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Abstract

Component averaging (CAV) was recently introduced by Censor, Gordon and Gor-
don as a new iterative parallel technique suitable for large and sparse unstructured
systems of linear equations. Based on earlier work of Byrne and Censor, it uses
diagonal weighting matrices, with pixel-related weights determined by the spar-
sity of the system matrix. CAV is inherently parallel (similarly to the very slowly
converging Cimmino method) but its practical convergence on problems of image
reconstruction from projections is similar to that of ART (Kaczmarz’s sequential
row-action algorithm). Parallel techniques are becoming more important for practi-
cal image reconstruction since they are relevant not only for supercomputers but also
for the increasingly prevalent multiprocessor workstations. This study reports on
experimental results with a block-iterative version of component averaging, called
BICAV. When BICAYV is optimized for block size and relaxation parameters, its
very first iterates are far superior to those of CAV, and more or less on a par with
ART. Similarly to CAV, BICAV is also inherently parallel. The fast convergence
is demonstrated on problems of image reconstruction from projections, using the
SNARK93 image reconstruction software package. Detailed plots of various mea-
sures of convergence, and reconstructed images are presented.

Keywords. Block-iterative, component averaging, image reconstruction, parallel process-

ing, pizel-related weighting, sparse systems.

1 Introduction

Problems of image reconstruction from projections, after suitable discretization, can be

represented by a system of linear equations
Axr = b, (1.1)

where A is an m X n system matrix, m is the number of equations, n the size of the
(unknown) image vector x, and b is the vector (of size m) of readings. In practice, the
system (1.1) is often inconsistent, and one usually seeks a point z* € R” which minimizes
some predetermined optimization criterion. Even then, the problem is frequently ill-posed
and there may be more than one optimal solution. The standard approach to dealing with
that problem is via regularization, i.e., by aiming at an optimal solution with a minimal

Euclidean norm.

Equation (1.1) may also be viewed as a special case of the convez feasibility problem, which
is to find a point 2* € C' = (-, C;, where C is the intersection of finitely many closed
convex sets C; C R", ¢ = 1,2,... ,m, in the Euclidean space. In the inconsistent case,
when C' is empty, some iterative projection algorithms (mostly of the simultaneous type)

converge to a point x* which minimizes a certain proximity function. In image recovery



the task of estimating an image from the measurements of one or more signals, physically
related to it, can often be modelled by a (not necessarily linear) convex feasibility problem,
see, e.g., Combettes [20] or Stark and Yang [29]. Algorithmic schemes for this problem
are, in general, either sequential or simultaneous or block-iterative, see, e.g., Censor and
Zenios [18, Section 1.3] for a classification of projection algorithms into such classes, and

the review paper of Bauschke and Borwein [4] for a variety of specific algorithms of these

types.

A typical example of a sequential method for solving (1.1) is the row-action ART (Al-
gebraic Reconstruction Technique)—see, e.g., Herman [21], Censor and Zenios [18, Al-
gorithm 5.4.3]. Originating with Kaczmarz [24], this algorithm cyclically projects the
current iterate onto the hyperplanes represented by the rows of the system (1.1). In the
inconsistent case, it converges cyclically (Tanabe [30]), and for a fixed positive relaxation
parameter, the limits of the cycles lie within a bounded distance from the geometric least-
squares solution—see Censor, Eggermont and Gordon [15]. This distance approaches zero
as the relaxation parameter tends to zero, so ART with small relaxation parameters can
also be used to approach the geometric least squares solution arbitrarily closely. In prac-
tice, ART performs very well with a small relaxation parameter—see Herman [21] and

Herman and Meyer [22].

In the simultaneous paradigm the current iterate z* is operated upon simultaneously
with respect to all sets (or with respect to all sets in the current “block”, in the case of a

block-iterative method), generating “intermediate points”
g = R (%), i=1,2,...,m. (1.2)

Here, R; are the algorithmic operators applied to * with respect to the sets C;. For
example, R; could be Pg. (z*)—the least-Euclidean-distance projection of = onto the set

k+1

C;, also called the orthogonal projection. The next iterate x is then generated from

the intermediate points by

L — R({karl,i}m ), (1.3)

i=1
where R is another algorithmic operator, for example, the taking of a convex combination
of the form Y7 w;z" ™1 with w; >0, i=1,2,...,m, and > ;" w; = 1.

A significant property of simultaneous schemes is that they are inherently parallel since
the projections onto the sets C; (the hyperplanes in the linear case) are independent
of each other and can, therefore, be done in parallel. A prototype of the simultaneous
paradigm is the Cimmino algorithm [19], in which the current iterate is projected onto
all the hyperplanes, and the next iterate is the weighted average of all the projections—

see also Auslender [3] for the extension to convex sets. It is well-known that the initial
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convergence rate of this algorithm is so slow as to render it impractical, even if it is

executed in parallel—see, for example, our computational results in [17].

