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Abstract

The binary steering process is a heuristic designed to intervene be-
tween consecutive steps of a nonbinary iterative image reconstruction
algorithm in order to gradually steer the iterates towards a binary so-
lution. We present computational results which show that a strongly
overrelaxed simultaneous nonbinary iterative algorithm performs in
our experiments better then a strongly underrelaxed sequential itera-
tive algorithm. We also notice that faster binary steering gives better

binary reconstructed images when the sequential iterative nonbinary
algorithm is used.

1 Introduction

The fully discretized model of the two-dimensional image reconstruction
problem of computerized tomography can be represented by a system of



linear equations Az = b . Here x € R" is the unknown image vector whose
J-th component x; has the value of the uniform grayness level of the j-th
pixel of the model, b € R™ is the measurements vector whose i-th compo-
nent b; is the value of the i-th line integral through the unknown image. The
binary image reconstruction problem assumes that the m x n system matriz
A is a zero—one matrix with its ¢-th row and j-th column element aé- equal to
zero if the path of the i-th line integral does not intersect the j-th pixel, and
equal to one if it does. Further, it is assumed that the practically feasible
values of the image vector are only zeros and ones. The problem then is to
find a zero—one vector z* that approximates well enough a solution of the
system Ax = b.

Recently, in [5], inspired by Herman’s work [11], we proposed a process,
called binary steering, designed to intervene between the iterative steps of
any nonbinary algorithm for solving Az = b in a way that would gradually
steer the iterates towards a binary solution. This heuristic process is appli-
cable to a plethora of nonbinary iterative reconstruction algorithms which
solve (asymptotically, depending on the relevant solution concept adopted)
the system Ax = b. Some of these nonbinary iterative algorithms perform
very well on nonbinary image reconstruction problems, efficiently generating
acceptable reconstructed images (i.e., approximations to the solution vector
x*), some of them lend themselves to parallel computations, or have other
favorable features such as guaranteed convergence even if the system Az = b
is inconsistent, see, e.g., Herman [12], Censor and Zenios [6] or Bauschke and
Borwein [1] and references therein.

In our preliminary work [5] we used as a nonbinary algorithm the simulta-
neous Cimmino method and, by running the binary steering process with it
on three test images (phantoms) that were used earlier in this field, we showed
that the heuristic binary steering process works. By this we mean that the
additional operations introduced by the binary steering process between con-
secutive iterations of the nonbinary algorithm do not ruin the practical initial
convergence of the overall process and that indeed the process results in bi-
nary images which reconstruct well (with some errors, of course) the original
phantoms.

When we embarked on the project reported here we designed an experi-
mental setup in which we could demonstrate the performance of the binary
steering process on more test images and compare the results of applying
the process with two different nonbinary iterative algorithms: the sequential
Kaczmarz algorithm, also known in the image reconstruction literature by the



name ART (for Algebraic Reconstruction Technique) and the, recently de-
vised, fully simultaneous Component Averaging (CAV) algorithm of Censor,
Gordon and Gordon [7]. We also improved upon the work in [5] by allowing
the binary steering process progress in different speeds (the precise meaning
of this becomes clear in the sequel). The experimental conclusions of the (still
limited in scope) computational work done here (with two different phantoms
and two different nonbinary iterative reconstruction algorithms) are as fol-
lows: (1) A strongly overrelaxed simultaneous nonbinary iterative algorithm
performs in our experiments better then a strongly underrelaxed sequential
iterative algorithm. (2) We found that binary steering has little effect on the
simultaneous iterative nonbinary algorithm while in each of our experiments
with the sequential iterative algorithm the quality of binary reconstruction is
directly related to the speed by which the binary steering process is steered,
i.e., better and less erroneous reconstructions are obtained for faster binary
processes. More computational work is needed to verify whether these obser-
vations are universal or not and whether situations for which binary steering,
with specific steering schemes and parameters, is advantageous can be clearly
identified.

The results of our experiments are depicted by reconstructed images and
by convergence-plots displaying error measures versus iteration index num-
bers in the reconstructions. Our computational work is of an exploratory
nature and more work with carefully designed methodological sets of exper-
iments is needed to refine it. The paper is laid out as follows. The binary
steering process is defined and described in Section 2. Section 3 contains a
precise description of the two nonbinary algorithms with which we experi-
mented here and the computational results are presented in Section 4.

