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Abstract

We present a modification of Dykstra’s algorithm which allows us
to avoid projections onto general convex sets. Instead, we calculate
projections onto either a halfspace or onto the intersection of two
halfspaces. Convergence of the algorithm is established and special
choices of the halfspaces are proposed.

The option to project onto halfspaces instead of general convex
sets makes the algorithm more practical. The fact that the halfspaces
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are quite general enables us to apply the algorithm in a variety of cases
and to generalize a number of known projection algorithms.

The problem of projecting a point onto the intersection of closed
convex sets receives considerable attention in many areas of mathe-
matics and physics as well as in other fields of science and engineering
such as image reconstruction from projections.

In this work we propose a new class of algorithms which allow
projection onto certain super halfspaces, i.e., halfspaces which contain
the convex sets. Each one of the algorithms that we present gives the
user freedom to choose the specific super halfspace from a family of
such halfspaces. Since projecting a point onto a halfspace is an easy
task to perform, the new algorithms may be more useful in practical
situations in which the construction of the super halfspaces themselves
is not too difficult.

1 Introduction
The Dykstra algorithm is an iterative procedure which (asymptotically) finds
the nearest point projection (also called the orthogonal projection) of any
given point onto the intersection of a given family of closed convex sets. It
iterates by passing sequentially over the individual sets and projecting onto
each one a deflected version of the previous iterate. A precise description of
the algorithm can be found in Han [35]. The algorithm was first proposed
and analyzed by Dykstra [30] in 1983 for a family of closed convex cones in
Rn. Boyle and Dykstra [11] studied the algorithm for general convex sets in
Hilbert space. Han rediscovered the algorithm in 1988 [35] and investigated
its behavior in Rn by using the duality theory of mathematical programming.
Han and Lou [36] proposed a simultaneous version of the algorithm in Rn.

Gaffke and Mathar [34] studied the Dykstra algorithm in Hilbert space
from a duality standpoint and showed its relation to the method of component-
wise cyclic minimization over a Cartesian product. They also proposed a
fully simultaneous Dykstra algorithm. Iusem and De Pierro showed in [41]
convergence of the simultaneous Dykstra algorithm in both consistent and
inconsistent cases in Rn, using Pierra’s [51] formalism. Crombez [23] did a
similar analysis in Hilbert space. Combettes [18] included the Dykstra algo-
rithm in his review. Bauschke and Borwein [4] analyzed the algorithm for
two sets in Hilbert space and generalized the work of Iusem and De Pierro
[41] to this setting. Deutsch and Hundal published a rate of convergence
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study for the polyhedral case in [29], and in [39] established generalizations
to an infinite family of sets and to random, rather then cyclic, order control,
see also Deutsch [28].

Han [35], as well as Iusem and De Pierro [41], showed that for linear
inequality constraints and for linear interval inequality constraints (the poly-
hedral case), the method of Dykstra becomes the Hildreth algorithm, first
published in [38] and studied further by D’Esopo [25], and by Lent and Cen-
sor [48].

Censor and Reich [16] proposed a synthesis of Dykstra’s algorithm with
Bregman distances and obtained a new algorithm that solves the best ap-
proximation problem with Bregman projections. However, they established
convergence of the resulting Dykstra algorithm with Bregman projections
only when the constraints are half-spaces. Bauschke and Lewis [9] provided
the first proof for general closed convex constraint sets. Their analysis relies
on some strong properties of Bregman distances corresponding to Legendre
functions which were treated earlier by Bauschke and Borwein [6]. Bauschke
and Lewis [9] also discovered the close relationship between the Dykstra
algorithm with Bregman projections and the very general and powerful algo-
rithmic framework of Tseng [54]. Bregman, Censor and Reich show that the
Dykstra algorithm with Bregman projections is precisely the nonlinear ex-
tension of the Bregman optimization algorithm in [14]. This recognition goes
beyond the fact that the two algorithms coincide in the linear constraint case,
as was shown by Censor and Reich [16]. It enables these authors to present
a new proof and convergence analysis of Dykstra’s algorithm with Bregman
projections for almost cyclic control sequences, which rests on Bregman’s
original work [13]. Their work also offers an intuitive geometric interpreta-
tion of the iterative steps.

Other algorithms for finding the projection of a point onto the intersection
of convex sets are available. Haugazeau proposed such an algorithm in [37]
and his ideas were further abstracted and developed by Bauschke and Com-
bettes in [7]. The latter was extended to Bregman projections by Bauschke
and Combettes in [8]. Earlier, Pierra discussed yet another method, which is,
however, related to Haugazeaue’s work, in [50] and [51]. Finally, Combettes
constructed a block-iterative outer approximations method in [22].

In the present paper we propose an algorithmic scheme which is a modifi-
cation of Dykstra’s algorithm. It allows us to replace projections onto convex
sets by projections onto either a half-space or the intersection of two half-
spaces. A method, which replaces projections onto convex sets by projections
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onto either a half-space or the intersection of two half-spaces, was proposed
and studied by Iusem and Svaiter in [42] and in [43], but in a different way.
In our work, when we have to project onto the intersection of two half-spaces,
our scheme enables us to choose one of the half-spaces from a family of pos-
sible half-spaces and the convergence theorem is true for the whole family
of possible half-spaces. This feature allows us to construct many specific
algorithms within our general scheme and to obtain the result of Iusem and
Svaiter (both the algorithm and the convergence theorem) as a special case
by making a specific choice of the half-spaces.

2 δ-Super Half-spaces and δ-Super
Hyperplanes: Definitions and Construction

The orthogonal projection x0 of a point x onto a nonempty closed convex set
E ⊆ Rn can be viewed the orthogonal projection of x onto the particular hy-
perplane H which separates x from E and supports E at x0, the closest point
to x in E. (For the definitions of a separating hyperplane and a supporting
hyperplane consult any book on convex analysis or optimization theory or
look, e.g., in Censor and Zenios [17]).