In our recent paper [17] we developed a fully simultaneous projection algorithm called
CAV (Component Averaging), which uses diagonal weighting matrices with component-
related weights. We also showed how to choose a specific weighting strategy, based on
the sparsity of the system matrix, which strongly accelerates the initial convergence of
the algorithm when applied to image reconstruction problems. Being simultaneous, CAV
is inherently parallel (see Butnariu, Censor and Reich [9]) but its initial convergence rate
is far superior to that of the original simultaneous Cimmino method. Initial iterates of
ART were better than CAV, but eventually CAV produced slightly better results.

In this paper we present a block-iterative version of CAV (which we call BICAV) and
report on experiments with this algorithm. We show that when BICAYV is optimized with
respect to block size and relaxation parameters, its initial convergence rate is significantly
superior to that of CAV, and it is somewhat on a par with ART. BICAV retains the
quality of inherent parallelism of CAV, although it naturally requires somewhat more
communications between processors in order to broadcast the intermediate results of the

block calculations to all the processors.

While a formal convergence analysis of the fully simultaneous CAV method is available
(in [17]), a mathematical validation of the new BICAV algorithm has only recently been
achieved and will be published elsewhere (see comments at the end of Section 3). Thus,
the encouraging experimental results, presented here, will be complemented by a mathe-
matical study of BICAV.

A good starting point for our presentation is the general prototypical Block-Iterative
Projections (BIP) method, developed by Aharoni and Censor [1], which uses the following

iterative formula:
m
x§?+1 — xf + M\ (wa (P, (xk))] - x?) , j=12...,n, (1.4)
i=1

where 2% = (z¥) € R" is the current iterate, **! is the next iterate, {\; }x>o are relaxation
parameters, and P;(z*) is the (orthogonal) projection of z* onto the closed convex set C;.
Each w* = (wF) € R™ is a weight vector whose components are the weights used at the
k-th iterative step and they are nonnegative and sum up to one, for each k. BIP allows
the weights to vary from one iteration to another and, by allowing some of the weights to
take zero values, lets the iterations proceed along blocks which vary with iteration index

in both size and composition.

If we choose in (1.4) w* = €'®), for all k > 0, where ! € R” is the ¢-th standard basis

4



vector (having one in its ¢-th coordinate and zeros elsewhere), and {i(k)}r>o is a control
sequence of the algorithm all of whose indices are 1 < i(k) < m, then the BIP scheme
(1.4) becomes the well-known purely sequential POCS (Projections Onto Convex Sets)
method. At the other extreme, if w¥ # 0, for all K > 0 and all i = 1,2, ... ,m, then BIP
becomes a fully simultaneous algorithm in which all sets {C;} are being acted upon in

every iterative step.

Although the weights in BIP depend on the iteration index, they are not component-
related, i.e., they cannot vary with the component index j. To the best of our knowledge,
earlier projection algorithms for the convex feasibility problem, except for the recent
method of Byrne and Censor [12, 13], did not allow the weights to be component-related
(i.e., j-related or pixel-related). Both CAV [17] and the new BICAV algorithms use
component-related weights for solving sparse systems of linear equations. More specific
to image reconstruction, Mueller, Yagel and Wheller [26] have recently incorporated pixel-

dependent weighting into ART reconstructions from enhanced modeling considerations.

The paper is laid out as follows. In Section 2 we briefly review the motivation and
construction of the fully simultaneous CAV algorithm presented in [17]. In Section 3 we
present BICAV, the block-iterative derivation of CAV, which is the object of the present
study. Section 5 contains a report of our experimental computational work with BICAV

and comparisons with other relevant iterative reconstruction methods.

2 Motivation and Definitions

Consider the case of linear equations in which the sets C; are hyperplanes
H; 2 {z eR" | (d',z) = b}, (2.1)

for i =1,2,...,m, where (-,-) is the inner product and o’ = (a})7_, € R", ' # 0, and
b; € R are given vectors and given real numbers, respectively. Then, for any z € R", the

orthogonal projection of z onto H; is

bi B <ai7 Z>

—“La", (2.2)
llat][3

bi(z) =

where || - ||z is the Euclidean norm.

In Cimmino’s algorithm for the convex feasibility problem (Auslender [3]), with relaxation
parameters and with equal weights, the next iterate 2**! is the average of the projections

of z* on the closed and convex sets C;, as follows:



Algorithm 2.1 (Cimmino):
Initialization: 2° € R" is arbitrary.

k

Iterative Step: Given x" compute

g = h 4 M Z (Py(z") — 2*), (2.3)

m
=1

where {\,}r>0 are relazation parameters.