2 The Binary Steering Process

In this section we describe how the binary steering process works in conjunc-
tion with any nonbinary iterative reconstruction algorithm. We assume that
the nonbinary algorithms, to which binary steering will be applied, have the
following general form:

Algorithm 1 (General Form of Nonbinary Algorithm).
Initialization: x° € U, where U C R" is the initialization set dictated
by the specific nonbinary algorithm.



Iterative Step: Given the k-th iterate x* and the data of the problem
d € D, where D 1is the data space dictated by the specific nonbinary algorithm,
calculate:

(1) Correction Calculation: The k-th correction vector c* is calcu-
lated by a formula of the form ¢ = fi.(z* d), where the functions fy are
dictated by the specific nonbinary algorithm.

(2) Correction Application: The next iterate 2! is calculated by a
formula of the form x**! = g.(z*, c*), where the functions gy, are dictated by
the specific nonbinary algorithm.

1

The term data (d € D) in this (and the next) algorithm is meant to include
not only the measured data (such as b in Ax = b) but all measured as well
as design data, i.e., both A and b in the case of linear equations.

Many of the algorithms in this field can be described in more detailed
schematic forms as having the structure of sequential, simultaneous, sequen-
tial block-iterative or simultaneous block-iterative algorithms, see, e.g., [6,
Section 1.3], another general algorithmic scheme of interest is that of aver-
aging sequential strings, see Censor, Elfving and Herman [4]. But for the
purpose of constructing the binary steering process it is enough to assume
that the nonbinary iterative algorithms are of the form of Algorithm 1.

The next definition provides the tool with which we will sequentially
binarize iterates generated by a nonbinary algorithm.

Definition 2 Let o = {ax}i>0, B = {Br}r>o and t = {tx}r>0 be three real
sequences such that 0 < ay <t < B < 1, and oy < agyr and Bri1 < B,
for all k> 0. Given any sequence {x*},>q of vectors ¥ = (z§)7_, € R", the
sequence {T*}y>o, defined, for all k >0 and j =1,2,...,n, by

07 Zf If S A,
T = L, ifxi > B, (1)
x?, otherwise,
is called the sequential binarization of {x"};>¢ with respect to the
triplet of sequences («,[3,t).

In the binary steering process, described below, the current iterate z*
is undergoing a step of sequential binarization — the result of which is fed
into the iterative step of the nonbinary Algorithm 1. The output obtained
in this way might be in conflict with the nonbinarized previous iterate z*
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and, therefore, the following concept — from which the meaning of the term
conflict becomes clear — is used.

Definition 3 Let o = {ax}i>0, 8 = {Bk}r>0 and t = {tx}r>0 be three real
sequences as in Definition 2 and let € be an arbitrarily small but fixed real

number with 0 < ¢ < 0.1. Given any two vector sequences {x*}y>o and
{yF} 0, the sequence {2*}y>0, defined, for all k >0 and j =1,2,...,n, by

b — € Zf iI?? < ag and yf > 7%
zf =q tyt+e if xf > Op and yf < tg, (2)
yf, otherwise,

is said to settle sequentially the conflict between {x*}i>0 and {y*}iso
with respect to the triplet of sequences («,[3,t) and €.

Using these definitions we formulate the binary steering process as follows.

Algorithm 4 (The Binary Steering Process [5, Figure 12.2]).

Initialization: 2° € U, where U C R" is the initialization set dictated
by the specific nonbinary algorithm in use.

Iterative Step: Given the (current) k-th iterate x* do the following:

(1) Sequential Binarization: Use the sequences («, 3,t) of Definition
2 to perform a sequential binarization on z* to obtain ¥ and then do:

(2) Nonbinary Algorithmic Step: Use the k-th sequentially binarized
iterate TF and the data of the problem d € D, where D is the data space
dictated by the specific nonbinary algorithm in use, to calculate:

(2a) Correction Calculation: The k-th correction vector c* is calcu-
lated by a formula of the form ¢ = f.(z% d), where the functions fy are
dictated by the specific nonbinary algorithm in use.

(2b) Correction Application: The output iterate y* of the nonbinary
algorithmic step is calculated by a formula of the form y* = g,(Z%, c¥), where
the functions g are dictated by the specific nonbinary algorithm in use.