But, of course, at the time of performing such an orthogonal projection
neither the point x0, nor the separating and supporting hyperplane H are
available. In view of the simplicity of performing an orthogonal projection
onto a hyperplane, it is natural to ask whether in the construction of iterative
projection algorithms one could use other separating supporting hyperplanes,
instead of that particular hyperplane H through the closest point to x.

Aside from theoretical interest, this approach leads to algorithms that can
be used in practice, provided that the computational effort of finding such
other hyperplanes competes favorably with the work involved in performing
orthogonal projections directly onto the given sets.

Such an approach was taken by Aharoni, Berman and Censor in [1], where
the (δ, η)-algorithm for the convex feasibility problem replaces orthogonal
projections onto the convex sets by projections onto separating hyperplanes
(see also [17, Algorithm 5.5.1]).

In the present paper we use the rationale behind the (δ, η)-algorithm to
deal with another class of mathematical problems, namely, finding the opti-
mal point that minimizes a given objective function over the intersection of
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given convex sets. We construct a family of half-spaces and hyperplanes with
particular properties and replace projections onto convex sets by projections
onto a half-space or a hyperplane from this family or onto the intersection of
two half-spaces.

In the next subsection we define δ-super half-spaces and δ-super hyper-
planes which play an important role throughout this work.

Figure 1: Geometric description of a δ-Super halfspace and a δ-Super hyper-
plane

2.1 Definition and Construction of δ-Super Half-spaces
and δ-Super Hyperplanes

Let E ⊆ Rn be a nonempty closed convex set defined by E := {x ∈ Rn |
e(x) ≤ 0}, where e : Rn → R is a convex function, and let z ∈ Rn be a given
point. For z /∈ E we wish to construct a half-space which contains the set
E, but does not contain any point of the interior of a ball centered at z with
radius δe(z), for some fixed δ, 0 < δ ≤ 1. Such a half-space will be called
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a δ-Super Half-space (δ-SHS for short) with respect to the ball described
above and E, and its boundary will be called a δ-Super Hyperplane (δ-SHP
for short). If z ∈ E, then the only possible δ-SHS is defined to be Rn (see
Figure 1).

Definition 1 (δ-Super Half-space)
Given are a point z ∈ Rn, a real number δ, 0 < δ ≤ 1, and a nonempty
closed convex set E := {x ∈ Rn | e(x) ≤ 0}, where e : Rn → R is a convex
function. For z /∈ E define the ball

B(z, δe(z)) := {x ∈ Rn | kx− zk ≤ δe(z)} (1)

and a half-space

SE(z) := {x ∈ Rn | htE(z), xi ≤ θE(z)}, (2)

where tE(z) 6= 0 and θE(z) ∈ R. The set SE(z) will be called a δ-super
half-space with respect to B(z, δe(z)) and E if and only if the follow-
ing two conditions hold:

y ∈ B(z, δe(z)) implies htE(z), yi ≥ θE(z), (3)

i.e.,

SE(z) ∩ intB(z, δe(z)) = ∅; (4)

and
E ⊆ SE(z). (5)

Definition 2 (δ-Super Hyperplane)
If SE(z) is a δ-SHS, as in Definition 1, and z /∈ E, then its bounding hyper-
plane is called a δ-super hyperplane (δ-SHP for short) with respect
to B(z, δe(z)) and E. If z ∈ E then the δ-SHS is empty.

Here is an example of the construction of a δ-SHS. This particular ex-
ample plays an important role in a special case of our new algorithm (see
Section 5.1 below).

6



Example 3 Let E be a convex set, E := {x ∈ Rn | e(x) ≤ 0}, where e(x) is
a convex function. Let z /∈ E and denote by e0(z) any subgradient of e at z.
Assume that there exists an M > 0 such that ke0(z)k ≤M for all z in some
bounded set G ⊆ Rn. Then

H := {x ∈ Rn | e(z) + he0(z), x− zi ≤ 0} (6)

is a δ-SHS with respect to B(z, δe(z)) and E for all z ∈ G and δ ≤ 1/M . In
order to prove this claim we need to show that (4) and (5) hold. Indeed, let
y ∈ H. Then

he0(z), y − zi ≤ −e(z), (7)

by (6). It follows that

e(z) ≤ |he0(z), y − zi| ≤ ke0(z)k · kz − yk. (8)

Using the assumption on the boundedness of the subgradients we obtain

e(z) ≤M · kz − yk, (9)

or

e(z) · 1
M
≤ kz − yk. (10)

The last inequality shows that whenever δ is chosen such that δ ≤ 1/M , we
obtain y /∈ int B(z, δe(z)) which implies that H∩ int B(z, δe(z)) = ∅. Next,
we show that E ⊆ H. Let x ∈ E. Using the well-known subgradient inequality
(see, e.g., [52, p. 214]) we have

e(x)− e(z) ≥ he0(z), x− zi. (11)

Since x ∈ E, e(x) ≤ 0. Thus

−e(z) ≥ he0(z), x− zi, (12)

which implies that x ∈ H, by (6), and as a result of (7)—(12) we obtain that
H is indeed a δ-SHS, as claimed.

The last example is very important because there are many algorithms
that use projections onto half-spaces of the form of (6), see, e.g., Iusem and
Svaiter [42] and Fukushima, [32] and [33]. We will need to make use of the
following condition.
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Condition 4 For any E, as in Definition 1, and any bounded set G ⊆ Rn,
there exists a δ ∈ (0, 1) such that z ∈ G and z /∈ E imply that the intersection
B(z, δe(z)) ∩ E is empty.

Remark 5 Condition 4 is necessary and sufficient to enable us to construct
a δ-SHS. In our general algorithmic scheme, which will be presented next,
we have to assume that this condition holds. For the special cases of the
algorithm, that we treat separately, we show how to choose a δ such that
Condition 4 actually holds. Example 3 illustrates such a special case. How-
ever, formulating a general sufficient condition for Condition 4 to hold for
our general algorithmic scheme still eludes us.