Expanding the iterative step (2.3) according to (2.2) produces, for every component j =
1,2,...,n

A Zm b; — {a’, z*) |
k+1 k k ? ? 7
! Tome e,
which is a special case of
2F = 2k 4N, § w, ||2 a, (2.5)

where the fixed weights {w;}7”, must be positive for all 7 and )", w; = 1. In matrix

notation, (2.4) can be written as
"t = 2+ N ATD (b — A, (2.6)

where b = (b;) € R™, AT (the transpose of A) has @’ in its i-th column, and

1 1
Dz—dl&g( —,...,7>. (2.7)
latll3 " lla?][3 [l

Our CAV algorithm [17] is similar in form to (2.6), but with a totally different diagonal

matrix D.

Consider now the system (2.1). When it is sparse, only a relatively small number of

the elements aj,a,... ,a}

divided by the relatively large m. This observation led us to consider a replacement of

are nonzero, but in (2.4) the sum of their contributions is

the factor 1/m in (2.4) by a factor that depends only on the nonzero elements in the
set {aj, ST

elements of column j, and we wanted to replace (2.4) by

a}f’l}. For each j = 1,2,... ,n, we denoted by s; the number of nonzero

— ky
ot = b 4 A Z bi— (o', 2t) >a’~. (2.8)
s

TR = I T A

We then combined this idea of using the s;’s with the concepts developed by Byrne and

Censor [12, 13] to obtain our CAV algorithm, which uses oblique projections, commonly
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defined as follows. Let H 2 {x € R* | (a,x) = b}, with a = (a;) € R*, b € R and
a # 0, be a hyperplane. Let G be an n X n symmetric positive definite matrix and let
||z 2 (x,Gz) be the associated ellipsoidal norm, see, e.g., Bertsekas and Tsitsiklis [6,
Proposition A.28]. Given a point z € R", the oblique projection of z onto H with respect

to G is the unique point PJ(z) € H for which

PS(2) = argmin{||lz —z||¢ | v € H}. (2.9)
Solving this minimization problem leads to
h—
PE(z) = 2+ ﬂa*a, (2.10)
lallg-+

where G~! is the inverse of G. For G = I, the unit matrix, Equation (2.10) yields the
orthogonal projection of z onto H, as given by (2.2); see, e.g., Ben-Israel and Greville [5,
Section 2.6].

In order to consider oblique projections onto H with respect to a diagonal matrix G =
diag(g1, g2, - - , gn) for which some diagonal elements might be zero, we introduced the

following definition.

Definition 2.1 [17]: Let G = diag(g1, 2, ... ,9n) with g; >0, for all j =1,2,... ,n, let
H = {x € R" | (a,x) = b} be a hyperplane with a = (a;) € R* and b € R, and assume
that g; = 0 if and only if a; = 0. The generalized oblique projection of a point = € R"
onto H with respect to G is defined, for all 7 =1,2,... ,n, by

b— (a, a; .
zj—i-nif'g—;, if g;#0,
A [
(Pi(2)); = > (2.11)

— i

9170
Zj if g; = 0.
This P (z) reduces to (2.10) if g; # 0 for all j = 1,2,...,n. It is not difficult to verify
that this PF(z) belongs to H, that it solves (2.9) if we just replace ||z — z||g there by
(x — z,G(z — 2)), and that it is uniquely defined, although other solutions of (2.9) may

exist due to the possibly zero-valued g;’s.

Consider now a set {G;}, of real diagonal n x n matrices G; = diag(g:1, gi2, - - - , Jin)
with g;; > 0foralli=1,2,... ,mand j =1,2,... ,n, such that } " | G; = I. Referring
to the sparsity pattern of A we made the following definition.

Definition 2.2 [17]: A family {G;}, of real diagonal n x n matrices with all diagonal
elements g;; > 0 and such that Y ." | G; = I will be called sparsity pattern oriented (SPO,
for short) with respect to an m x n matrix A if, for every i =1,2,... ,m, g;; =0 if and

only if al; = 0.



The CAV algorithm that we presented in [17] combined three features:

1. Each orthogonal projection onto H; in (2.5) was replaced by a generalized oblique

projection with respect to Gj.

2. The scalar weights {w;} in (2.5) were replaced by the diagonal weighting matrices
{Gi}.

3. The actual weights were set inversely proportional to the number of nonzero elements

in each column, as motivated by the discussion preceding Equation (2.8).
The iterative step resulting from the first two features has the form
"= b 4, Em:Gz- (P (z") — 2F) (2.12)
i=1
or, equivalently, substituting from (2.11) for each ng, we obtained

Algorithm 2.2 (Diagonal Weighting (DWE) for Linear Equations):

Initialization: 2° € R™ is arbitrary.