(3) Conflict Resolution: Use the sequences («, (3,t) and the parameter
€ of Definition 3 to calculate the next iterate x*+1 of the binary steering pro-

cess by settling the conflict between y* and ¥, if any, according to Definition
3.

As iterations of the binary steering process proceed, more and more com-
ponents of the iteration vector take zero—one values because of the mono-
tonicity of the sequences {az} and {0}, see Figure 8. Observe that the
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correction vector c* is based on the sequentially binarized vector z* but it is
applied to the vector z* itself. If the j-th component of the output vector
of the nonbinary algorithmic step y;-“ is larger or equal to the current value
of t; but that component of the vector from which it was calculated xf was
below «j then we say that there is a conflict and we prefer not to make
a decision about that component but rather let the conflict resolution step
put that component back to ¢ty — €. A similar approach applies to the other
case of conflict in Definition 3. At the end of each run of a binary process,
i.e., at the iteration K when the process is stopped, a simple thresholding
step (with respect to the threshold value t) is always applied to force all
remaining nonbinary values of the image vector to take either zero or one
values. The final thresholding step is applied to derive from the iterate z
the approximate solution x* at this stage by

* 07 if :E]K S tK?
€Tr. = .
1, if .Tf >tk

(3)

J

3 The Nonbinary Algorithms in Our Exper-
iments

We compare experimentally the behavior as discrete tomography solvers of
two iterative nonbinary algorithms applied within the binary steering process.
The first nonbinary algorithm is the sequential ART (Algebraic Reconstruc-
tion Technique), first introduced in the literature on image reconstruction
from projections by Gordon, Bender and Herman [10], which is known as
Kaczmarz’s method [13], see, e.g., [6] and [12] for more information. This
algorithm, designed to iteratively solve a linear system Ax = b is as follows.

Algorithm 5 (The Nonbinary ART Algorithm, [10]).
Intialization: 2° € R" is arbitrary.
Iterative Step: Given the k-th iterate z*, choose a control index i(k)
from any repetitive control sequence (see definition below) and calculate:
(1) Correction Calculation: The k-th correction vector c* is calcu-
lated by

bi(k) — (™), 2*) i(k)

k_ (
=N ECIE a"". (4)
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(2) Correction Application: The next iterate x°1 is calculated by

" = 2b 4 F (5)

Here (-,-) and || - || are the standard inner product and Euclidean norm,
respectively, and a'®*) and bix) are the i(k)-th column of the transposed
matrix AT and the i(k)-th component of b, respectively. {\ x>0 is a user-
chosen sequence of relaxation parameters. To guarantee convergence of this
algorithm to a solution of Az = b when the system is consistent, these
parameters should be in the interval 0 < 6 < A\, < 2 — 4, for all £ > 0,
where 6 is an arbitrarily small but fixed real number, see, e.g., [6, Algorithm
5.4.3]. Well-documented computational experience shows that Algorithm
5 performs better as an image reconstruction problem solver if very small
relaxation parameters are used, see, e.g., Herman [12] and references therein.

A repetitive control sequence is a sequence {i(k)}r>o of indices 1 < i(k) <
m, for all k& > 0, where m is the number of rows in the matrix A, such that,
for every 1 <1 < m and every k > 0, there exists an index ¢ > k for which
i(q) = l. The family of repetitive control sequences includes the cyclic control,
defined by i(k) = kmodm + 1, for all k¥ > 0, as well as many others such
as the almost cyclic control, the remotest set control and the approzimately
remotest set control, see, e.g., [6, Definition 5.1.1].

The second nonbinary iterative algorithm that we use is the fully si-
multaneous Component Averaging (CAV) algorithm of Censor, Gordon and
Gordon [7], which is a new, highly accelerated, modification of Cimmino’s
simultaneous algorithm [8], see also [6, Section 5.6]. The general form of an
iterative step of the CAV algorithm is given by

2 =a2F 4 N Gi(PF(ab) - o), (6)
=1

where H; is the hyperplane H; := {z € R" | (a',x) = b}, for every
i = 1,2,...,m. The family {G;}*, of real nonnegative diagonal matrices
G; = diag{g;; | 7 = 1,2,... ,n}, is such that >_;" | G; = I, the unit matrix,
and g;; = 0, if and only if @} = 0. This is called in [7] a sparsity pattern
oriented (SPO) family with respect to A. The symbol ng (z*) stands for the
generalized oblique projection of x* onto H; with respect to G, as defined
in [7, Definition 2.1], and {\;} are relaxation parameters as in Algorithm 5.
Following [7], we denote by s; the number of nonzero elements in the j-th



column of A and define

L 1/8]', 1fa§7§0,
i '_{ 0, ifa}=0, (7)

to obtain the following explicit form of the CAV algorithm for solving the
system Ax = b.

