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Chapter 1

Binary Steering of Non-Binary
Iterative Algorithms

Yair Censor!
Samuel Matej?

ABSTRACT

Ezisting algorithms for binary image reconstruction that can handle two-
dimensional problems are mainly of a combinatorial nature. This has, so
far, hindered their direct application to fully three-dimensional binary prob-
lems. This chapter proposes a steering scheme by which non-binary iterative
reconstruction algorithms can be steered towards a binary solution of a bi-
nary problem. Erperimental studies show the viability of this approach.

1.1 Introduction: Problem definition, approach and
motivation

Let Az = b be a system of linear equations representing the fully dis-
cretized model of a two-dimensional image reconstruction from projections
problem. The vector = = (l”j)?:l € R", in the n-dimensional Euclidean
space, is the image vector whose j-th component z; has the value of the
uniform grayness at the j-th pixel. The vector b = (b;)", € R™ is the
measurements vector whose i-th component b; is the value of the i-th line
integral through the unknown image. The m x n projection matriz A is a
0-1 matrix having its i-th row and j-th column element a§- equal to zero if
the i-th ray does not intersect the j-th pixel, and equal to one if it does.
The Binary Reconstruction Problem is to find a 0-1 vector x* that is an
acceptable approximation to a solution of the system Ax = b.

There is a large body of literature on this problem and renewed current
interest, see, e.g., Herman and Kuba [1]. Due to their mainly combina-
torial nature, existing algorithms for this problem, such as Chang [2], do
not lend themselves to extension to three-dimensional problems of binary
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reconstruction.

The adoption of non-binary iterative image reconstruction algorithms
such as ART, MART, EM, and others (see, e.g., Bauschke and Borwein [3],
Censor and Zenios [4], Byrne [5, 6] or Herman [7]) to binary reconstruction
is problematic because such algorithms do not preserve the binary nature
of the iterates even if initialized at a binary vector z°. This difficulty exists
in Vardi and Lee [8, Section I(A), point 6], and in Fishburn et al. [9] where
simple thresholding is used.

On the other hand, the temptation to apply non-binary algorithms ex-
ists because there is an abundance of such algorithms which have proven
their usefulness in non-binary image reconstruction problems. Moreover,
they could, technically speaking, be extended without hindrance to three-
dimensional problems, which are harder then two-dimensional problems
from the point of view of computational complexity and thus cause com-
binatorial algorithms to be much more involved, see, e.g., Gritzmann et
al. [10]. Therefore, if the route that we propose here will be successful for
two-dimensional binary reconstruction problems then it will also be imme-
diately applicable to three-dimensional problems.

Our approach to rely on non-binary iterative image reconstruction algo-
rithms (for fully discretized image reconstruction problems) has its roots
in, and is inspired by, the work of Herman [11]. The binary steering mech-
anism we propose here extends and replaces the ad hoc steps devised there
by Herman.

Non-binary iterative reconstruction algorithms of various kinds (asymp-
totically) solve (depending on the relevant solution concept), or find good
approximate solutions of, the linear system of equations of the form Ax = b.
Several of these algorithms have been shown to perform very efficiently,
handle linear inequalities, treat nonnegativity constraints, generate accept-
able approximations even in the inconsistent case (i.e., when there exists
no nonnegative solution of the system of equations), lend themselves to
parallel computations, or have other favorable features.

These algorithms can solve fully discretized real three-dimensional im-
age reconstruction problems because such problems can be modeled into,
admittedly much bigger, systems of linear equations.

We present a mathematical mechanism that, when used in conjunction
with any non-binary iterative reconstruction algorithm, will steer to ac-
ceptable approximate solutions of the binary reconstruction problem.

1.2 The steering mechanism

The iterative non-binary reconstruction algorithms that are considered here
are of the general form described in Fig. 1.1.
In a typical iterative step the algorithm first calculates a quantity called
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FIGURE 1.1. General structure of an iterative step of a non-binary
iterative image reconstruction algorithm.

corrector which is then applied to the current iterate. In sequential recon-
struction algorithms like ART, ART2, ARM, ART3, MART, etc. (see, e.g.,
Herman [12], Censor and Zenios [4]), the corrector d* is a vector whose
components are applied to the current iterate z* in one of several possi-
ble ways (addition in ART, componentwise multiplication in MART, etc.)
to obtain the next iterate z**!. The proposed binary steering mechanism
consists of two additional operations which we describe next.

Given a real number z and two real parameters a and 8 such that 0 <
a < B <1 we define & by

0, ifz<a,
1, ifz> g, (1.1)
z, otherwise,

K
I

and we say that Z is the (partial) binarization of x with respect to the
pair (a, 3). Applying this notion to a sequence of vectors leads to the next
definition.