Iterative Step: Given z*, compute x**' by using, for j =1,2,...,n, the formula:
m ik
b; — (a', x :
= a0 %-a;, (2.13)
P (a)?
94570 -
— il
94170

where {G;}™, is a given family of diagonal SPO (with respect to A) weighting matrices

as in Definition 2.2, and {\,}r>o are relazation parameters.

Finally, we specified how we construct the diagonal matrices {G;}™, in order to utilize

the s,’s appearing in (2.8). Define

1 e
R 550 if a7 # 0,
9ij = (2.14)
0, ifaj=0.

With this particular SPO family of GG;’s we obtained our CAV algorithm:

Algorithm 2.3 (Component Averaging (CAV)):

Initialization: 2° € R" is arbitrary.

Iterative Step: Given z*, compute x**1 by using, for j = 1,2,... ,n, the formula:
by — (a', 2F)y
k k ? ) )
o= b ) S (2.15)
i=1

D> si(ai)”

=1

where { A, }r>o are relazation parameters and {s;}]_, are as defined above.
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We showed in [17] that Algorithm 2.2, with Ay = 1 for all £ > 0, generates sequences

{2*} which always converge, regardless of the initial point z°

and independently from
the consistency or inconsistency of the underlying system Ax = b. Moreover, it always

converges to a minimizer of a certain proximity function.

3 The Block-Iterative Component Averaging Algo-
rithm (BICAV)

We now develop our block-iterative derivation of the CAV algorithm. The basic idea is to
break up the system Az = b into “blocks” of equations and treat each block according to
the CAV method, passing cyclically over all the blocks. This calls for the slight notational
complication of having to deal with block indices. Throughout the following, M will be
the number of blocks. For ¢t = 1,2,..., M, let the block of indices B, C {1,2,... ,m},
be an ordered subset of the form B, = {if,i5,... i}, where m(t) is the number of
elements in Bj, such that every element of {1,2,... ,m} appears in at least one of the
sets By. Fort=1,2,..., M, let A; denote the matrix formed by taking all the rows of A

whose indices belong to the block of indices By, i.e.,
a1

-t
a'2

1=

L t=1,2,... M. (3.1)

t
a'm(®)

The iterative step of our proposed BICAV algorithm uses, for every block index ¢ =
1,2,..., M, generalized oblique projections with respect to a family {G'}™, of diagonal
matrices which are SPO with respect to A;. The same family is also used to perform the

diagonal weighting. The resulting iterative step has the form

£(k)
o = gk ), Z Gf(k) (Pg; (z%) — xk> : (3.2)

ieBt(k)

where {t(k)}r>0 is a control sequence according to which the ¢(k)-th block is chosen by the
algorithm to be acted upon at the k-th iteration. Thus, we must have 1 < ¢(k) < M, for

all £ > 0. The real numbers {\;};>o are user-chosen relazation parameters. Substituting

(k)
from (2.11) for each Pg , we obtain:

Algorithm 3.1 (Block-Iterative Diagonal
Weighting (BIDWE) for Linear Equations):



Initialization: 2° € R" is arbitrary.

Iterative Step: Given z*, compute x**1 by using, for j = 1,2,... ,n, the formula:
by — (a',2%) |
k}+1 _ k 7 ) '3
i€By (1) § : lk
t(k t
giJ( 20 =1 gll( )
921(19)7&0

where, for each t = 1,2,... M, {G'}™, is a given family of diagonal SPO (with re-
spect to A;) weighting matrices, as in Definition 2.2, the control sequence is cyclic, i.e.,

t(k) = kmod M + 1, for all k > 0, {\.}k>0 are relaxzation parameters, and G: =
diag(gir, Gis - » 9in)-

Finally, in order to achieve the acceleration, the diagonal matrices {G:}™, are constructed

as in the original CAV algorithm [17], but with respect to each A;. Let s} be the number

of nonzero elements ag # 0 in the j-th column of A; and define

& it £0,

N .

gfj = ’ (3-4)
0, ifa;=0.

It is easy to verify that for each ¢t = 1,2,... M, Y " G% = I holds for these matrices.

With these particular SPO families of G%’s we obtain our block-iterative algorithm:

Algorithm 3.2 (Block-Iterative Component Averaging (BICAV)):

Initialization: z° € R is arbitrary.

Iterative Step: Given z*, compute x**' by using, for j =1,2,...,n, the formula:
b — (a', 2%y .
k k ) 7
A= kN Y (3.5)

1E€By(k) E Sf(k) (a%)Q
=1

where {\g}pso are relaxation parameters, {si}l, are as defined above, and the control
sequence is cyclic, i.e., t(k) = k mod M + 1, for all k > 0.

