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Abstract

Problems in signal detection and image recovery can sometimes be formu-
lated as a convex feasibility problem (CFP) of finding a vector in the intersection
of a finite number of closed, convex sets. When the intersection is empty, one
can minimize a proximity function that measures the average distance to all the
closed convex sets. Algorithms for these purposes typically employ projections,
not necessarily orthogonal, onto the individual convex sets. The multiprojection
algorithm of Censor and Elfving provides a simultaneous method for solving the
CFP, in which different generalized projections may be used at the same time.
Convergence of this multiprojection algorithm follows, for the case of nonempty
intersection, from Bregman’s theorem on convergence of sequential projections
via a product space formulation. An important application of their algorithm
is to the split feasibility problem. Still open is the issue of convergence of such
multiprojection algorithms when the set intersection is empty.

We use here the geometric alternating minimization approach of Csiszar and
Tusnidy to obtain new multiprojection algorithms for proximity function min-
imization that converge even in the infeasible case. Special cases of these algo-
rithms include the “Expectation Maximization Maximum Likelihood” (EMML)
method in emission tomography, the “Simultaneous Multiplicative Algebraic
Reconstruction Technique” (SMART'), new methods for image reconstruction



that impose pixel-by-pixel upper and lower bounds on the reconstructed image
and the related constrained maximum likelihood algorithm of Vardi and Zhang
for estimating mixing distributions in statistics.

1 Introduction

Let C;, ¢« = 1,...,I, be closed convex sets in the J-dimensional Euclidean space
R’ and let C be their intersection. In many applications such convex sets represent
constraints that we wish to impose on the solution and the algorithms employ pro-
jections onto these individual sets; see, e.g., Youla [58], Combettes [30]. Typically,
the projections of a point onto the individual sets C; are more easily calculated than
the projection onto the intersection C', therefore iterative methods whereby the latter
can be obtained from repeated use of the former are desirable. There are three cases
to be considered: (1) the intersection C'is nonempty, but “small” in the sense that all
members of C' are quite similar; (2) the intersection C' is nonempty and “large”, that
is, the members of C' are quite varied; and (3) the set C' is empty, meaning that the
constraints we impose are mutually contradictory. When we say that the members
of C'" are “quite similar” or “quite varied”, we mean that the real-world objects they
represent (e.g., the images in an image reconstruction task) are “similar” or “varied”
according to some criteria appropriate for the task.

Case (1) usually occurs if I is large and/or the individual sets C; are “small”. In
this case an algorithm that simply solves the convez feasibility problem (CFP), that
is, one that finds some member of C', is useful.

Case (2) occurs if there are few convex sets and/or they all are quite “large”. In
this case just obtaining some member of C' may not be helpful; we want to get a
member of C' near to some prior estimate of the solution. The orthogonal projection
onto C', or a generalized projection of the type to be discussed here, might be more
helpful in this case; see, e.g., Dykstra [35, 36], Censor and Reich [28], Bregman,
Censor and Reich [6] and references therein.

Case (3) is dealt with by finding a point that is, in some sense, close to all the
individual C;. One way to achieve this is to set up a proximity function that measures
the average distance to all the convex sets and then to minimize this function. If we
also wish to impose as a hard constraint that x be a member of another closed convex
set €, then we minimize the proximity function subject to this additional restriction
on z. Case (3) is our main focus in the present paper.

These issues can be considered in a general context, involving Bregman distances

and projections. Let S be an open convex subset of R/ and f a Bregman function



from the closure S of S into R; see, e.g., Censor and Lent [21] or Censor and Zenios
[23, Chapter 2].

For a Bregman function f(z), the generalized distance Dy is given by

Dy(z,2) 2 f(2) = f(x) = (V(2), 2 — ), (1.1)

where (-,-) is the standard inner product in R’ and Vf(x) is the gradient of f
at . When the function f has the form f(z) = ¥/, g;(z;), with the g; scalar
Bregman functions, we say that f and the associated Dy(z,z) are separable (see
Appendix B at the end of this paper). With g;(¢t) = g(t) = %, for each j, the function
f(x) = X7, g;(x;) = XJ_, 27 is a separable Bregman function and Dy (z, ) is the
squared Euclidean distance between z and .

For each i, denote by Pgi (z) the generalized projection of x € S onto the set
C; with respect to the generalized distance Dy; that is, for any x € S we have
Df(P(f:i (z),2) < Dy(z,2), for all z € C;NS. If cs N, C; is nonempty then the
sequential iterative algorithm of successive projections z¥! = Plj(ck)(xk) converges to
a member of C. This was shown by Bregman [5] for the cyclic control i(k) = k
(mod I) + 1, £ > 0, by Censor and Reich [27] and by Bauschke and Borwein [3] for
the more general repetitive control. If the set C is empty then this scheme does not
converge. In such a case it has been shown by Gubin, Polyak and Raik [40] that,
for orthogonal projections in Hilbert space, the sequential iterative scheme exhibits
cyclic convergence, i.e., convergence of the cyclic subsequences.

In this paper we investigate iterative methods of the simultaneous type. In the
past such methods were proposed with arithmetic weighting for orthogonal projec-
tions, see, e.g., Aharoni and Censor [1|, Bauschke and Borwein [2], Butnariu and
Censor [7, 8], Censor [19, 20], Combettes [30, 31], Iusem and De Pierro [45], Kiwiel
[46] and references therein. Recently, Censor and Elfving [24] proposed and studied
a simultaneous projections algorithm for the convex feasibility problem that employs
generalized projections of the Bregman type. However, the weighting of the simulta-
neous projections there is not arithmetic, but depends on the choice of the Bregman
function (or functions).