3 The δ-SHS Algorithm

3.1 The Algorithm

We consider the optimization problem

min{f(x) | x ∈ Q}, (13)

where Q = ∩mi=1Qi, Qi := {x ∈ Rn | qi(x) ≤ 0}, and f, {qi}mi=1 are real-valued
functions the effective domains of which, dom f and dom qi, are subsets of
Rn. We make the following assumptions regarding the constraints:

• Assumption (A1). qi(x) is convex, 1 ≤ i ≤ m.

• Assumption (A2). Q 6= ∅.
• Assumption (A3). Q∩(dom f) 6= ∅ and Qi∩int(dom f) 6= ∅ , for all

i , 1 ≤ i ≤ m. (But Q∩ int(dom f) may be empty.)

• Assumption (A4). The sets dom qi, 1 ≤ i ≤ m, are “wide enough”
in the sense that all points appearing in the new Algorithm 8, defined
below, belong to int(dom qi), 1 ≤ i ≤ m.

We assume that f is a Bregman function with zone S = int(dom f) (see
the definition of Df (x, y) in, e.g., [17, Definition 2.1.1]).
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Remark 6 If f is a Bregman function with zone S = int(dom f) and if a
point a ∈ S = int(dom f) satisfies ∇f(a) = 0, then the problem

min{f(x) | x ∈ Q ∩ (dom f)} (14)

achieves its minimum at the Bregman projection with respect to f of the
point a onto Q. This follows immediately from the definition of the Bregman
projection of a point onto Q, and the fact that ∇f(a) = 0, i.e.,

P f
Q(a) = argmin{Df (x, a) | x ∈ Q ∩ (dom f)}

= argmin{f(x)− f(a)− h∇f(a), x− ai | x ∈ Q ∩ S̄}
= argmin{f(x) | x ∈ Q ∩ (dom f)}. (15)

We add the next three assumptions on f to make sure that the algorithm
is well-defined:

• Assumption (B1). The function f is co-finite, which, since it is a
Bregman function, implies that the mapping y = ∇f(x) is a one-to-
one mapping of int(dom f) onto Rn (see, e.g., Rockafellar [52, Theorem
26.5]).

• Assumption (B2). The function f is zone consistent with respect to
any half-space and with respect to the intersection of two half-spaces
containing points from int(dom f).

Remark 7 Bauschke and Borwein showed in [6, Theorem 3.14] that if f is
a Legendre function, then it is zone consistent. Rockafellar [52, Lemma 26.7]
gives a characterization of co-finiteness for differentiable convex functions.

• Assumption (B3). The function f has a global minimum.

The precise description of the new algorithm that we propose for problem
(13) is as follows:

Algorithm 8

• 1. Data at the beginning of the k-th iterative step

1.1. Current approximation xk ∈ int(dom f).
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1.2. m vectors aki ∈ Rn and m real numbers αk
i , 1 ≤ i ≤ m, such that each

pair (aki , α
k
i ) defines a half-space Lk

i ,

Lk
i := {x ∈ Rn | haki , xi ≤ αk

i }, (16)

containing Qi.

2. Initialization

2.1. x0 is a (global) minimum point of f(x) on Rn, i.e.,

∇f(x0) = 0. (17)

2.2. Set a0i = 0 and α0
i = 0 for all 1 ≤ i ≤ m.

2.3. Choose a real δ ∈ (0, 1] such that Condition 4 holds for the bounded set

G = {x ∈ Rn | Df (y, x) ≤ f(y)− f(x0)}, for some y ∈ Q ∩ dom f,
(18)

and for each Qi, i = 1, 2, . . . ,m. (Note that G is bounded because the
partial level sets of the Bregman distance Df are always bounded, see,
e.g., [17, Definition 2.1.1]).

3. Iterative step

3.1. Choose an operating control index i(k) from the almost cyclic control
sequence. Recall (see, e.g., [17, Definition 5.1.1]) that an almost cyclic
control sequence on {1, 2, . . . ,m} is a sequence {i(k)}∞k=0 such that
1 ≤ i(k) ≤ m for all k ≥ 0 and there exists a constant (called the
almost cyclicallity constant) T ≥ m such that, for all k ≥ 0,

{1, 2, . . . ,m} ⊆ {i(k + 1), i(k + 2), . . . , i(k + T )}. (19)

3.2. Calculate zk ∈ Rn such that

∇f(zk) = ∇f(xk) + aki(k). (20)

Such a vector zk ∈ int(dom f) exists because of Assumption (B1).
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3.3. Set xk+1, αk+1
i(k) , a

k+1
i(k) by one of the following two possible options:

3.3.1. If qi(k)(xk) ≤ 0, then let xk+1 be the Bregman projection with re-
spect to f of zk onto the half-space

Lk
i(k) := {x ∈ Rn | haki(k), xi ≤ αk

i(k)}. (21)

That is,
if zk ∈ Lk

i(k), then let xk+1 = zk and define λk := 0,

if zk /∈ Lk
i(k), then xk+1 and λk are calculated from the Karush-

Kuhn-Tucker (see, e.g., [49]) conditions
∇f(xk+1) = ∇f(zk)− λka

k
i(k)

λk ≥ 0,
haki(k), xk+1i ≤ αk

i(k),

λk(haki(k), xk+1i − αk
i(k)) = 0.

(22)

Next set (
ak+1i(k) = λka

k
i(k),

αk+1
i(k) = λkα

k
i(k).

(23)

3.3.2. If qi(k)(xk) > 0, then let xk+1 be the Bregman projection with re-
spect to f of zk onto the intersection of the following two half-
spaces: Lk

i(k) which was defined by (21) and

SQi(k)
(xk) := {x ∈ Rn | hti(k), xi ≤ θi(k)}, (24)

which is a δ-SHS with respect to the ball B(xk, δqi(k)(x
k)) and Qi(k).