For the case M =1 and B; = {1,2,...,m}, Algorithm 3.2 becomes fully simultaneous,
i.e., it is the CAV algorithm of [17]. For M = m and B, = {t}, t =1,2,... ,m, BICAV
simply becomes ART (the well-known Algebraic Reconstruction Technique—see, e.g.,
Herman [21]).

After the first version of this paper was ready, progress has been made in the mathematical
study of the convergence of BICAV by Byrne [11, 10] and by Censor and Elfving [16].
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These results, which will be published elsewhere, validate the convergence with relaxation
parameters of CAV in the inconsistent case, and of BICAV in the consistent case. In [16]
the algorithmic framework of BICAV is generalized to handle systems of linear inequalities
and to include as a special case the well-known image reconstruction algorithm called
SART, invented by Andersen and Kak [2]. The following result describes the behavior of

BICAV on a system of linear equations in the consistent case.

Theorem 3.1 (BICAV for Linear Equalities [16, Theorem 7.1]) Let 0 < e < A\, <2 — ¢,
for all k > 0, where € is an arbitrarily small but fized constant, and assume consistency
of the system Az =b. Then any sequence {z*};>0, generated by Algorithm 3.2 (BICAV),

converges to a solution of the system Ax =b.

The next theorem shows that any sequence {xk}kzo, generated by the fully simultaneous
Algorithm 2.3 (CAV), converges to a weighted least squares solution of the system of
equations Ax = b, regardless of its consistency, for relaxation parameters in the interval
[£,2 — £]. Only the case of unity relaxation, i.e., A, = 1, for all £ > 0, was shown in [17],
where CAV was first proposed; the proof in [17] was adapted from [12] and [13, Algorithm
4.2].

Theorem 3.2 (CAV for Linear Equalities in the Inconsistent Case [16, Theorem 7.3])
Let 0 <e <\, <2—¢, for all k > 0, where € is an arbitrarily small but fized constant,
Then any sequence {x* }1>o, generated by Algorithm 2.3 (CAV), for linear equations, con-
verges to a weighted least squares solution with weight matriz Mc 4y = diag{1/||a’||% | i =
1,2,...,m} and with S = diag{s; | j = 1,2,...,n}, where s; is the number of nonzero

elements in the j-th column of A.

4 Problem Description, Convergence Measures and
Test Cases

In the medical application of Transmission Computerized Tomography (TCT), a planar
cross-section of the body is considered and the tissue’s attenuation of X-rays everywhere
in the cross-section has to be reconstructed. This unknown function of two variables
has real nonnegative values and is called the image or picture. The fundamental model
in the finite series-expansion approach, see, e.g., Censor [14], is formulated as follows.
A Cartesian grid of square picture-elements, called pizels, is introduced into the region
of interest so that it covers the whole picture that has to be reconstructed. The pixels

are numbered in some agreed manner, say from 1 (top left corner pixel) to n (bottom
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Figure 1: The fully discretized model for transmission tomography image reconstruction.

right corner pixel); see Figure 1. The X-ray attenuation function is assumed to take a
constant uniform value z; throughout the j-th pixel, for j = 1,2,... ,n. Sources of X-rays
and detectors are assumed to be points, and the rays between them—Ilines. It is further
assumed that the length of intersection of the i-th ray with the j-th pixel, denoted by ag,
forall:=1,2,...,m,j=1,2,...,n, represents the contribution of the j-th pixel to the

total attenuation along the i-th ray.

The physical measurement of the total attenuation along the i-th ray, denoted by b;,
represents the line integral of the unknown attenuation function along the path of the
ray. Therefore, in this fully discretized model, each line integral is approximated by a

finite sum and the model is described by a system of linear equations
» wah=b;, i=1,2,...,m. (4.6)
j=1

Here, b = (b;) € R™ is the measurements vector, x = (x;) € R is the image vector and

L) is the projection matrix.

the m x n matrix A = (a}

All our reconstruction algorithms were implemented within SNARK93, a software pack-

age for testing and evaluating algorithms for image reconstruction, see Browne, Herman
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and Odhner [8]. Three different measures were used for comparisons: distance, relative
error, and standard deviation, calculated by SNARK93, and defined in [8, Section 5.10]

as follows.

Let x;“ and z; denote the density assigned to the j-th pixel of the reconstruction after &

iterations, and the density of the j-th pixel in the phantom, respectively. Let S denote
the set of indices j of pixels which are in the region of interest and let o be the number

of elements in S. The average value of the reconstructed image ¥ is given by
A 1 k
pe = - ij (4.7)
jes

and the variance of z* is given by

al k 2

v = EZ(:UJ- — pr)°. (4.8)
JES

The standard deviation of the reconstructed image z* is then

A

Similarly, we define the average value p, variance ¢ and standard deviation & for the

phantom, in terms of the phantom values z;.