Byrne and Censor [18] studied recently simultaneous methods with arithmetic
weighting for generalized projections that are not necessarily orthogonal. Such a
possibility was mentioned, in passing, by Censor and Herman [25, Section 4.4], and
was recently studied for the special case of entropic projections in Butnariu, Censor
and Reich [9]; the results in [9] deal only with the consistent case C' # (). The focus

in [18] was on the behavior of simultaneous methods with arithmetic averaging for



generalized projections in the inconsistent case C' = (). It was shown there that, if
Dy is separable and jointly convex, then such methods converge to a minimizer of a
proximity function F'(x) that measures the average generalized distance of x to the
family {C;}._,. Recent work by Butnariu, Iusem and Burachik [10] on stochastic con-
vex feasibility problems contains a similar proximity function minimization algorithm
and notes the importance of joint convexity of the distance.

In the standard presentation of Bregman functions and distances the zone S is an
open convex set with closure S. The Bregman distance D;(z, ) is defined for z € S
and x € S and the Bregman projections P;(z) are defined for x € S. In [18] the
definition of the distance D(z,x), the projection P;(x) and, thereby, the proximity
function F'(z) are extended to include z € S. This permits the treatment of the fairly
common case in which the proximity function has no minimizer within S, but does
have a minimizer when extended to S. Similar extensions appear in Kiwiel [47] and
in [23, Section 6.8]. We adopt this approach in this paper as well, again restricting
our discussion to separable Bregman functions.

In contrast with [18], we shall be concerned here with proximity functions of the

multiprojection type, defined for x € N._, S;, by

F(x) = ;Dfi(Pz’(ff),ﬂf), (1.2)

where, for i =1,2,...,I, the Dy,(z, ) are generalized distances derived from separa-
ble Bregman functions f; and the P, = P&: are the associated Bregman projections
onto the C;. In addition, we shall consider the second variable projection of x onto
the Cj, that is, the member Py(z) = ~(f{ (z) of C; for which the quantity Dy, (z, 2)
is minimized over all z € C; NS, provided that the minimum exists and is attained.
The associated proximity function to be minimized in this case is F(x) having the

form

F(x) =3 Dy (@, Pi(x))- (1.3)

i=1

In what follows we shall make considerable use of three important tools of math-
ematical algorithm design. The first tool is the reformulation of the problem in a
product space, as suggested by Pierra [52]. The second tool is the concept of general-
ized distances and their projections onto convex sets, as introduced by Bregman in [5]
and studied extensively under the names Bregman distances and Bregman projections
by Censor and co-authors and by others (see [23] and the references therein). The

third tool is the framework of alternating minimization of a functional of two vector
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variables, as proposed by Csiszar and Tusnady [32]. The first two of these tools were
used in the work of Censor and Elfving [24], but, because they were only concerned
with the feasible case, they used Bregman’s successive projections approach, instead
of the alternating minimization method of [32]. The proximity function minimization
algorithm developed in [18] can be recast in terms of Pierra’s product space and the
alternating minimization approach of Csiszar and Tusnady, but neither of these no-
tions was explicitly used there. In recent work Eggermont and LaRiccia [38] make use
of alternating minimization and prove the useful result that jointly convex Bregman
distances enjoy the “four-point property” of [32]. As we shall see, this is an important
aid in the present work.

To keep this presentation within reasonable bounds and make it accessible and
useful to a wide audience we adopt a tutorial style, deliberately sacrificing some math-
ematical rigour of the presentation at places in order to present the new algorithms

themselves and their applications as clearly as possible.

2 Pierra’s product space formulation

Given closed convex subsets C;, @ = 1,...,1, with (possibly empty) intersection
c2 Ni_, Ci, we reformulate the CFP in a product space framework. Following Pierra
[52] we let V be the product of I copies of the Euclidean space R’, so that a typical
element v = (vy,vs,...,v7) of V is such that v; € R’, i = 1,...,I. We define
C = I_,C; to be the product of all sets Cj, i.e., the subspace of V consisting of all
v such that v; € Cy, i = 1,...,I, and we let D be the (“diagonal”) subspace of V
consisting of all v such that v; =z, i = 1,...,I, where € R’, and express this by
writing v = d(z). Our goal is to find a member of V in C N D. It is easy to verify that
an element d(2*) belongs to DN C, if and only if 2* € N_, C; and, therefore, finding a
solution of the two-sets feasibility problem in V' yields a solution of the original CFP
in R’.

We shall have occasion later to consider the problem of minimizing a proximity
function over all  within a given closed convex set 2. For such problems we let H
be the subspace of V consisting of all v such that v; = x, ¢ =1,...,1, where z €
and we write for this v = h(z).

In [24] Censor and Elfving obtain an iterative algorithm for solving the CFP by

performing successive Bregman projections onto C and D with respect to a generalized



distance in V), given by,
A d
D)\(U,’LU): Z)\ini(vi,wi), (21)
i=1

where A\ = ()\;) € R! is a fixed vector such that all )\; are positive and Ele AN=1.
Here we construct a distance measure D(v,w) between v € S and w € S, where
SETIL,S;, as follows:
1
D(va) = ZDfi(Uivwi)a (2'2)
i=1
where Dy, is the Bregman distance associated with the Bregman function f; with
zone S;. With this distance at hand we attempt to solve the CFP by finding iterative
algorithms that will minimize D(a, 3), over a € C, 3 € D. If the CFP has a solu-

tion, then the minimum value will be zero. This approach involves the alternating

minimization method of [32], which we describe in the following section.

3 The alternating minimization method of Csiszar
and Tusnady

In this section we present a slightly simplified version of the alternating minimization
method of Csiszar and Tusnddy [32]. Suppose that P and Q are two closed convex
sets in the n-dimensional Euclidean space R™. Let O(p,q) be a real-valued function
defined for all p € P, q € Q.

Algorithm 3.1 (The alternating minimization method)
Initialization: ¢° € Q is arbitrary.

Iterative Step: Given ¢* find p**! by solving
P = argmin {O(p, ¢*) | p € P}, (3.1)
then calculate ¢**! by solving
¢"*! = argmin {O(p**", ¢) |¢ € Q}. (3:2)
Assuming that all the minima exist, the sequences {p*}, {¢*} are obtained. Define
F, 20", ¢"). (3.3)
We then have the following monotonicity result:
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Lemma 3.1 The sequence {F}} is decreasing.