In other words,½ hti(k), xi ≤ θi(k) for all x ∈ Qi(k),
hti(k), xi ≥ θi(k) for all x ∈ B(xk, δqi(k)(x

k)),
(25)

where ti(k) = ti(k)(xk) 6= 0 and θi(k) = θi(k)(x
k) (see Section 2

for the definition and construction of the δ-SHS). Thus, we cal-
culate the vector xk+1, λk and µk from the Karush-Kuhn-Tucker
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conditions

∇f(xk+1)−∇f(zk) + λka
k
i(k) + µkt

i(k) = 0,

λk ≥ 0, µk ≥ 0,

haki(k), xk+1i ≤ αk
i(k),

hti(k), xk+1i ≤ θi(k),

λk(haki(k), xk+1i − αk
i(k)) = 0,

µk(hti(k), xk+1i − θi(k)) = 0,

(26)

and then set (
ak+1i(k) = λka

k
i(k) + µkt

i(k),

αk+1
i(k) = λkα

k
i(k) + µkθi(k).

(27)

3.4. For i 6= i(k) do not change aki and αk
i , i.e., set

ak+1i = aki ,

αk+1
i = αk

i .
(28)

Figure 2 describes geometrically the various possibilities of the iterative
step of Algorithm 8, in the following way: Cases (i)—(iii) describe iterative
steps in which xk belongs to the convex set Qi(k) (but the modified point zk

can be in Qi(k), in Lk
i(k) and not in Qi(k), and not in Lk

i(k), respectively). Case
(iv) describes the iterative step in which xk does not belongs to the convex
set Qi(k).

Note that the Bregman projection of a point onto a half-space or onto
the intersection of two half-spaces exists. According to Assumption (B2) the
projection belongs to int(dom f), thus we have that xk+1, λk and µk in (22)
and (26) exist and xk+1 ∈ int(dom f).

Remark 9 Observe that no relaxation parameters appear in our algorithm.
Some of the special cases discussed below employ a sequence {βk}k≥0 of relax-
ation parameters. Loosely speaking, these parameters overdo or underdo the
move prescribed in an iterative step. Relaxation parameters add an extra de-
gree of freedom to the way a method might actually be implemented, and have
important consequences for the performance of the method in practice. We,
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however, do have the flexibility to choose a δ-SHS which will lie closer to xk

at each iterate step. In this way, some underrelaxation, i.e., ² ≤ βk < 1 for
some arbitrarily small ² > 0, can be actually incorporated in our algorithm.

Figure 2: Geometric interpretation of Algorithm 8

The three lemmas below will be used to prove the convergence of Algo-
rithm 8.

Lemma 10 For any k ≥ 0, the half-space Lk+1
i(k) := {x ∈ Rn | hak+1i(k) , xi ≤

αk+1
i(k) }, defined by the pair (ak+1i(k) , α

k+1
i(k) ), generated by Algorithm 8, contains

Qi(k).

Proof. When Step 3.3.1 in Algorithm 8 holds, λk is non-negative (see
Censor and Zenios [17], Lemma 2.2.2. Notice that there is a sign difference
of λk between Lemma 2.2.2 in [17] and our Lemma, because of a different
definition of the Lagrangian function). Thus, by the definition (23) of ak+1i(k)

and αk+1
i(k) we obtain Lk+1

i(k) = Lk
i(k), and Lk

i(k) contains Qi (by Step 1.2 of
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Algorithm 8). When Step 3.3.2 of Algorithm 8 holds, let x ∈ Qi(k). We will
show that this implies that x ∈ Lk+1

i(k) . We have

hak+1i(k) , xi = λkhaki(k), xi+ µkhti(k), xi ≤ λkα
k
i(k) + µkθi(k) = αk+1

i(k) , (29)

where the first equality uses (27), the inequality uses (21) and (24), and the
last equality again uses (27). We got that if x ∈ Qi(k), then hak+1i(k) , xi ≤ αk+1

i(k) ,

i.e., x ∈ Lk+1
i(k) . Thus, the lemma is true for Step 3.3.2 too. So Lemma 10 is

true in all cases.

Lemma 11 If {xk}k≥0 and {aki }k≥0 are generated by Algorithm 8, then, for
all k ≥ 0, we have

∇f(xk) +
mX
i=1

aki = 0. (30)

Proof. For k = 0 the statement is true by (17) and Step 2.2 in the
initialization of Algorithm 8. Now we suppose that it is true for some k and
we prove it for k + 1. For the proof we will use the fact (see Step 3.4 of
Algorithm 8) that

mX
i=1

i6=i(k)

ak+1i =
mX
i=1

i6=i(k)

aki . (31)

When Step 3.3.1 in Algorithm 8 holds, then using (22), (20), the induction
hypothesis, (31) and (23) we obtain

∇f(xk+1) = ∇f(zk)− λka
k
i(k) = ∇f(xk) + aki(k) − λka

k
i(k)

= (−
mX
i=1

aki ) + aki(k) − λka
k
i(k) = (−

mX
i=1

i6=i(k)

ak+1i )− aki(k) + aki(k) − λka
k
i(k)

= (−
mX
i=1

i6=i(k)

ak+1i )− ak+1i(k) = −
mX
i=1

ak+1i . (32)
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When Step 3.3.2 in Algorithm 8 holds, then we use (26), (20), the induction
hypothesis, (31) and (27), to obtain

∇f(xk+1) = ∇f(zk)− λka
k
i(k) − µkt

i(k) = ∇f(xk) + aki(k) − λka
k
i(k) − µkt

i(k)

= (−
mX
i=1

aki + aki(k))− λka
k
i(k)−µkt

i(k)

= (−
mX
i=1

i6=i(k)

ak+1i )− aki(k) + aki(k) − λka
k
i(k) − µkt

i(k)

= (−
mX
i=1

i6=i(k)

ak+1i )− ak+1i(k) = −
mX
i=1

ak+1i . (33)

This completes the proof of Lemma 11.

Lemma 12 If {xk}k≥0 , {aki }k≥0 and {αk
i }k≥0 are generated by Algorithm 8,

then, for k ≥ 0, there exists an integer r = r(k) ≥ 0 and r vectors

yj ∈ {x0, x1, . . . , xk−1}, 1 ≤ j ≤ r,

such that, for all i, 1 ≤ i ≤ m, aki can be represented as a finite linear
combination of the normal vectors ti, generated in Step 3.3.2 of Algorithm 8,
at yj with nonnegative coefficients, that is,

aki =
rX

j=1

γjt
i(yj), γj ≥ 0, (34)

and, for all i, 1 ≤ i ≤ m, αk
i can be represented as

αk
i =

rX
j=1

γjθi(y
j), γj ≥ 0, (35)

where the θi(y
j)’s correspond to the ti(yj)’s generated above.