The distance between z* and the phantom 7 is

(1 [1 R o -
g a Z(x;“ — xj)Z, lf o > 0,
A JES
0 = (4.10)
> (ah 7)), if 5 < 0.
L | jes

With 7 2 > jes 5] the relative error of z¥ is defined by

1
—Z|x§?—fj|a if >0,
-

j€S

> ek —ay),  ifr<o.

JES

11>

€k (4.11)

The performance of the different algorithms is demonstrated on the reconstruction of
the Herman head phantom [21, Section 4.3], which is specified by a set of ellipses, with a
specific attenuation value attached to each elliptical region. The valuesof b;, 7 =1,... ,m,

are calculated by computing the line integrals through the elliptical regions (without
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reference to the discretization). Thus, the system (4.6) is basically inconsistent, because
the left-hand-side is only an approximation to the actual integrals. This matches the real-
life situation where the b;’s are actual X-ray readings through an object but the region of

interest is discretized as above.

We examined four test cases characterized by two different image resolutions and varying
numbers of projections and rays per projection. The four cases thus had differing numbers

of variables and equations, as shown in Table 1.

Equations | Variables | Image Size | Projections | Rays
Case 1 13,137 13,225 115 x 115 151 87
Case 2 26,425 13,225 115 x 115 151 175
Case 3 | 126,655 119,025 | 345 x 345 365 347
Case 4 | 232,275 119,025 | 345 x 345 475 489

Table 1: The four different test cases.

In all our experiments, the relaxation parameter remained constant throughout the iter-
ations, i.e., \y = A for all £ > 0. In [17] we already determined that for such problems,
the optimal relaxation parameter for CAV is A\ = 2.0. We also used a small relaxation
parameter A = 0.1 for ART, since it was found to produce good results without impeding
the convergence rate. Although all the experiments were carried out on the four test
cases, we present convergence plots only for Cases 1-3 since Case 4 was very similar to
the others. Furthermore, the results for the distance measure and standard deviation were
very similar to the relative error, so they are omitted. For the reconstructed images, we

present only Case 2.

5 Experimental Results

In this section, we outline the general setting of the experiments and present their results.
Subsection 5.1 explains how optimal relaxation parameters were chosen for BICAV and
compares the relative performance of five different algorithms: ART, CAV and BICAV,
together with the Cimmino (CIM) algorithm (Algorithm 2.1) and the BIP method (Equa-
tion (1.4)).
and BICAV. In Subsection 5.3, we examine the behavior of ART, CAV and BICAV when

noise is introduced into the equations. We also experiment with Equation (2.8) and its

Subsection 5.2 contains our main set of experiments, involving ART, CAV

block version, and display images obtained after very few (5) iterations.

All the methods were implemented (sequentially) on a Digital Alpha workstation running

at 433MHz. The different algorithms are compared on the basis of the measures of
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convergence and on image quality. We limit our work here only to the above-mentioned
projection algorithms, leaving out many other iterative image reconstruction algorithms,
such as the EM algorithm, see, e.g., Lange and Karson [25] or Hudson and Larkin [23]
for the block-iterative version of the EM algorithm, called: the “Ordered Subsets EM”
(OSEM) algorithm.

All our experiments were initiated with 2° = 0. Note that CAV is the same as BICAV with
one block and ART is identical to BICAV if every block contains exactly one equation.
We henceforth use the term iteration to refer to one whole sweep through all equations
of the system, so the time for a single iteration is the same for all algorithms. Thus, the

number of iterations is a faithful timing basis for comparing the different algorithms.

In the implementation of BICAV, we initially compute, for every ¢t = 1,2,... , M, all
the values sﬁ., j=1,2,...,n. These are used to compute the denominators of Equation
(3.5), which are stored and used in subsequent iterations. We also experimented with
different values of M — the number of blocks. For each value of M, we experimented with
various values of the relaxation parameter A in order to determine an optimal relaxation

parameter for that number of blocks — see Subsection 5.1.

5.1 Preliminary Experiments

We first show a typical set of experiments with BICAV, to demonstrate its behavior with
different relaxation parameters and to show how we chose their optimal values. We present
in detail the example of BICAV with 10 blocks, executed on Case 2. The relative errors
are shown in Figure 2. The relaxation parameters varied from 0.25 to 2.0, and the figures
demonstrate the typical behavior of BICAV: The optimal results are obtained for some
relaxation parameter strictly less than 2.0 (which is optimal for CAV). Starting from the
low relaxation parameter, each successive value of A produces visibly better performance,
until the optimal value, and larger values of A produce worse results. Even so, we can
see that there is a wide range of values of A which achieve good results: BICAV with 10

blocks achieves good convergence measures for all values of A > 0.4 within 25 iterations.