Proof: We have
F.=00" ¢") > 00", ¢") = 0", ") = Fi. (3.4)

|
To obtain further results Csiszar and Tusnady introduce two geometric axioms,
the three-point property (3PP) and the four-point property (4PP), which we discuss

now.

Definition 3.1 (The three-point property) The function ©(p,q) has the three-
point property if there is a nonnegative-valued function A(p,p'), defined for all p,p' €
P, such that, for every p € P and for every pair of iterative sequences, defined by
Algorithm 3.1, the following inequality holds:

O(p,¢*) > A(p, p"™) + O (", ). (3.5)

In many applications O(p,q) > 0 and A(p,p’) = O(p,p’). As we shall see, this

holds for the distance measure defined in (2.2).

Lemma 3.2 If ©(p,q) has the 3PP and if the sequence {Fy} is bounded below (in

k+1)

particular, if Fy > 0) then the sequence {A(pF, p*™1)} converges to zero.

Proof: Using the 3PP and the definitions of the vectors p* and ¢*, we have:
Fr = 00" ¢") > AW 0 + 00", ¢") > 00" ") = Fia. (3.6)

Since {F}} is bounded below, the sequence {Fj — Fj1} converges to zero and the
result follows. |

Suppose now that there exist p € P and ¢ € Q for which ©(p, ¢) is minimized
over all p € P and ¢ € Q. From the 3PP we have

O(p,¢") > A(p,p*) + 0", "), (3.7)
and we also have
O(p,¢") = O(p,¢") — ©(p,4) + O(p, q)- (3-8)
It follows then that
O(p,¢*) — O(p,4) > A(p,p*"). (3.9)



We would like to have the related inequality

A(ﬁapk+1) > G(ﬁa qk+1) - @(ﬁa qA)7 (310)
in order to establish the double inequality
O(p,¢") > A(p, ") +0(p,4) > O(p, ¢" 1), (3.11)

from which it would follow that the sequences {©(p, ¢*)} and {A(p, p*)} are decreas-
ing. The 4PP is precisely what we need to establish the second part of the double
inequality (3.11).

Definition 3.2 (The four-point property) The function O(p, q) has the four-point
property if there is a nonnegative-valued function A(p,p'), defined for all p,p’ € P,
such that, for any p € P and q € Q and for every pair of iterative sequences, defined
by Algorithm 3.1, the following inequality holds,

A(p,p") +O(p,q) > O(p, ¢"). (3.12)

Special cases of the double inequality (3.11) have appeared in the literature, al-
though it does not appear in [32] itself; see, e.g., Byrne [13], where it is used in the
proof of convergence of the EMML algorithm, and also in Matis [50], in connection
with entropic projections.

We now apply the alternating minimization method of Csiszar and Tusnady and
the results given above for ©(p, ¢) in R™ to the distance measure D, defined by (2.2)
in the product space V. To do this we let n = I x .J and identify O(p, ¢) with D(v, w)
(and in doing so we also take the freedom to use interchangeably (p,¢) and (v, w)).
Then, of course, we must assume that either 7 C S and Q C S or that P and Q have
nonempty intersections with S and S, respectively. In the latter case an assumption
of “zone consistency” must be made that will guarantee that the sequences {p*} and
{¢*} remain in S and S, respectively, throughout the iterations (see Assumption 8.1
in Appendix B). The 3PP then follows from a standard inequality in the theory of
Bregman distances, i.e., inequality (8.5) in Appendix B. In order to have the 4PP for
D we shall assume that each of the Bregman distances Dy, (x, z) involved is jointly-
convez, that is, convex as a function of the concatenated vector u = (z, z), so that
D in (2.2) is also a jointly-convex Bregman distance. We then invoke the following

lemma, due to Eggermont and LaRiccia [38, Lemma 2.11]:

Lemma 3.3 A jointly-conver Bregman distance Dy has the 4PP with A = Dy, that

18

Dy(p,p") + Ds(p,q) > Dy(p,¢"). (3.13)



Proof: By joint-convexity we have the inequality:

Dy(p,q) > Dy(p*,¢") + (ViDs (0", ¢"),p — 0F) + (VoD (0", ¢F), 0 — d*) , (3.14)

where V;D¢(p, q) denotes the partial gradient of D, with respect to the ith vector

variable, evaluated at (p,q). Since ¢* minimizes D;(p*, q) over ¢, we have
(V2Ds(0*,4"), = ¢") > 0. (3.15)
Using the definition of Dy (see (1.1)), we obtain
(ViDs(p*,¢"),p = p*) = (VS (0") = Vf(¢"),p = P"). (3.16)

It follows then that

Dy(p,d*) = Dy (p,p*) = Ds (0", ¢) + (V1D (0", ¢*), p — 1*) (3.17)
< Dys(p,q) = (V2Dr(0",¢"), 0 = ¢*) < Dy (p,0), (3.18)
from which the 4PP follows. |

Next, we impose further restrictions that will enable us to prove convergence of the
iterative sequences to a minimizing pair (p, §). We assume that D(v, w) = A(v,w) > 0
is defined for v,w € § C V and that it has the 3PP and the 4PP. In the examples
considered later, these conditions hold. We also make the following assumptions on
D.

Assumption 3.1 (Bounded level sets) For any fixed v € S and t > 0, the set
{w|D(v,w) < t} is bounded. Likewise, for any fixed w € S and ¢t > 0, the set
{v|D(v,w) <t} is bounded.

Assumption 3.2 The points p and ¢° are chosen so that D(p, ¢°) is finite.
Assumption 3.3 If {D(p,p*)} converges to zero, for some p and some bounded
sequence {p*}, then {p¥} converges to p.