Proof. For k = 0, the left-hand sides of (34) and (35) are zero by Step
2.2 of Algorithm 8. So both statements are true with γj = 0, j = 1, 2, . . . , r.
We now assume that the lemma is true for some k and prove it for k + 1.
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For i 6= i(k) both (34) and (35) hold, because aki and αk
i do not change,

according to Step 3.4 of the algorithm.
For i = i(k), in Step 3.3.1 or in Step 3.3.2 with µk = 0, (34) and (35)

hold, because, by (23) or (27) and the induction hypothesis,

ak+1i(k) = λka
k
i(k) = λk(

rX
j=1

γjt
i(yj)), (36)

and

αk+1
i(k) = λkα

k
i(k) = λk(

rX
j=1

γjθi(k)(y
j)). (37)

In Step 3.3.2 with µk > 0, (34) and (35) hold by (27), the induction hypothesis
and the fact that a vector xk is added to the set {x0, x1, . . . , xk−1}, so we
have ti(k) = ti(k)(yj) for some yj. Thus we have

ak+1i(k) = λka
k
i(k) + µkt

i(k)(xk) = λk(
rX

j=1

γjt
i(k)(yj)) + µkt

i(k)(yj), (38)

αk+1
i(k) = λkα

k
i(k) + µkθi(k)(x

k) = λk(
rX

j=1

γjθi(k)(y
j)) + µkθi(k)(y

j). (39)

4 Convergence of Algorithm 8
We have to make now an additional assumption on the functions qi. Denote
by I1 the subset of I = {1, 2, . . . ,m} for which the qi are affine functions.

• Assumption (A5). There exists a point ȳ ∈ Q ∩ dom f such that
qi(ȳ) < 0 for all i ∈ I2 := I \ I1.
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4.1 The Convergence Theorem

Theorem 13 Let f be a Bregman function, let qi, 1 ≤ i ≤ m, be convex
functions and let Assumptions (A1)—(A5) and (B1)—(B3) hold. Then any
sequence {xk}k≥0, generated by Algorithm 8, converges to the solution of (13).

Proof. The proof is divided into five steps. In Step 1 we define the
sequence {ϕk}k≥0 by

ϕk := f(xk) +
mX
i=1

(haki , xki − αk
i ) (40)

and show that it is increasing. Step 2 proves that

lim
k→∞

Df (x
k+1, xk) = 0. (41)

In step 3 we show that the sequences {aki }k≥0 are bounded for all i, unless
αk
i −haki , yi = 0 for all y ∈ Q and for all k ≥ 0. We consider the index sets I1

and I2 separately and distinguish two possibilities for I2 . Step 4 shows that
the sequence {xk}k≥0 converges to

x∗ = lim
t→∞

xkt , (42)

where the sequence {xkt}t≥0 is defined below, and proves that x∗ ∈ Q. In
Step 5 we show that for all i, 1 ≤ i ≤ m, the limit

lim
k→∞, k∈W

(αk
i − haki , x∗i) = 0 , (43)

holds for a certain set of indices W (defined in (66)) and from this and other
arguments presented there we obtain that Theorem 13 does indeed hold.
Step 1: In order to prove that {ϕk}k≥0 is increasing, we show that ϕk+1 −
ϕk ≥ 0 for all k ≥ 0. By definition of ϕk, the fact that for i 6= i(k) we have,
by (28), ak+1i = aki and αk+1

i = αk
i , the definition of Df and Lemma 11 we
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get

ϕk+1 − ϕk = f(xk+1)− f(xk) +
X
i6=i(k)

haki , xk+1 − xki

+ hak+1i(k) , x
k+1i − αk+1

i(k) − (haki(k), xki − αk
i(k))

= Df (x
k+1, xk) + h∇f(xk), xk+1 − xki+

mX
i=1

haki , xk+1 − xki

− haki(k), xk+1 − xki+ hak+1i(k) , x
k+1i − αk+1

i(k) − (haki(k), xki − αk
i(k))

= Df (x
k+1, xk) + hak+1i(k) , x

k+1i − αk+1
i(k)

− (haki(k), xk+1i − αk
i(k)). (44)

In order to complete Step 1 we prove the next two assertions. First we show
that in all steps of Algorithm 8,

hak+1i(k) , x
k+1i − αk+1

i(k) = 0 (45)

holds. Indeed in Step 3.3.1, (45) is true by (23) and (21). In Step 3.3.2, we
obtain from (27) and (25):

hak+1i(k) , x
k+1i − αk+1

i(k) = λhaki(k), xk+1i+ µhti(k), xk+1i − λαk
i(k) − µθi(k)

= λ(haki(k), xk+1i − αk
i(k)) + µ(hti(k), xk+1i − θi(k))

= 0. (46)

Secondly, in all steps of Algorithm 8 we have,

haki(k), xk+1i − αk
i(k) ≤ 0. (47)

This is true because in both Steps 3.3.1 and 3.3.2, xk+1 ∈ Lk
i(k). By (44),

(45) and (47) we have

ϕk+1 − ϕk ≥ Df(x
k+1, xk) ≥ 0, (48)

which shows that the sequence {ϕk}k≥0 is increasing. We also get, using (44)
and (45) in (47) that

ϕk+1 − ϕk ≥ αk
i(k) − haki(k), xk+1i ≥ 0. (49)
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Step 2: Let y ∈ dom f . Then, by the definition of the Bregman projection
with respect to f , Lemma 11 and (40), we have

Df(y, x
k) = f(y)− f(xk)− h∇f(xk), y − xki

= f(y)− f(xk) + h
mX
i=1

aki , y − xki

= f(y)− f(xk)−
mX
i=1

(haki , xki − αk
i ) +

mX
i=1

(haki , yi − αk
i )