Algorithm 6 (The Nonbinary CAV Algorithm, [7]).
Initialization: z° € R™ is arbitrary.
Iterative Step: Given the k-th iterate ¥ do:
(1) Correction Calculation: The k-th correction vector & = (c%) is
calculated by

by — (af, 2b) ,
F =N\ g =" Lq', forallj=1,2,..n. (8)
i1 > e silap)?

(2) Correction Application: The next iterate z*+1

18 calculated by
" = 2b 4 F (9)

Again, the {\;}r>0 are user-chosen relaxation parameters. Although [7,
Theorem 4.1] proves convergence only for the case A\, = 1, for all £ > 0, we
apply the CAV algorithm with different relaxation parameters in the range
0 < M <2 -6, for some 6 > 0. This is justified by further progress that we
made in studying the convergence of CAV in [3].

4 Experimental Results

In all the experiments reported below we used a fixed value t;, = 0.5, for all
k > 0, in Definitions 2 and 3 and the value ¢ = 0.05, in Definition 3. The
progress of the sequences {ay }r>0 and {0k }r>o determines what we referred
to earlier as the speed with which the binary steering process is steered. It is
controlled by an integer steering parameter S, which is used in the definition
of the following sequences

ag = (k/S)ty and By :=1— (k/S)(1 —t;), forall k>0, (10)

We compared various values of the steering parameter and present here
representative results for the three values S = 100,000, S = 10,000, and
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S = 1,000, and we used K = 1,000 as our stopping iteration index. Fig-
ure 8 shows the behavior of the sequences {ag }r>0 and { Bk }x>o for the first
1,000 iterations with these three values of S. The smaller S is the faster the
process is steered and the high value S = 100, 000, coupled with K = 1,000,
practically amounts to no binary steering at all. In all cases the thresholding
step (3) was applied with ¢x = 0.5.

All runs were initialized with an initial uniform image 2° = (z%)7_, with
the uniform value z = u, for all j = 1,2, ...,n, calculated by

_ Zielh bi
Zielh Z?:l a; ,

where [}, contains all indices 1 < ¢ < m which represent rays in the horizontal
view/projection. This means that the average uniform grayness of the initial
iterate agrees with the average grayness of any solution, estimated from the
measurements vector. Since we assume that the image is a square region
subdivided into n square pixels whose sides are equal to one unit of length,
and that exactly one ray /line goes through each row of pixels in the horizontal
view, the lengths of intersections of rays with pixels in this view are equal to
one so the denominator of (11) is equal to n.

We present here the results of the binary steering process runs with the
sequential ART (Algorithm 5) and the fully simultaneous CAV (Algorithm
6) with fixed relaxation parameters of A, = A = 0.05, for all & > 0, and
A = A = 2.0, for all £ > 0. For other intermediate values of these parameters
we observed a monotonic behavior of each algorithm, i.e., the various error
plots for intermediate values lie in between those for these extreme values. In
[5] only the fully simultaneous Cimmino algorithm was tested and with only
one value of relaxation parameters which was A\, = A = 1.0, for all £ > 0.

We used two different test images that were recently introduced in the
literature. One is the third phantom of Vardi and Lee [14, Figure 3.1 (which
appeared first in Fishburn et al. [9]). The second is one of the phantoms
used by Carvalho et al. in [2] and which we nickname Carvalho, shown in
Figure 9. Since the results that we obtained for the Vardi phantom are, in
principle, similar to those for the Carvalho phantom — we present here only
results for the latter.