From the double inequality (3.11) we know that the sequence {D(p,q¢")} is de-
creasing and from Assumption 3.1 it follows that {¢*} is bounded, so we can extract a
subsequence converging to ¢*. Let p* minimize D(p, ¢*). Taking limits in the double

inequality (3.11) we have
D(p,q") = D(p,q) + D(p,p"), (3.19)
while, from the 3PP, we also have
D(p.q") = D(p",q") + D(p,p"). (3.20)
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Since {D(p, ¢*)} is decreasing, it follows from Assumption 3.2 that D(p, ¢*) is finite,
and so D(p*, ¢*) < D(p, q); the pair (p*, ¢*), therefore, minimizes D(p, q). We can re-
place p with p* in the double inequality, and conclude that the sequence {D(p*, p**!)}
converges to zero. From Assumption 3.3 we then have that p* converges to p*.

We summarize these results in the following theorem:

Theorem 3.1 Let D satisfy the 3PP, 4PP and Assumptions 3.1-3.3, listed above.
Let p and § be such that D(p,q) < D(p,q), for all p and q. Then {p*} converges to
p*, {¢¥} converges to q* and the pair (p*,q*) satisfies that D(p*,q*) < D(p,q), for all
p and q.

4 The main results

In this section we present our new fully simultaneous algorithms which employ ex-
tended Bregman projections onto the convex sets {C;}/_, in R/. The main algo-
rithmic difference between these algorithms and the multiprojections algorithm of
Censor and Elfving [24] (see also [23, Section 5.9]) is the fact that here we use alter-
nating minimizations, instead of successive projections. For symmetric distances the
two approaches coincide. The multiprojections algorithm of Censor and Elfving has
been shown to converge, so far, only in the consistent case ﬂle C; # 0, whereas our
convergence results apply to both the consistent and inconsistent situations. In the
inconsistent case our algorithms become minimization tools for the proximity func-
tions defined below, and a minimizer might occur on the boundary of the zone S; of
the Bregman function f;. This possibility is the driving force behind our construction
of extended separable Bregman functions in Appendices A and B.

We assume that D(v,w) is defined in the product space V by (2.2) and that
the Dy,’s are jointly-convex separable extended Bregman distances, as defined in
Appendix B. As we reformulate our problem within the product space framework, in
order to apply the alternating minimization technique, we find that we must decide
which of sets C or D is to be identified with P. Our algorithm will depend on this
choice. In Subsection 4.1 we consider the case in which C is taken to be P while the
other choice is taken up in Subsection 4.2. In the last two subsections we discuss the

modifications that must be made when D is replaced by H.
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4.1 The case in which P is identified with C and Q is identified
with D

Here we let the set C in the product space V play the role of P and let D C V be
Q of Section 3. We assume that {f;}!_, is a family of separable extended Bregman
functions with zones {S;}!_,, as defined in Appendix B, and that S; N C; # 0, for all
1 <4< 1. Asdiscussed in Appendix B, we denote the extended Bregman projection
of z onto C; with respect to f;, defined for all 2 € domP;, by

P,(2) 2 P4 (2). (4.1)

The prozimity function of the family of sets {C;}1_, with respect to the family of

separable extended Bregman functions {f;}1_,, given in (8.1), is defined as
F(2)2 Y Di(P(w),), (42)

for all z in domF 2 Ni_,domP;.

Algorithm 4.1
Initialization: 2° € domF is arbitrary.
Iterative Step: Given 2* find, for all i = 1,...,I, the projections P;(z*) and calcu-

late z**1 from
szfz Bkl ZV £ Py (%), (4.3)

where V2f;(z¥*1) denotes the Hessian matrix (of second partial derivatives) of the
function f;, evaluated at z**+!

Since the f; are separable, we can rewrite (4.3) as

k+1 Zg k+1 Z g k+1 k))] (4‘4)

In order to minimize the proximity function over all € domF’, we set ¢° = d(z°)
to initialize the application of Algorithm 3.1 in the product space. In the iterative
step of Algorithm 3.1, given ¢* = d(2*), we solve the minimization of (3.1) by letting
PPt = (P (%), Py(%), ..., Pr(2¥)). This is precisely the expression for the projection
of ¢* onto C in the product space V according to the separable extended Bregman
distance D(p,q) defined by (2.2) with the family of separable extended Bregman

functions defined in Appendix B. This follows from an argument similar to the one
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used in the proof of [24, Lemma 4.1] (also appearing in [23, Lemma 5.9.2]). From this
p**! we then calculate ¢®*1 of (3.2). This minimization is realized by ¢**! = d(z**1)
where zF*1 is the solution of (4.3), as can be verified along similar lines to those of
[24, Lemma 4.2] (also appearing in [23, Lemma 5.9.3]). Admittedly, the ability to
actually solve (4.3) for zF*! in practice cannot always be guaranteed. We have made
the additional assumption that, for all 1 < ¢ < I, the generalized distances D;(z, z)
are jointly-convexr with respect to both x and z. This implies the joint convexity of
D in (2.2), as well as the convexity of F. From our analysis of extended Bregman
functions and distances in Appendices A and B, we know that Assumptions 3.1—
3.3, needed for proving convergence in the previous section, hold. We, therefore,
conclude that the iterative procedure of Algorithm 4.1 converges to a minimizer of
the proximity function F(z) whenever it has minimizers.

A special case of this algorithm is the iterative method presented in [18]. There

the functions composing each f; in (8.1) of Appendix B are of the form

9ij = wig;(x;)
where the w§ are nonnegative weights such that, for each j, Zle w§ = 1, and each
gi(t) is an extended scalar Bregman function as in Definition 7.1 of Appendix A. Then
each D; has the form (8.2) with d;(x;, 2;) = wid;(x;,2;), for all i and j. Equation
(4.4) then simplifies and becomes

I I
g; (@ N2 Qo w)) = g7 (257 Do wi(Pi(a®));, (4.5)
i=1 i=1
so that, for all j =1,...,J,
I
xf“ = Zw;(R(xk))] (4.6)
i=1

As noted in [18], special cases include Combettes’ iterative algorithm for the Eu-
clidean case [31] and the “Expectation Maximization Maximum Likelihood” (EMML)
method, as it occurs in emission tomography. See, e.g., Vardi, Shepp and Kaufman
[55] and also Section 6 below.

When, instead of the choices made at the beginning of this subsection, we make

C the set Q and D the set P we get a different algorithm, as we discuss next.