= f(y)− ϕk +
mX
i=1

(haki , yi − αk
i ). (50)

Since y ∈ Q, we have that, for all i, haki , yi − αk
i ≤ 0, by the definition of Lk

i

and (16). Hence, from (50), the last inequality and Step 1,

Df(y, x
k) ≤ f(y)− ϕk ≤ f(y)− ϕ0 = f(y)− f(x0), (51)

and the sequence {xk}k≥0 is bounded by the definition of a Bregman function,
(see [17, Definition 2.1.1(iv)]). By the left-hand side inequality of (51), we
have

ϕk ≤ f(y) for all y ∈ Q ∩ dom f. (52)

Thus the sequence {ϕk}k≥0 is bounded and limk→∞ ϕk exists. This fact and
(48) imply that (41) holds. Another inequality that follows from (50) is

mX
i=1

(αk
i − haki , yi) ≤ f(y)− ϕ0 for all y ∈ Q ∩ dom f. (53)

Since αk
i − haki , yi ≥ 0 for all i and for all y ∈ Q ∩ dom f, we see that

αk
i − haki , yi ≤ f(y)− ϕ0 for all i and for all y ∈ Q ∩ dom f. (54)

Observe that the derivation of (51) does not depend on δ and could have
been reached at even if instead of SQi(k)

in 3.3.2 of Algorithm 8 we would
have taken any hyperplane that separates xk fromQi(k). Therefore, (51) shows
that xk ∈ G, defined by (18), for all k ≥ 0. Thus, δ is well-defined.
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Step 3: This step is divided into three cases.
Step 3(i): Assume that i ∈ I1 and hbi, yi−βi = 0 for all y ∈ Q. In this case
we claim that

haki , yi − αk
i = 0 for all k ≥ 0 and for all y ∈ Q. (55)

To show that (55) holds, recall that for i ∈ I1, the functions qi are affine
functions, i.e.,

qi(x) = hbi, xi − βi, ∂f(x) = {bi}. (56)

By Lemma 12, there exist nonnegative numbers γk such that

aki = γkb
i, αk

i = γkβi. (57)

If γk > 0, then

bi =
aki
γk

, βi =
αk
i

γk
. (58)

Substituting bi and βi of (58) in hbi, xi − βi = 0, we get that (55) holds,
as claimed. If γk = 0 then aki = 0 and αk

i = 0 and (55) holds too.
Step 3(ii): Assume that i ∈ I1 and hbi, yi − βi 6= 0 for some y ∈ Q. In
this case the sequences {aki }k≥0 are bounded for all i. To show this, letey ∈ Q ∩ dom f satisfy βi − hbi, eyi = ² > 0. Using (54) with y = ey we have

αk
i − haki , eyi ≤ f(ey)− ϕ0, (59)

and by (57) we obtain

αk
i − haki , eyi = γk(βi − hbi, eyi) = γk². (60)

Hence, by (59) and (60), γk² ≤ f(ey)−ϕ0, which means that the numbers γk
are bounded by (f(ey)− ϕ0)/², so, by (57), the sequences {aki }k≥0 are indeed
bounded.
Step 3(iii): Assume that i ∈ I2. For all vectors ti, generated in Step 3.3.2
of Algorithm 8, we have

θi ≥ hti, yi for all y ∈ Qi. (61)
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Since ȳ, the existence of which is assumed in Assumption (A5), is an interior
point of Qi, there exists a ball B(ȳ, ε1) contained in Qi. Therefore, y =
ȳ + ε1t

i/ ktik ∈ B(ȳ, ε1) ⊂ Qi. Note that ti 6= 0 by (24) and Definition 1.
Hence

θi − hti, ȳi ≥ hti, yi − hti, ȳi = hti, y − ȳi = ε1
°°ti°° . (62)

Using Lemma 12, we have

αk
i − haki , ȳi =

rX
j=1

γj(θi(y
j)− hti(yj), ȳi) ≥ εi

rX
j=1

γj
°°ti(yi)°° . (63)

From (54) and the last inequality we obtain

f(ȳ)− ϕ0 ≥ εi

rX
j=1

γj
°°ti(yi)°° , (64)

which means that
Pr

j=1 γj kti(yi)k is bounded by (f(ȳ)− ϕ0)/εi.
From this fact and (34) we have

°°aki °° =
°°°°°

rX
j=1

γjt
i(yi)

°°°°° ≤
rX

j=1

γj
°°ti(yi)°° ≤ (f(ȳ)− ϕ0)/εi, (65)

which proves that the sequences {aki }k≥0 are bounded when i ∈ I2.
Step 4: From Step 2 we know that the sequence {xk}k≥0 is bounded, so
it must have cluster points. Choose a convergent subsequence {xkt}t≥0 of
{xk}k≥0 such that i(kt) = 1. Let {xkt} converge to some point x∗. Since
Df(x

k+1, xk) → 0 as k → ∞, the definition of Bregman functions (see [53])
implies that {xkt+1}t≥0 converges to the point x∗. Repeating this, we get
that all the subsequences {xkt+1}t≥0, {xkt+2}t≥0, . . . , {xkt+T}t≥0 converge to
x∗, where T is the almost cyclic control constant. Let

W = ∪∞t=1 ∪Tj=0 {kt + j}, (66)

i.e., W is the union of the indices belonging to all of the above sequences. It
is clear that the sequence {xk}k∈W also converges to x∗. Let us show next
that x∗ ∈ Q. If Step 3.3.1 appears infinitely many times for {xkt}t≥0, that is,
q1(x

lt) ≤ 0 for some subsequence of {xkt}t≥0, then q1(x
∗) = limt→∞ q1(x

lt) ≤ 0.
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Hence we have x∗ ∈ Q1 by the definition of Q1. If Step 3.3.1 appears a finite
number of times, then Step 3.3.2 appears infinitely many times. For Step
3.3.2 we know that xkt+1 /∈ int

¡
B(xkt , δq1(x

kt)
¢
because xkt+1 is the Bregman

projection of zkt onto the intersection of the two half-spaces Lkt
i(kt)

and SQi(kt)
.