Definition 1.1. Let {a:k}kzo be a sequence of vectors z* = (xf)yzl e R"
and let @ = {ak}te>0, B8 = {Br}r>0 and {tr}r>0 be three real sequences such that
0 < ap <ty, ar < k41, tk < Br <1, and Br+1 < Bk, for k > 0, where ty, is a
threshold at the given iteration k. The sequence {ﬁi‘k}kzo defined, for k > 0 and
7=12,...,n, by
. 0, i m{ < ou,
zy =40 1, ifx] > B, (1.2)
a:f, otherwise,

is called the (partial) sequential binarization of {x*}r>0 with respect to the pair
of sequences (a, 3) and the threshold sequence {t}r>0.

As will be seen below, we binarize each iterate z* prior to feeding it to
the non-binary iterative algorithm, of the form of Fig. 1.1, at hand. After
the iteration has been performed, a conflict might arise between z* and the
output y* of the non-binary iterative algorithm (see Fig. 1.2). The meaning
of the term conflict here and the manner in which this conflict is dealt with
become clear from the next definition.
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Definition 1.2.  Given two real numbers x and y, two real parameters o and
B such that 0 < a <t andt < B <1, where t is a given threshold, and a fized €,
0 <e<0.1, we define z by

t—e ifr<aandy>t,
z=( t+e ifr>p0andy<t, (1.3)
Y, otherwise,

and we say that z settles the conflict between x and y with respect to the pair
(a, B), the threshold t, and e.

Actually we use this notion for sequences via the following definition.

Definition 1.3.  Let there be given two vector sequences {x*}1>0 and {y*}r>o0,
and two real sequences o = {ar}r>o0 and B = {Br}r>0, a sequence {ti}r>o0 of
threshold values, having the same properties as in Definition 1.1, and a fized €
with 0 < € < 0.1. The sequence {2"}r>0, defined for k>0 and j =1,2,...,n, by

tr — €, zfa:;“ < ak and y;-“ > tk,
zjk = tr + ¢, zfaz:;c > Bk and yjl-c < tg, (1.4)
Y, otherwise,

is said to settle sequentially the conflict between {x*}r>0 and {y*}r>0 with respect
to the pair (a, B), the threshold sequence {ty}r>o0, and €.

With the above definitions we describe our proposed steering mechanism
which is depicted in Fig. 1.2, here the two middle boxes with the corrector
generator and the correction applicator are the same as those in Fig. 1.1.
The steering mechanism consist of adding to any such non-binary algorithm
the Binarizer and the Conflict settler as explained next.

k =k Tk k k+1
X Binarizer X Corrector d Correction | Y Conflict |,
generator applicator settler
F 3 F & [y Y
] | ., i
o i ﬂ v Data X X

FIGURE 1.2. Binary steering of the non-binary algorithm is accom-
plished by additional operations of binarization and conflict settle-
ment.

Each iteration of the overall process begins with a (partial) binarization
of the current iterate z* to form #*. As iterations proceed the values ay, keep
increasing and the values of 8, decrease so that more and more components
fit into the desired binary 0-1 nature of the vector. The corrector d* is based
on ¥, not on the original z*, but it is applied by the correction applicator



Chapter 1. Binary Steering of Non-Binary Iterative Algorithms 5

to a* itself (not to &*). If the resulting y* has a component y;-“ which is
larger or equal to the current threshold value t; while its previous value :13;c
was below qj, then we say that there is a conflict and we prefer not to make
a binary decision about this component but rather “settle the conflict” by
allowing a:f to be only as much as t; — €. A similar argument explains the
rest of (1.4).

When a predetermined iteration index K has been reached or the iter-
ations are stopped at K due to some other stopping criterion then a final
thresholding is used to define the final (approximate) solution z* = (z})7_,
by

(1.5)

i {0, if 2% < 0.5,
J

T L ifzK > 05

1.3 Experimental study

In the experimental results presented here we use a fixed threshold value
tr = 0.5, for all £ > 0, and the value € = 0.05. We constructed the sequence
ay, by the formula ay, = (k/K)ty, where k is the iteration index, K is the
predetermined number of iterations at which the reconstruction is stopped,
and we define 8, =1 — (k/K)(1 — t;), for & > 0. The non-binary iterative
reconstruction algorithm that we use is the fully simultaneous Cimmino
algorithm; see, e.g., Gastinel [13] or Censor and Zenios [4]. Starting from
an arbitrary 20 € R”, given a current iterate z¥, Cimmino’s algorithm
calculates the next iterate z*+! by

m (At Sk )
mk+1 — .’I}k + >\k (Z wf; bz <Cl , L > az) . (16)
i=1

P2
[la?]]

In this formula ||-|| and (-, -) are the Euclidean norm and the inner product
in R”, respectively, m is the number of views, a’ is the i-th column of AT
(the transpose of A), Aj, are the relaxation parameters, and w! are positive
iteration dependent weights which must sum up (over i) to one, for every
k> 0.