4.2 The case in which P is identified with D and O is identi-
fied with C

Now we interchange the roles of the sets chosen in the beginning of the previous

subsection and let the set D in the product space V play the role of P and let
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C C V be Q of Section 3. We again assume that {f;}!_, is a family of separable
extended Bregman functions with zones {S;}._,, as defined in Appendix B, and that
SiNGC; #0, for all 1 < i < I. In contrast with the previous subsection, we now look

at

Py(r) = Pl (x), (4.7)

the second-variable extended Bregman projection of x onto C; with respect to f;,
defined for all # € domP;, where (compare with (8.4))

domP; 2 {z € S;| Dy(x, z) < 400, forsome z € Ci(Si}

The prozimity function of the family of sets {C;}1_, with respect to the family of
separable extended Bregman functions {f;}1_,, given in (8.1), is, in this case, defined

F(x)2 Y Dy(x, B(x)), (4.8)

for all 7 in domF £ ﬂi]:ldomf?z-.

Algorithm 4.2
Initialization: z° € domF is arbitrary.
Iterative Step: Given z* find, for all i = 1,..., I, the projections ]Sl(xk) and calcu-

late zFt! from

I I
S Vi) =3 VA(P(Y), (4.9)
=1 i=1

Since the f; are separable, we can rewrite (4.9), for j =1,...,.J, as

2 gyl = ;gz’-j((l%(x’“))j)- (4.10)

The justification of Algorithm 4.2 is done along lines similar, but not identical,
to those of the previous subsection. In order to minimize the proximity function
over all z € domF', we set now p” = d(z°) to initialize the application of Algorithm
3.1 in the product space. Note that for this case we must apply Algorithm 3.1 by
doing first (3.2) and then (3.1) in every iterative step. So, given p* = d(z*), we solve
the minimization of ©(p¥, q) = D(p¥,q) by letting ¢* = (Py(z*), Py(z*), ..., Pi(z")).

Now this is precisely the expression for the second-variable projection of p*¥ onto C in
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the product space V according to the separable extended Bregman distance D(p, q)
defined by (2.2) with the family of separable extended Bregman functions defined in
Appendix B. Again, this follows from an argument similar to the one used in the
proof of [24, Lemma 4.1] (also appearing in [23, Lemma 5.9.2]). From this ¢* we
then calculate p**! by doing the other minimization. This minimization is realized
by pF*l = d(z**') where 2% is the solution of (4.9), as can be verified along similar
lines to those of [24, Lemma 4.2] (also appearing in [23, Lemma 5.9.3]). Once again
we must admit that the ability to actually solve (4.9) for z**! in practice cannot
always be guaranteed. Having made, as before, the additional assumption that, for
all 1 <i < I, the generalized distances D;(z, 2) are jointly-convex with respect to both
z and z. This implies the joint convexity of D in (2.2), as well as the convexity of F.
From our analysis of extended Bregman functions and distances in Appendices A and
B, we know that Assumptions 3.1-3.3, needed for proving convergence in the previous
section, hold. We, therefore, conclude that the iterative procedure of Algorithm 4.2
converges to a minimizer of the proximity function F'(z) whenever it has minimizers.
A special case of this algorithm is the “simultaneous multiplicative algebraic re-
construction technique” (SMART) presented in [11, 29] (see also Section 6 below).

4.3 The case in which P is identified with C and Q is identified
with H

In this and the next subsections we replace the “diagonal” set D with the “sub-
diagonal” set
’Hé{v eVi|ivy=x,i=1,...,I, x € Q},

where Q C R’ is some given closed convex set, see Section 2. Changing again the
roles of the sets P and Q chosen in the previous subsections, we let now the set C in
the product space V play the role of P and let H C V be Q of Section 3. We again
assume that {f;}1_, is a family of separable extended Bregman functions with zones
{S;}1_,, as defined in Appendix B, and that S;NC; # 0, for all 1 < i < I. We now

look again at
Py(x) = Pl (w), (4.11)

the extended Bregman projection of x onto C; with respect to f;, defined for all
r € domP;.
The prozimity function of the family of sets {C;}1_, with respect to the family of

separable extended Bregman functions {fi}!_,, given in (8.1), is, in this case, defined
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Fo(x) £ Y Di(Pi(x), o), (4.12)

for all z in
N I
domFo 2Q () domP,).
i=1
Algorithm 4.3
Initialization: 2° € domFy, is arbitrary.
Iterative Step: Given z* find, for all i = 1, ..., I, the projections P;(z*) and calcu-

late zFt! from

2! = argmin {XI: Di(Py(a%),2) | v € Q} (4.13)
i=1

The justification of Algorithm 4.3 is again done along lines similar, but not identi-
cal, to those of the previous subsections. In order to minimize the proximity function
of (4.12) over all z € domFg, we set now ¢° = h(z°) to initialize the application of
Algorithm 3.1 in the product space. So, given ¢* = h(z*), we first solve the mini-
mization of D(p, ¢*) by letting p**! = (P (2%), Py(2*), ..., P;(2*)). This is precisely
the expression for the projection of ¢* onto C in the product space V according to
the separable extended Bregman distance D(p,q) defined by (2.2) with the family
of separable extended Bregman functions defined in Appendix B. Again, this follows
from an argument similar to the one used in the proof of [24, Lemma 4.1] (also ap-
pearing in [23, Lemma 5.9.2]). From this p™! we then calculate ¢! by doing the
other minimization. This minimization is realized by ¢**! = h(z**!) where z*+! is
the solution of (4.13). Having made, as before, the additional assumption that, for all
1 <i < I, the generalized distances D;(x, z) are jointly-conver with respect to both
x and z. This implies the joint convexity of D in (2.2), as well as the convexity of Fj,.
From our analysis of extended Bregman functions and distances in Appendices A and
B, we know that Assumptions 3.1-3.3, needed for proving convergence in the previous
section, hold. We, therefore, conclude that the iterative procedure of Algorithm 4.3
converges to a minimizer of the proximity function Fq(z) whenever it has minimizers.
A special case of this algorithm is the iterative method of Vardi and Zhang, pre-
sented in [56, 57|, for maximum likelihood estimation of mixing probabilities. In

that work the authors consider a random variable Z, whose values lie in the set
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{1,2,...,I}, such that the probability that Z takes on the value i is the entry g; of
the probability vector g = (g1, ..., 9r)", given by