Therefore,

kxkt+1 − xktk ≥ δq1(x
kt), (67)

and since limt→∞ kxkt+1−xktk = 0 (because limt→∞ xkt+1 = limt→∞ xkt) and
δ > 0, we have limt→∞ q1(x

kt) ≤ 0. Hence q1(x
∗) = limt→∞ q1(x

kt) ≤ 0, so
x∗ ∈ Q1. Choosing a subsequence {xkt+jt} (0 < jt < T ) with i(kt + jt) = 2
which converges to the same point x∗, we see that x∗ ∈ Q2. Repeating this
argument for 1 ≤ i ≤ m we obtain x∗ ∈ Q.
Step 5: We now show that (43) holds. Take some i, 1 ≤ i ≤ m. If
αk
i − haki , yi = 0 for all y ∈ Q and for all k, then (43) is true for this i.

Otherwise, we know that {aki }k≥0 is bounded (by Step 3).
If k ∈ W , then W contains a set Wk = {p, p + 1, . . . , p + T} containing

k. We know that the set {i(p), i(p+ 1), . . . , i(p+ T − 1)} contains i (by the
choice of the almost cyclic control index). Let r ∈ Wk , r ≤ p + T − 1, be
the nearest integer to k such that i(r) = i. We distinguish between two cases
according to the values of r and k.
Step 5(i): Assume that r < k. In this case (r+1) ∈Wk (from the definition
of Wk) and aki = ar+1i , αk

i = αr+1
i since there is no change in a`i and α`

i for
r + 1 ≤ ` ≤ k (by (28)). Using the last two equations and (45), we obtain

αk
i − haki , x∗i = αr+1

i − har+1i , x∗i
= αr+1

i(r) − har+1i , xr+1i+ har+1i , xr+1 − x∗i
= har+1i(r) , x

r+1 − x∗i. (68)

By definition of Lk
i and the last equation, we get

0 ≤ αk
i − haki , x∗i ≤ kar+1i k · kxr+1 − x∗k. (69)

Step 5(ii): Assume that r ≥ k. In this case aki = ari and αk
i = αr

i because a
`
i

and α`
i do not change for k ≤ ` ≤ r (by 3.4, in the iterative step of Algorithm

8). Hence by the last two equalities and (49),

αk
i − haki , x∗i = αr

i − hari , x∗i
= αr

i(r) − hari(r), xr+1i+ hari , xr+1 − x∗i
≤ ϕr+1 − ϕr + hari , xr+1 − x∗i. (70)
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Therefore

0 ≤ αk
i − haki , x∗i ≤ kaki k · kxr+1 − x∗k+ ϕr+1 − ϕr. (71)

Since r tends to infinity together with k, r + 1 ∈W , the sequences {aki }k≥0
are bounded and {ϕk}k≥0 converges, we see that (69) and (71) imply (43).
Since (43) holds for all i, we have

lim
k→∞, k∈W

mX
i=1

(αk
i − haki , x∗i) = 0. (72)

Applying (50) with y = x∗, we get

Df(x
∗, xk) = f(x∗)− ϕk +

mX
i=1

(haki , x∗i − αk
i ). (73)

By the definition of a Bregman function (see [17, Definition 2.1.1]), one has

lim
k→∞, k∈W

Df(x
∗, xk) = 0. (74)

Hence (74), (72) and (73) imply that the subsequence {ϕk}k≥0, k ∈W , tends
to f(x∗), and since limk→∞ ϕk exists,

lim
k→∞

ϕk = f(x∗). (75)

Since, by (52), limk→∞ ϕk ≤ min{f(x) | x ∈ Q}, we obtain
f(x∗) = min{f(x) | x ∈ Q}. (76)

From the fact that f is strictly convex (because it is a Bregman function)
and has a unique minimum in Q, it follows that the whole sequence {xk}k≥0
converges to x∗, and the proof is complete.

5 Particular Cases
It is natural to ask, but quite complicated to answer, in what situations all
assumptions made in the previous sections hold. We have no simple answer
to this question at this time except for the particular cases discussed next.
In these cases the choice of the half-spaces is constructively given. First we
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show that the δ-SHS SQi(k)
(xk) can be defined via some subgradients at the

current point xk. The second special case deals with the construction of these
δ-SHS’s, via interior points in the convex sets (using the assumption that in
each set we know an interior point). The idea of generating such a case is
based on the (δ, η)-algorithm for convex inequalities with interior points (see,
e.g., Censor and Zenios [17, Algorithm 5.5.3]).

5.1 Construction of SQi(k)
(xk) via Subgradient Vectors

We show here a specific choice of the δ-SHS’s SQi(k)
(xk), made by constructing

each of the δ-SHS’s via subgradients. In this case we use underrelaxation
parameters to define SQi(k)

(xk).
Let {βk}k≥0 be an infinite sequence of underrelaxation parameters such

that 0 < ² ≤ βk ≤ 1 for all k ≥ 0, with some arbitrarily small given ². Let
vi(k) = vi(k)(xk) be a subgradient of qi(k) at xk.

Theorem 14 Assume that ∂qi(G) is bounded for any bounded subset G ⊆
dom qi, for all i = 1, 2, . . . ,m. If in Algorithm 8 one uses, for all k ≥ 0,

0 6= ti(k)(xk) = vi(k) ∈ ∂qi(k)(x
k), (77)

and

θi(k) = hvi(k), xki − βkqi(k)(x
k), (78)

to construct SQi(k)
(xk) by (24) whenever qi(k)(x

k) > 0, then SQi(k)
(xk) is a

δ-SHS.