We employed this algorithm with unity relaxation, i.e., Ay = 1, for all
k > 0, with equal and constant weights, meaning that w¥ = 1/m for all i
and all k, and using a uniform starting image z°, for which for any given
view (projection angle) v

Yoaf = ), (L.7)

iel,

where I, is a set of all projection lines from the view v.
For testing our binary steering method with Cimmino’s reconstruction
algorithm, under the above described circumstances, we used the three test
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phantoms (see Figs. 1.3, 1.4 and 1.5, top left images) of Fishburn et al. [9].
These same phantoms were also used by Vardi and Lee [8], by Salzberg,
Rivera-Vega and Rodriguez [14], by Gritzmann et al. [10], and by Patch
[15].

We demonstrate the performance of the binary steering method by show-
ing along with each of the three phantoms its reconstructions using 2, 3 and
4 views. Two views are the two orthogonal views along the Cartesian axes
in the plane, the three views include additionally a diagonal view at 45°
(view of the direction (1,1) in [9]) and the four views include also another
diagonally oriented view at 135°. The three view run is employing the same
view directions as used by Fishburn et al. [9].

The only reconstruction parameter which is being changed in the tests
presented here is the number of iterations, where an iteration is counted
as a complete sweep through all equations. The number of iterations was
chosen so as to minimize the data error e, i.e., to minimize the sum of the
absolute values of the differences between the line sums in the phantom
and the reconstructed image. Following are the observations based on our
tests.

In the tests using two views the data error dropped quickly down to a
certain value already after a small number of iterations. Top right images
in Figs. 1.3, 1.4 and 1.5 show, by way of example, the reconstructions using
25, 25 and 200 iterations, respectively, having data errors 16, 28 and 34,
respectively. The number of image errors e;, i.e., the number of locations
at which the reconstructed image disagrees with the phantom, is 34, 50
and 96, respectively. Further decrease of the data error was (for the given
values of our reconstruction parameters: €, and sequences \g, tg, g, Ok)
only very slow when increasing the number of iterations. For example, it
took as much as 90,000 iterations to decrease the data errors to 8, 4, and
12, respectively. The image errors at the same time slightly increased to
the values 48, 70 and 110, respectively.

In the tests using three views we needed 220 and 70 iterations to find a
solution for the phantoms 1 and 2, respectively, (see bottom right images in
Figs. 1.3 and 1.4; note that the solution we obtained for phantom 1 differs
from the phantom by the switching chain of length six). Since phantom
3 is substantially more difficult to reconstruct, it needed more iterations.
The data error for it stabilized at about 3,000 iterations (see Fig. 1.5,
bottom right; e, = 6, e; = 36). To find a solution free of data errors it
took as much as 500, 000 iterations for our choice of parameters. For other
reconstruction parameters the exact solution might be obtained earlier.
This solution differes from the phantom at 58 locations, representing a
set of switching chains. It is as good as any other solution based on the
data alone. To be able to reconstruct the particular solution of the original
phantom we would need to utilize some additional prior information on
the reconstructed images (see, e.g., chapter by Matej, Vardi, Herman and
Vardi in this volume).
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FIGURE 1.3. Phantom 1 (top left) and its reconstructions using 2
views (top right; K = 25, e, = 16 and e; = 34, where K is the number of
iterations, e, is the data error and e; represents the number of places at
which the reconstructed image disagrees with the phantom), 3 views
(bottom right; K = 220, e, = 0 and e; = 6) and 4 views (bottom left;
K =22,¢e, =0 and e; =0); “” and “1” represent the values zero and
one, respectively, in the phantom and at the correct locations in the
reconstructions; “-” and “*” represent incorrect values of zero and

one, respectively, in the reconstructions; the “o”s in the phantom (top
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FIGURE 1.4. Phantom 2 (top left) and its reconstructions using 2
views (top right; K = 25, e, = 28 and ¢;
=70, e, =0 and e; = 0) and 4 views (bottom left; K =22, ¢, =0 and
“” and “1” represent values zero and one, respectively, in

K
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1.5. Phantom 3 (top left) and its reconstructions using 2
views (top right; K = 200, e, = 34 and e; = 96), 3 views (bottom right;
K = 3000, e, =6 and e; = 36) and 4 views (bottom left; K = 775, e, =0
and e; = 8); “.” and “1” represent values zero and one, respectively, in
the phantom and at the correct locations in the reconstructions;
and “*” represent incorrect values of zero and one, respectively, in the

“w_
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Finally, regarding the four views situation, we needed only 22, 22 and
775 iterations to find solutions (see bottom left images in Figs. 1.3, 1.4 and
1.5) for the given three phantoms, respectively. Note, that the solution for
the third phantom differs from the phantom by a switching chain of length
eight.