J
7=1

where the p;; are known nonnegative weights such that, for every j, > pij = 1 and
f=(f1,--., fr)" is an unknown probability vector. The goal is to estimate f from
N independent random samples of the random variable Z. For ¢ =1,...,1 let y; be

the number of times the value i occurs as the value of the random variable Z, out of
the sample of N. The likelihood function for f is then defined by

L(f) = i, (g:)"", (4.15)

so that the log-likelihood function becomes

I
LL(f) = yiloggi. (4.16)

i=1
Vardi and Zhang consider the problem of maximizing LL(f) subject to the constraint
that f be a probability vector and that 0 < a; < f; < b;, for all j. To obtain their

algorithm we give each D; the form

J
Di(l', Z) = ZpinL({L'j,Zj), (417)

7=1
so that di;j(z;,2;) = pij KL(z;,2;), for all ¢ and j. For each ¢, we now have C; =

{z| o7 pijz; = y;}. We take © to be the closed convex set

J
02 {zeR|0<a; <ax; <bj, forallj=1,....J and 3 a; =1},
7=1

As shown in [56], the iterative step can be calculated in closed-form using scaling and
chopping. When we make C the set Q and H the set P we get a different algorithm,

as we discuss next.

4.4 The case in which P is H and Q is C

With # as P and C as Q, each ¢ € Q = C has the form q = (¢;), with ¢; € C; C R’/
and each p has the form p = h(z), for some x € Q. We assume that S;NC; # 0, for all
1 <i < I, and that d;;(z;, z;) is extended to z; on the boundary of V;; as discussed in
Appendix A. Denote again P;(z) £ Pcfwl (x), the second variable projection of x onto C;
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with respect to f;, defined, for all x for which there is z in C; with D;(x, z) < 400, as
that member of C; for which the distance D(x,2) is minimized, over all z € C; N S;.

Now the proximity function becomes

1

Fo(z) 2 3" Dz, Py(x)), (4.18)

i=1
defined for all x in ;
domFo 2Q (N domP,).
i=1
Algorithm 4.4
Initialization: z° € domFy, is arbitrary.
Iterative Step: Given z* find, for all i = 1,..., I, the projections ]Sl(xk) and calcu-

late zF*! from

I
2F ™ = argmin {}_ Di(z, B(a")) | v € Q} (4.19)
=1

One more time, the Algorithm 4.4 is justified along lines similar, but not identical,
to those of the previous subsections. In order to minimize the proximity function
of (4.18) over all z € domFy, we set now p° = h(z°) to initialize the application
of Algorithm 3.1 in the product space. So, given p¥ = h(z¥), we first solve the
minimization of D(p*, q) by letting ¢* = (P, ("), Py(2¥), ..., Pr(z*)). This expression
for the (second-variable) projection of p* onto C in the product space V according
to the separable extended Bregman distance D(p, ¢q) defined by (2.2) with the family
of separable extended Bregman functions defined in Appendix B. Again, this follows
from an argument similar to the one used in the proof of [24, Lemma 4.1] (also
appearing in [23, Lemma 5.9.2]). From this ¢* we then calculate p**! by doing the
other minimization. This minimization is realized by pf*! = h(z**!) where z*+! is
the solution of (4.19). Having made, as before, the additional assumption that, for all
1 <i < I, the generalized distances D;(x, z) are jointly-conver with respect to both
z and z. This implies the joint convexity of D in (2.2), as well as the convexity of Fy,.
From our analysis of extended Bregman functions and distances in Appendices A and
B, we know that Assumptions 3.1-3.3, needed for proving convergence in Section 3,
hold. We, therefore, conclude that the iterative procedure of Algorithm 4.4 converges
to a minimizer of the proximity function Fy(z) whenever it has minimizers.

In the next section we discuss the application of our results to the split feasibility

problem considered by Censor and Elfving in [24].
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5 The split feasibility problem

In [24] Censor and Elfving discuss what they call the split feasibility problem which is
the following. Given closed convex sets C, @ in R’ and an invertible matrix A, find
x € C such that Az € . For the consistent case, in which there are such z, one can, in
principle, use the sequential projection method, projecting orthogonally alternatingly
onto the two sets A(C) and Q). However, the set A(C') may not be simple to describe
and computing the orthogonal projection onto it may not be easy since this orthogonal
projection is equivalnet to an oblique projection onto C, followed by A, see [24, Section
6.1]. Censor and Elfving were motivated to consider multiprojection algorithms by
the desire to replace the orthogonal projection onto A(C') by the orthogonal projection
onto C.
The iterative step of their algorithm is the following

ajk+1 = Ail(I + AAT)il(AP(jiUk + AATPQAxk)a (51)

where A~! and A" are the inverse and the transpose of A, respectively, and Pr and
P are the orthogonal projections onto C' and ), respectively. In the consistent case,
it follows from [24] that any sequence {z*}, generated by this algorithm, converges
to £ € C, such that Az*> € Q.

We can put this algorithm into the framework discussed above and prove conver-
gence for the inconsistent case. Let C be the product of C; = A(C') and Cy = @, D the
diagonal subspace of V, as before. Let fi(x) = (Az)T Az and fy(z) = 2Tz, with asso-
ciated Bregman distances D;(z, 2) = (1/2)||z — 2|[4r 4 and Day(z, 2) = (1/2)]|z — z||?,
where ||z||¢ = (x, Gx). Since these distances are symmetric, the first variable projec-
tion and the second variable projection coincide. The iterative algorithm we obtain
is that given in (5.1). But now we can conclude that the iterative sequence con-
verges in the inconsistent case to a minimizer of the proximity function F(z) =
Dl(Pj‘ctC)x, r) + DQ(PéZJ;, T).