The plots in Figures 1-6 describe the dependence of two types of recon-
struction errors on the iteration index (iter). An iteration is considered one
sweep through all equations of the system Ax = b, regardless of the nature

u
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(sequential or simultaneous) of the nonbinary algorithm in use. The data
error, displayed in Figures 1-3, is denoted by e-data, and it is the sum, over
all rays/lines, of the absolute values of the differences between the line-sums
in the phantom and in the reconstructed image. The image error, displayed
in Figures 4-6, is denoted by e-image, and it is the total number of locations
(i.e., pixels) at which the reconstructed image value disagrees with the phan-
tom value. There is a consistent correlation between these two errors by their
similar behavior in the simulation tests. All errors are reported for the first
1,000 iterations and for all three values of the steering parameter S men-
tioned above. In Figures 1-6 the individual plots are marked with numbers
(1)—(4) which represent the nonbinary algorithm and relaxation parameter
used according to the following table:

Nonbinary Algorithm Relaxation Parameter

(1) ART 2.0
(2) CAV 0.05
(3) ART 0.05
(4) CAV 2.0

All the results demonstrated here were derived by using four views (pro-
jections): horizontal («—), vertical (]) and the two diagonal projections
() and (\,) and no noise was introduced into the reconstruction model
and measurements. Figure 7 displays all 12 reconstructed images after 1,000
iterations, with all algorithms, relaxation parameters and steering parame-
ters mentioned above.

Our experiments with other phantoms (of the Vardi type) and with other
values of the relaxation and steering parameters lead to the same conclusions
as the reader will draw from examining the results presented here. In all cases
the simultaneous algorithm (CAV) behaved with a large relaxation parameter
A = 2.0 better then with a small one A\ = 0.05, while the sequential algorithm
ART behaved better with the smaller relaxation parameter. The overall
performance, from worst to best, was in the order (1)—(2)—(3)—(4) where the
numbers refer to the table given above. This can be seen both in the error
plots and in the reconstructed images in Figure 7.

Finally, observation shows that in our (still limited) experiments with the
specific algorithms, parameters, phantoms, and, in particular, with the spe-
cific functions (10) for the steering process, the effect of the binary steering is
hardly noticable when combined with the simultaneous nonbinary iterative
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algorithm, see the second and the last rows of Figure 7 and the appropriate
error plots in Figures 1-6. In contrast with this, the binary process affects
the sequential nonbinary iterative algorithm in a way that indicates its use-
fullness. Namely, for the smaller steering parameter S = 1,000, better results
can be observed (compare right column images against left column images
in first and third rows in Figure 7 and the appropriate error plots in Figures
1-6.)

As mentioned in the introduction, our binary steering process is based on
the principles used by Herman in [11]. The experiments performed there lead
to the conclusion that the method called there “BART” (for Binary ART)
compares generally favorably with the other three techniques experimented
with there. Specifically, compared with ART followed by thresholding at the
end (called there “CART”), BART was better for nine data sets, worse for
one data set, and the methods perform the same for the remaining eight date
sets. We think that further work is necessary and warranted to more fully
investigate the behavior of the binary steering process.
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Figure 1. e-data versus iteration index (iter) plots for the Carvalho
reconstructions obtained with steering parameter S = 100, 000.
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Figure 2. e-data versus iteration index (iter) plots for the Carvalho
reconstructions obtained with steering parameter S = 10, 000.
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Figure 3. e-data versus iteration index (iter) plots for the Carvalho
reconstructions obtained with steering parameter S = 1, 000.
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Figure 4. e-image versus iteration index (iter) plots for the Carvalho
reconstructions obtained with steering parameter S = 100, 000.

13



e-image

0+ T T T T T T T T T T T T T T T T

1 al 10 a1 201 231 30 331 401 451 a0 a1 60 68X Y01 Y51 801 851 801 931

iter

Figure 5. e-image versus iteration index (iter) plots for the Carvalho
reconstructions obtained with steering parameter S = 10, 000.
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Figure 6. e-image versus iteration index (iter) plots for the Carvalho
reconstructions obtained with steering parameter S = 1, 000.
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S = 100,000 S = 10,000

Figure 7. Reconstructions of the Carvalho phantom: K = 1,000, S =
100, 000, 10,000 and 1, 000; algorithms (from top to bottom row): ART (A =
2.0), CAV (A =0.05), ART (A = 0.05) and CAV (X =2.0).
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Figure 8. Plots of ay and () versus iteration index k (iter) for steering
parameter values S = 1,000, 10,000,and 100, 000.

Figure 9. The Carvalho test image (phantom).
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