SIAM Journal on
Optimization, 19:786–807, 2008.

[5] E. Candès and T. Tao. The Dantzig selector: Statistical estimation when p is much larger
than n. Annals of Statistics, 35:2313–2351, 2007.

[6] E. J. Candès. Compressive sampling. In Proceedings of the International Congress of
Mathematicians, pages 1433–1452, Madrid, Spain, 2006. European Mathematical Society.

[7] E. J. Candes. The restricted isometry property and its implications for compressed sensing.
Comptes Rendus Mathematique, 346:589 – 592, 2008.

[8] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal recon-
struction from highly incomplete frequency information. IEEE Transactions on Information
Theory, 52:489–509, 2006.

[9] A. Carmi, P. Gurfil, and D. Kanevsky. Methods for sparse signal recovery using Kalman
filtering with embedded pseudo-measurement norms and quasi-norms. IEEE Transactions
on Signal Processing, 58:2405–2409, 2010.

[10] Y. Censor, M. D. Altschuler, and W. D. Powlis. On the use of Cimmino’s simultaneous
projections method for computing a solution of the inverse problem in radiation therapy
treatment planning. Inverse Problems, 4:607–623, 1988.

[11] Y. Censor, W. Chen, P. L. Combettes, R. Davidi, and G. T. Herman. On the effec-
tiveness of projection methods for convex feasibility problems with linear inequality con-
straints. Computational Optimization and Applications, accepted for publication, available
at: http://arxiv.org/abs/0912.4367.

[12] Y. Censor and A. Lent. Cyclic subgradient projections. Mathematical Programming, 24:233–
235, 1982.

[13] Y. Censor and S. A. Zenios. Parallel optimization: Theory, algorithms, and applications.
Oxford University Press, New York, NY, USA, 1997.

[14] R. Chartrand. Exact reconstruction of sparse signals via nonconvex minimization. IEEE
Signal Processing Letters, 14:707–710, 2007.

[15] S. Chen, S. A. Billings, and W. Luo. Orthogonal least squares methods and their application
to non-linear system identification. International Journal of Control, 50:1873–1896, 1989.

[16] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.
SIAM Journal of Scientific Computing, 20:33–61, 1998.

24



[17] P. L. Combettes. The foundations of set-theoretic estimation. Proceedings of the IEEE,
81:182–208, 1993.

[18] P. L. Combettes. The convex feasibility problem in image recovery. Advances in Imaging
and Electron Physics, 95:155–270, 1996.

[19] G. Crombez. Non-monotoneous parallel iteration for solving convex feasibility problems.
Kybernetika, 39:547–560, 2003.

[20] G. Crombez. A sequential iteration algorithm with non-monotoneous behaviour in the
method of projections onto convex sets. Czechoslovak Mathematical Journal, 56:491–506,
2006.

[21] L. T. Dos Santos. A parallel subgradient method for the convex feasibility problem. Journal
of Computational and Applied Mathematics, 18:307–320, 1987.

[22] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of
Statistics, 32:407–499, 2004.

[23] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Gradient projection for sparse recon-
struction: Application to compressed sensing and other inverse problems. IEEE Journal of
Selected Topics in Signal Processing, 1:586–597, 2007.

[24] U. Gamper, P. Boesiger, and S. Kozerke. Compressed sensing in dynamic MRI. Magnetic
Resonance in Medicine, 59:365–373, 2008.

[25] G. T. Herman. Fundamentals of Computerized Tomography: Image Reconstruction from
Projections. Springer, NY, 2nd edition, 2009.

[26] A. N. Iusem and L. Moledo. A finitely convergent method of simultaneous subgradient
projections for the convex feasibility problem. Computational and Applied Mathematics,
5:169–184, 1986.

[27] S. Ji, Y. Xue, and L. Carin. Bayesian compressive sensing. IEEE Transactions on Signal
Processing, 56:2346–2356, 2008.

[28] S. Joshi and S. Boyd. Sensor selection via convex optimization. IEEE Transactions on
Signal Processing, 57:451–462, 2009.

[29] M. Lustig, D. Donoho, and J. M. Pauly. Sparse MRI: The application of compressed sensing
for rapid MR imaging. Magnetic Resonance in Medicine, 58:1182–1195, 2007.

[30] S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Trans-
actions on Signal Processing, 4:3397–3415, 1993.

[31] R. E. McCulloch and E. I. George. Approaches for Bayesian variable selection. Statistica
Sinica, 7:339–374, 1997.

[32] B. A. Olshausen and K. J. Millman. Learning sparse codes with a mixture-of-Gaussians
prior. Advances in Neural Information Processing Systems (NIPS), pages 841–847, 2000.

[33] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching pursuit: Recursive
function approximation with applications to wavelet decomposition. In Conference Record
of the 27th Asilomar Conference on Signals, Systems and Computers, pages 40–44. IEEE,
2002.

[34] S. I. Roumeliotis and G. A. Bekey. Distributed multi-robot localization. IEEE Transactions
on Robotics and Automation, 18:781–795, 2002.

25



[35] M. Rudelson. Random vectors in the isotropic position. Journal of Functional Analysis,
164:60–72, 1999.

[36] J. E. Taylor and K. J. Worsley. Detecting sparse signals in random fields, with an application
to brain mapping. Journal of the American Statistical Association, 102:913–928, 2007.

[37] R. Tibshirani. Regression shrinkage and selection via the LASSO. Journal of the Royal
Statistical Society. Series B (Methodological), 58:267–288, 1996.

[38] M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of
Machine Learning Research, 1:211–244, 2001.

[39] E. Wang, J. Silva, and L. Carin. Compressive particle filtering for target tracking. In
IEEE/SP 15th Workshop on Statistical Signal Processing, pages 233–236. IEEE, 2009.

[40] P. J. Wolfe, S. J. Godsil, and W. Ng. Bayesian variable selection and regularization for
time-frequency surface estimation. Journal of the Royal Statistical Society, 66:575–589,
2004.

[41] I. Yamada. Hybrid steepest descent method for variational inequality problem over the
fixed point set of certain quasi-nonexpansive mappings. Numerical Functional Analysis and
Optimization, 25:619–655, 2004.

26