6 The ABSMART and ABEMML algorithms

In this section we consider two iterative algorithms, called the ABSMART and ABE-
MML algorithms, that can be derived as special cases of the algorithms discussed in
Section 4. These algorithms are quite similar to the EMML and SMART algorithms,
but incorporate lower and upper bounds a = (a;) and b = (b;) on the vector of un-
knowns x by using the functions K L(s — a;,t — a;) and K L(b; — s,b; —t) instead of
KL(s,t).
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6.1 The EMML and SMART algorithms

The “Expectation Maximization Maximum Likelihood” (EMML) algorithm, as it is
used in emission tomography (see, e.g., Byrne [11, 12, 13], Lange and Carson [49],
Tanaka [53], Vardi, Shepp and Kaufman [55]), is a special case of the more general
EM algorithm of Dempster, Laird and Rubin [33] for computing maximum likelihood
estimators, see also McLachlan and Krishnan [51]. The EMML algorithm considered
here provides a nonnegative minimizer of the Kullback-Leibler distance as we explain
now.

Shannon’s entropy function maps the nonnegative orthant R into R according

to

ent 2 Zx]logx] (6.1)
j=1

where “log” denotes the natural logarithms and, by definition, 0log0 = 0. Its nega-
tive, f(z) 2 _ ent x, is a Bregman function and the generalized distance associated
with it is the Kullback-Leibler (KL) distance (see Kullback and Leibler [48], see also
[23, Example 2.1.2 and Lemma 2.1.3]), given by

D¢(x,z) = KL(x, 2) Z(x]log( ])+z]—x3) (6.2)

For positive scalars a,b, define KL(a,b) = alog(a/b) + b — a, KL(0,b) = b and
KL(a,0) = +oo.

For a given positive vector y € R’ and a given nonnegative matrix A = (a;;) €
R™7 all of whose column-sums are equal to one, consider the distance

I

KL{y, A) 2 Dyly, Av) = 3 (v log o+ (40): = wi) (6.3)
=1 ?
Define the sets C; as
Ci2{z e R | x>0, (Az); =y}, (6.4)

and let w§ éaij, forall 1 <¢<7Tand 1 <j <.J. The functions g; are defined as
g;(z;) éxj logz;, forall 1<j <. (6.5)

The generalized projection P;(z) of a point z € R onto C}, is a member z of C;

which minimizes the distance

Dj(z,z) = > wiKL(zj,x;). (6.6)

=1
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It can be verified that, in this case, P; has the explicit form

(Pi@)); =2y 15 <. (6.7)

If w§ = 0 for some values of 7 then there will be other members of C; that also
minimize the distance given by (6.6).

It is important to note that if there is an index j for which z; = 0 but z; # 0
then K L(z,x) = +00. When we seek the generalized projection of x onto a closed
convex set C; we must allow for the possibility that the generalized distance from x
to each member of C} is infinite and then we do not define the generalized projection
of x onto this set. In our case, however, we see from (6.7) that (P;(z)); = 0 if and
only if z; = 0, so the generalized distance from z to such Cj is always finite and the
generalized projection is always defined.

The proximity function F' is defined, in this case, as

1

r) = ZDi(R(x),fv) = ;;%KL((B(@)J»%) (6-8)

- ZZ%KL( (A )l ,1;) = KL(y, Az). (6.9)

i=1j=1

The iterative step of the EMML algorithm is given by

a yz Q;jY;
2kt = Zw Za” —ka A;Z (6.10)

for all 1 < j < J. The F(x) of (6.9) clearly has nonnegative minimizers and the
following result holds (see Tusem [42, 43], Vardi, Shepp and Kaufman [55]).

Theorem 6.1 Any sequence {1*}>0, generated by the EMML algorithm, converges
to a minimizer of KL(y, Ax).

In the inconsistent case {x € R’ | x > 0, Az = y} = () the nonnegative minimizer

of KL(y, Azx) is almost always unique, regardless of the values of I and .J.

Definition 6.1 We say that a matriz A = (a;;) € R™ has the full rank property
(FRP) if A and every submatriz obtained from A by deleting columns have full rank.

The following result can be found in Byrne [11, Proposition 1].

Theorem 6.2 If A has the FRP and if y = Ax has no nonnegative solutions then
there is a subset L C {1,2,...,J}, having at most I — 1 elements, such that, for all
nonnegative minimizers & > 0 of KL(y, Ax), £; > 0 only if j € L. Consequently,

there can be only one such .
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We note that, according to this theorem, the minimizer of the proximity function
can be on the boundary of the region within which the function f is defined. It is,
therefore, necessary to define the proximity function for all boundary points for which
the generalized projections are defined.

Turning now to the SMART algorithm, we note that the second variable projection

Pi(z), of a point x € R onto C;, is a member z of C; which minimizes the distance

Di(z,z) =Y wiKL(zj,z). (6.11)

j=1
It can be verified that, in this case, P, has the same explicit form as above, that is,

P Yi .
(Fi(z)); = Y AD), I<j<J (6.12)
Again, if w§ = 0 for some values of j then there will be other members of C; that also
minimize (6.11).

The proximity function F in this case is

eS|l
&

>
M~

Di(a,Pio) = 323 ey K Loy, (P (6.13)
1 zj:lainL(a:j,xjﬁ ) = KL(Ax,y). (6.14)

The iterative step of the SMART algorithm is given by

I
M- 1

-
Il

T
wi Yi
vyt =1 ((Pi(a")))"™ = 2} eXP(Z a;;log ——~ .), (6.15)
i=1 (Azk);
for all 1 < j < .J. The F(x) of (6.14) clearly has nonnegative minimizers and we have
the following result (see [11]).

Theorem 6.3 Any sequence {z*},>o generated by the SMART algorithm converges
to the minimizer of K L(Ax,y) for which K L(z,x°) is minimized.