Note that the optimal relaxation parameter depends on the number of blocks M (of
BICAV): When M = 1, BICAV coincides with CAV, whose optimal relaxation parameter
is 2. As M increases, the optimal relaxation parameter decreases. When M equals the
number of equations, BICAV is identical to ART, and requires a relaxation parameter of
0.1.

The next set of experiments is intended to demonstrate the relative performance of BICAV
with the following algorithms, of which only the first three (like BICAV) are inherently
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parallel:

e The Cimmino algorithm (CIM) — Algorithm 2.1. We used relaxation parameter 2,
which was determined experimentally to be the best of all values for which CIM provably
converges.

e The Block-Iterative Projection algorithm (BIP) — Equation (1.4) with 10 blocks and
P; as in (2.2). Here we also used the optimal relaxation parameter of 2.

e CAV, with its known optimal relaxation parameter of 2 [17].

e ART with a relaxation parameter of 0.1 - known experimentally to achieve excellent

results.

We ran BICAV with 10 blocks and optimal relaxation parameter of 1.4. The results of
these comparisons are presented in Figure 3, which shows the relative errors. These plots
demonstrate that there is a very clear and distinct difference between the initial conver-
gence rate of the algorithms. ART and BICAV are almost identical in their fast initial rate
of convergence. CAV is slower, but it achieves the same measures of convergence within
about 25 iterations. Between CIM and BIP, BIP is clearly much better, but neither of
them comes close to the performance of the other three within the number of iterations

that were examined.

5.2 Main Experiments

Our main experiments demonstrated here were performed on ART, CAV and BICAV.
BICAV was executed with three different block sizes, and for each block size we used the
optimal relaxation parameters. Convergence plots for test Cases 1-3 are show in Figure
4. BICAV is shown with 5, 10 and 30 blocks.

On the whole, the results indicate that BICAV behaves somewhat similarly to ART.
Occasionally, BICAV is better, and occasionally it is slightly worse. As to CAV, it is always
initially worse than ART and BICAV, but in most cases, after several iterations, ART
and BICAV begin to deteriorate while CAV continues to improve, eventually overtaking
them. An interesting observation, requiring further research, can be noted by comparing
Case 1 with 5 blocks and Case 2 with 10 blocks: In both cases the number of equations
per block is approximately 2600, and in both cases the optimal relaxation parameter is
very similar (close to 1.5). A similar situation occurs with Cases 3 and 4 (Case 4 not
shown). We conjecture that for a fixed number of variables, the main factor affecting the

optimal relaxation parameter in BICAV is the absolute number of equations in a block.

Figure 5 shows the phantom and reconstructed images for Case 2 for the three methods,
after 10, 20 and 60 iterations. BICAV is shown for the choice of 10 blocks, with its optimal

16



relaxation parameter. These images bear out the fact that on the whole, BICAV behaves
very similarly to ART, while CAV produces images that are initially “fuzzy”, but after
some 60 iterations, the images are on a par with those produced by ART and BICAV
after some 10 iterations. Note also that both ART and BICAV deteriorate gradually after

10 iterations. Cases 1, 3 and 4 exhibit similar behavior.

In order to provide the best visualization of the reconstructions, each image is displayed
with its pixel values linearly mapped to grey levels between 0 and 255. This method

shows up artifacts better than mapping all images according to the same scale.

5.3 Other Experiments

In this subsection we take one of our four cases (Case 2) and perform on it two more sets

of experiments in order to gain a more detailed view of the capabilities of BICAV.

The first set of experiments compares the performance of ART, CAV and BICAV on
the data of Case 2, but with noise added to the readings, i.e., to the right-hand-side of
Equation (1.1). The noise consisted of multiplying each b;, j = 1,2,... ,m, with a random
number from a Gaussian distribution with an average of 1.0 and a standard deviation of
0.05. Note that we are experimenting with transmission CT, so our experiment with noise
differs from the accepted practice in emmission CT. The relative error results are shown
in Figure 6. ART and BICAV now behave differently: Whereas ART reaches its best
output in four iterations, BICAV requires eight, but its results are slightly better. Further
iterations of ART and BICAV produce worse results, but CAV continues to improve for
about 30 iterations and then very gradually deteriorates. Note that with the addition of

noise, the optimal relaxation parameter for BICAV is smaller than for the regular case.

For the image comparisons, we compared the three methods at 4, 8, 15 and 30 iterations.
For each method, we picked the best image — this is shown in Figure 7. Note that the
number of iterations for the best image of each method matches the number of iterations
at which the relative error is minimal (Figure 6). We see from this that CAV at its
best (30 iterations) is almost identical to BICAV at its best (8 iterations), and both are
distinctively better than the best image obtained with ART (4 iterations). We conclude
from this that in the presence of noise, CAV and BICAV are preferable to ART, provided

more computation time is available.