While adding more directions to the first two makes the discrete recon-
struction problem “harder” from the computational complexity point of
view, we experience in the computations better initial results. This is, of
course, so because adding directions supplies the iterative algorithm with
more information, thus enabling it to work “better”.

Although the results of our preliminary computational experiments, pre-
sented in this section, are in no way exhausting, they clearly suggest that
the underlying ideas of Herman [11], as refined and extended here, are a
viable tool for binary steering of non-binary iterative reconstruction algo-
rithms.

1.4 Conclusions

The method proposed in this paper is to reconstruct binary images by using
non-binary iterative reconstruction algorithms in conjunction with an ad-
ditional mechanism to steer the non-binary iterates towards an acceptable
binary solution. The steering mechanism is independent of the particular
choice of the non-binary reconstruction algorithm and the overall process
can be applied to three-dimensional binary image reconstruction once posed
as a system of linear equations. The numerical results obtained by our pre-
liminary computational experimentations encourage us to continue this line
of research.

Efforts need to be invested in studying the effects of different sequences
ak, B, tr and other parameters involved in the binarization and conflict
settlement operations. Different non-binary reconstruction algorithms need
to be tried out within this methodology and full three-dimensional binary
reconstruction problems must be solved with it to asses its efficiency. It
should be possible to study the proposed scheme also from a mathemat-
ical point of view to determine bounds on the errors as functions of the
parameters involved.

Acknowledgements

We thank Attila Kuba and Gabor Herman for many useful discussions
and Stavros Zenios for help with the figures. We are grateful to Sven de
Vries and Peter Gritzmann for their valuable comments on a draft of this
paper. This work was supported by the National Institutes of Health Grants



Chapter 1. Binary Steering of Non-Binary Iterative Algorithms 11

HL-28438 and CA-54356 and by a research grant from the Israel Science
Foundation, founded by the Israel Academy of Sciences and Humanities.

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

[8]

[11]

G. T. Herman and A. Kuba (Eds.), “Special Issue on Discrete Tomog-
raphy,” International Journal of Imaging Systems and Technology 9,
No. 2/3, 1998.

S.-K. Chang, “The reconstruction of binary patterns from their pro-

jections,” Communications of the ACM 44, 21-25 (1971).

H. H. Bauschke and J. M. Borwein, “On projection algorithms for
solving convex feasibility problems,” SIAM Review 38, 367-426 (1996).

Y. Censor and S. A. Zenios, Parallel Optimization: Theory, Algo-
rithms, and Applications (Oxford University Press, New York), 1997.

C. L. Byrne, “Iterative algorithms for deblurring and deconvolution
with constraints,” Technical Report, Department of Mathematical Sci-
ences, University of Massachusetts at Lowell, Lowell, MA (1997).

C. L. Byrne, “Accelerating the EMML algorithm and related iterative
algorithms by recalled block-iterative (RBI) methods,” IEEE Trans-
actions on Image Processing IP-7, 100-109 (1998).

G. T. Herman, “Algebraic reconstruction techniques in medical imag-
ing,” In C. T. Leondes, Medical Imaging Systems Techniques and Ap-
plications: Computational Techniques, (Gordon and Breach, Overseas
Publishers Association (OPA), Amsterdam), pp. 1-42, 1998.

Y. Vardi and D. Lee, “Discrete Radon transform and its approximate
inversion via the EM algorithm,” International Journal of Imaging
Systems and Technology 9, 155-173 (1998).

P. Fishburn, P. Schwander, L. Shepp, and R. Vanderbei, “The discrete
Radon transform and its approximate inversion via linear program-
ming,” Discrete Applied Mathematics 75, 39-61 (1997).

P. Gritzmann, D. Prangenberg, S. de Vries, and M. Wiegelmann, “Suc-
cess and failure of certain reconstruction and uniqueness algorithms in
discrete tomography,” International Journal of Imaging Systems and
Technology 9, 101-109 (1998).

G. T. Herman, “Reconstruction of binary patterns from a few projec-
tions,” In A. Gunther, B. Levrat and H. Lipps, International Com-
puting Symposium 1973, (North-Holland Publ. Co., Amsterdam), pp.
371-378, 1974.



12 Yair Censor, Samuel Matej

[12] G. T. Herman, Image Reconstruction from Projections: The Funda-
mentals of Computerized Tomography (Academic Press, New York),
1980.

[13] N. Gastinel, Linear Numerical Analysis (Hermann, Paris), 1970.

[14] P. M. Salzberg, P. I. Rivera-Vega, and A. Rodriguez, “Network flow
model for binary tomography on lattices,” International Journal of
Imaging Systems and Technology 9, 147-154 (1998).

[15] S. K. Patch, “Iterative algorithms for discrete tomography,” Interna-
tional Journal of Imaging Systems and Technology 9, 132-134 (1998).