Proof. Let SQi(k)
(xk) be the half-space defined by (77) and (78), i.e.,

SQi(k)
(xk) = {x ∈ Rn | hvi(k), x− xki ≤ −βkqi(k)(x

k)}. (79)

In order to conclude that the half-space SQi(k)
(xk) is a δ-SHS, we must show

that

SQi(k)
(xk) ∩ intB(xk, δqi(k)(x

k)) = ∅ (80)

and, by Definition 1, that

SQi(k)
(xk) ⊇ Qi(k). (81)
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First we show that (80) holds. In Step 3.3.2 of Algorithm 8, xk+1 is the
Bregman projection of zk onto the intersection Lk

i(k)∩SQi(k)
(xk). This implies

that xk+1 ∈ SQi(k)
(xk), that is,

hvi(k), xk+1 − xki ≤ −βkqi(k)(x
k). (82)

It follows that

βkqi(k)(x
k) ≤| hvi(k), xk − xk+1i |≤ kvi(k)k · kxk − xk+1k. (83)

According to the comment in the last sentence of Step 2 of the proof, xk be-
longs to the set G, defined by (18). Using the assumption on the boundedness
of the subgradients, we have kvi(k)k ≤M . Hence

βkqi(k)(x
k) ≤Mkxk − xk+1k, (84)

which implies that

1

M
βkqi(k)(x

k) ≤ kxk − xk+1k. (85)

Taking any

δ ≤ inf{ 1
M

βk | k ≥ 0} = ²

M
, (86)

we get

xk+1 /∈ intB(xk, δqi(k)(x
k)) for all k ≥ 0, (87)

which implies that (80) is true. We now show that (81) also holds. Let
x ∈ Qi(k), i.e., qi(k)(x) ≤ 0. By the subgradient inequality we have

qi(k)(x)− qi(k)(x
k) ≥ hvi(k), x− xki. (88)

Thus

−qi(k)(xk) ≥ hvi(k), x− xki. (89)

Since qi(k)(x
k) > 0, both sides of (89) are negative. Hence

−βkqi(k)(x
k) ≥ hvi(k), x− xki, (90)

i.e., x ∈ SQi(k)
(xk) by (79), which implies that (81) does indeed hold. This

completes the proof.
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5.2 Construction of SQi(k)
(xk) via Interior Points in the

Sets

In Case 3.3.2 of Algorithm 8 we can construct the half-spaces SQi(k)
(xk) for

(24) by still another method.

• Assumption (C). There are m given interior points yi ∈ intQi, 1 ≤
i ≤ m.

Method for the construction of the half-spaces SQi(k)
(xk) by (24):

If qi(k)(xk) > 0 (i.e., we are in Case 3.3.2 of Algorithm 8), choose some
0 ≤ h ≤ 1, define

x̄(h) = hyi(k) + (1− h)xk, (91)

and solve the nonlinear equation

qi(k)(x̄(h)) = 0. (92)

Denote by hk the smallest value of h for which x̄(h) solves (92) and set

x̄k = x̄(hk). (93)

Then calculate a subgradient

ti(k) ∈ ∂qi(k)(x̄
k). (94)

(If qi(k) is differentiable at (x̄k) then ti(k) = ∇qi(k)(x̄k)) and

θi(k) = hti(k), x̄ki, (95)

and define SQi(k)
(xk) by

SQi(k)
(xk) = {x ∈ Rn | hti(k), xi ≤ hti(k), x̄ki}. (96)

See Figure 3 for a geometric description of the construction of SQi(k)
(xk)

via interior points in the sets.

Theorem 15 Under Assumption (C), whenever qi(k)(x
k) > 0 in Algorithm

8 and we use the method described above to construct SQi(k)
(xk), then there

exists a δ > 0 such that SQi(k)
(xk) is a δ-SHS.
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Figure 3: Geometric description of the construction of SQi(k)
(xk) via interior

points in the sets.

Proof. We first show that (81) holds. If x ∈ Qi(k), then qi(k)(x) ≤ 0.
Using the subgradient inequality

hti(k), x− x̄ki ≤ qi(k)(x)− qi(k)(x̄
k), (97)

and the fact that qi(k)(x) ≤ 0 and qi(k)(x̄
k) = 0, we obtain

hti(k), x− x̄ki ≤ 0. (98)

In other words,

hti(k), xi ≤ hti(k), x̄ki. (99)

Thus x ∈ SQi(k)
(xk), by (96). We show now that (80) holds. Let

Hi(k) = {x ∈ Rn | hti(k), xi = hti(k), x̄ki}. (100)
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Since xk /∈ Qi(k) (otherwise we do not use (96)), we have, by a simple geo-
metric consideration,

kPHi(k)
(xk)− xkk = kx

k − x̄kk · kyi(k) − PHi(k)
(yi(k))k

kyi(k) − x̄kk , (101)

where PHi(k)
(xk) is the orthogonal projection of xk onto Hi(k) (see also [17,

Figure 5.8].) Since {xk}k≥0 is bounded (see the comment in the last sentence
of Step 2), (101) implies that there is a positive M such that for all k ≥ 0,

kyi(k) − x̄kk ≤M. (102)

By Bauschke and Borwein [5, Proposition 7.8 and Corollary 7.9], qi(k) is
Lipschitz continuous. Hence there is a positive L such that

|qi(k)(xk)− qi(k)(x̄
k)| ≤ Lkxk − x̄kk. (103)

Since qi(k)(x̄
k) = 0 by (92) and (93) , we obtain

qi(k)(x
k) ≤ Lkxk − x̄kk. (104)

We also have

kyi(k) − PHi(k)
(yi(k))k ≥ d(yi(k), bd Qi(k)) ≥ d > 0, (105)

where

d := min{d(yi, bd Qi) | 1 ≤ i ≤ m}. (106)

It follows from (101), (102), (104) and (105) that

kPHi(k)
(xk)− xkk ≥ qi(k)(x

k) · d
M · L . (107)

Let xk+1 ∈ SQi(k)
(xk). Then we also obtain

kxk+1 − xkk ≥ kPHi(k)
(xk)− xkk ≥ qi(k)(x

k) · d
M · L . (108)

Taking δ ≤ d
M·L , we have that

xk+1 /∈ intB(xk, δqi(k)(x
k)) for all k ≥ 0. (109)
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This completes the proof of Theorem 15.
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