All three methods continued to deteriorate with further iterations, with ART being the
worst and CAV the best. After 1000 iterations, the following relative errors were obtained:
ART - 1.0177, BICAV - 0.642, CAV - 0.4391. However, all three methods continued to

improve the residual of the solution, where the residual of the k-th iteration is defined
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as ||[Az*) — b||. The consequence of this is that the residual should not be used as an
indicator of the quality of reconstruction. The experiments on phantoms provide a guide

as to how many iterations to perform on real data.

The second set of experiments is concerned with Equation (2.8) and the behavior of the
various algorithms at very few (5) iterations. Even though Equation (2.8) is sparsity ori-
ented in its averaging, it is not the same as CAV because it employs orthogonal projections

and not oblique projections like CAV. In matrix form, (2.8) can be written as
" = 2P+ \SATN(b — AxF), (5.1)

where S = diag(1/s1,1/s2,...,1/sp) and N = diag(1/||a||3,1/|la?||3, ... ,1/||a"||3). The
effect of IV is identical to normalizing all the equations before the iterations, i.e., the i-th
equation is divided by ||a’||s. Equation (5.1) appears to be similar in form to the gener-
alized Landweber iteration—see, e.g., Bjorck [7] and Trussell and Civanlar [31] for further
information. Recent applications of Landweber-type algorithms in image reconstruction
from projections appear in Pan and Yagle [27] and Pan et al. [28]. In fact, (5.1) is quite
distinct from the generalized Landweber iteration of [28], because the matrix N does not
appear there, the matrix to the left of AT is a certain polynomial matrix (called a shaping

matriz), and the scalar is related to the singular values of A.

Experiments with iteration formula (2.8) produced some interesting results. As far as
convergence plots were concerned, the differences between CAV and (2.8) were negligble,
but in some of the cases, and especially in the early iterations, CAV produced better
images. We also experimented with a block version of (2.8), where in each block we
divide by sﬁ., which is the number of nonzero elements of the j-th column of A;. As with
(2.8), this block version of (2.8) produced convergence plots similar to those of BICAV,

but the early iteration images of BICAV were again superior.

Figure 8 shows the images produced after five iterations by ART, BICAV (10 blocks), and
the block version of Equation (2.8) (10 blocks), for Case 2. Again, BICAV is very similar
to ART, while the block version of (2.8) exhibits visible artifacts. These images demon-
strate that convergence plots alone are insufficient for comparing different algorithms;
reconstructed images are essential. The important point here is that the oblique projec-
tions used by CAV and BICAV produce better results than the orthogonal projections of
(2.8).
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6 Conclusions

We have introduced here a block-iterative version (BICAV) of our component averaging
algorithm CAV [17]. After suitable optimization of block sizes and relaxation parameters,
BICAV combines the best features of ART and CAV:

e The initial convergence rate of BICAV is very similar to ART (and better than CAV).
e Similarly to CAV, it is inherently parallel in structure.

e For noisy images, CAV and BICAV produce better images than ART, but require more
iterations.

e Oblique projections, as used in CAV and BICAV, produce better images than the
orthogonal projections of Equation (2.8).

The significance of good parallel iterative methods lies in the fact that multiprocessor
workstations can be expected in the near future to be widely prevalent alongside state-
of-the-art medical equipment. With regard to the parallel implementation of BICAV,
it should be noted that it requires somewhat more communication overhead than CAV,
because the results of the projections within one block need to be combined and redis-
tributed before they can be used for the next block. In view of this, one should attempt to
minimize the number of blocks. Our results indicate that 10 blocks provides a reasonable

choice.

Our use of the Diagonal Weighting (DWE) algorithm for linear equations (Algorithm
2.2) is motivated by a choice of diagonal weighting matrices (Equation (2.14)), with
sparsity-related weights, which strongly and significantly accelerate the fully simultaneous
Cimmino algorithm. This usage leads to the CAV method, Algorithm 2.3. BICAV, the
block-iterative version of CAV, improves on CAV: Its initial rate of convergence is almost
identical to ART, but in contrast to ART, it is also inherently parallel.

Future research on CAV and BICAV will concentrate on their behavior on other sparse
systems coming from different real-world problems. With regard to convergence analysis,
CAV is now known to converge in the inconsistent case with relaxation parameters up
to 2, while BICAV is known to converge for the same relaxation parameters, but only in
the consistent case. There is still a need for further research in this direction. Another
topic for further research is an analysis of the initial rate of convergence of BICAV, with

emphasis on the relation between the block size and the optimal relaxation parameter.
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