There is no loss of generality in considering here only systems of linear equations
Ax = y in which all entries of the matrix are nonnegative. For suppose that A is
an arbitrary (real) matrix A = (a;;). Rescaling if necessary, we may assume that for
each j the column sum };a;; is nonzero. Now redefine A and x without changing

the notation as follows: replace a;; with Za’“j

and x; with z; 37, a;;. This leaves the

i 4

product Az unchanged but the new A has all its column sums equal to one. The

system Az = y still holds, but now we know that y. 2 il = 2Ty éaur. Let
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U be the matrix whose entries are all one and let v > 0 be large enough so that
A" = A + ~U has all nonnegative entries. Then A%z = Az + (yxy)u, where u
is the vector whose entries are all one. So the new system of equations to solve is
A =y + (yyp)u =y .

There are also block-iterative versions of the SMART and EMML algorithms, as
well as of the ABEMML and ABSMART algorithms, given in the next subsections.
These algorithms use only part of the data at each step of the iteration. See, e.g.,
Byrne [14, 15, 16, 17] and Censor and Segman [29] for further details.

Suppose that, instead of the nonnegativity constraints x; > 0, we wish to impose
the box constraints a; < x; < b, for j = 1,...,J, for some given a = (a;) and
b = (b;) which are prior lower and upper bounds on = = (z;). The ABEMML
and ABSMART algorithms presented below converge to a solution of y = Az with
a <z < band, in addition, the ABSMART algorithm minimizes the quantity K L(z—
a,7° —a) + KL(b — z,b — 2°) over these same z, provided that a < 2° < b and
that there is a solution of y = Az with @ < x < b. The negative of the quantity
KL(z—a,2°—a)+ KL(b—xz,b—2") is a generalization of the Fermi-Dirac generalized
entropy, which is obtained by taking a; =0 and b; =1, forall j =1,...,J.

In both cases considered below we find that calculating Bregman projections onto

the sets C; = {x|y; = Ax;} using the distance
J
Dzl_lb(aj, Z) = Z az-j (KL(iU] — aj, Zj — Clj) + KL([)] — a:j, bj — Z])) (616)
7=1

cannot be done in closed form, whereas closed-form projections onto the C; using

either the distance

J
Di(z,z) = aijKL(zj — aj, z; — a;) (6.17)
=1
or the distance
J
Di(x,2) =Y ai;KL(bj — wj,b; — ), (6.18)
7=1

are possible. We obtain our algorithms by considering duplicates of each of the C;
and letting D; = D¢, fori=1,...,1,and D; = D? ; fori=1+1,...,21.

6.2 The ABSMART algorithm

The ABSMART algorithm is the fully simultaneous version of the ABMART algo-
rithm studied in [16, Section 3]. We assume that (Aa); < y; < (Ab);, for all 4.
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Algorithm 6.1 (ABSMART)
Initialization: 2° € R’ such that a; < 29 < b;, for all j, is arbitrary.

Iterative Step: Given z* find, for all j =1,...,.J, the components of z**! from

2i = alb; + (1 - al)a; (6.19)

with
k cf Tl (df)“i

ok = , 6.20
P14 o i (df) .
k
- 21
= (6.21)
and

; — (Aa);) ((Ab); — (Aa*);

g — Wi = (Aa)i)((Ab); — (Aa"),) (6.22)

P((Ab) — i) ((Aak); — (Aa);)
All terms in (6.22) are positive. We see from (6.19) that each term of the iterative
sequence {xf} is a convex combination of the a; and b;; the iteration proceeds until
convergence to a convex combination for which y = Ax, if such exists. If there
is no such solution of ¥ = Ax then the algorithm will converge to an approximate
solution satisfying the constraints, specifically, the limit is the unique vector satisfying
a < x < b for which the function KL(Ax — Aa,y — Aa) + KL(Ab — Ax, Ab — y) is

minimized.

6.3 The ABEMML algorithm

The ABEMML algorithm is the fully simultaneous version of the algorithm presented
in [16, Section 5]. Here we also assume that (Aa); < y; < (Ab);, for all i.

Algorithm 6.2 (ABEMML)
Initialization: 2° € R’ such that a; < 29 < b;, for all j, is arbitrary.

Iterative Step: Given z* find, for all j =1,...,.J, the components of z**! from

kb + Bra;
§+1 =27 ) d’?ﬁj = (6.23)
J
with

— aj)e” (6.24)



B = (b; —2b)fF (6.25)

J 77437

k i — (Aa);
€= az‘j((A‘Z:k)i (_ (jla)i)’ (6.26)
k Ab); — y;
Ii=2 aij((A(b)z. )_ (Agjvk)i)’ (6.27)
and
d = ol + g, (6.28)

We see from (6.23) that each term of the iterative sequence {z} is a convex
combination of the a; and b;. The iterations proceed until convergence to a convex
combination for which y = Az, if such exists. If there is no such solution of y = Ax
then the algorithm will converge to an approximate solution satisfying the constraints,
specifically, the limit is the unique vector satisfying a < x < b for which the function
KL(y — Aa, Az — Aa) + KL(Ab — y, Ab — Ax) is minimized.

7 Appendix A: Extended scalar Bregman func-
tions and distances

In this appendix we present a class of functions that we call “extended scalar Bregman
functions” and use them to construct “extended scalar Bregman distances” between
two real numbers. The latter are then used, in Appendix B, to define separable
extended Bregman distances between vectors. Some of the results presented here can
be deduced also from the work of Kiwiel [47].

Let V be a nonempty open convex subset of the real line R, with closure V and
boundary bdV = V \ V, those points in V but not in V. Then, for any a,b € R,

there are four cases to consider:

Case 1: V =V = R thus bdV = 0;

Case 2: V = ,b),V = (—o0, b] thus bdV = {b};
V = [a, +o0) thus bdV = {a};

(—o0
Case 3: V = (a, +00),
(a,b),V = [a,b] thus bdV = {a, b}.

Case 4: V =

Definition 7.1 (Eztended Scalar Bregman Distance). Let V' be a nonempty open
convez subset of R and let g : V — R be a function with the following properties:
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P1: g is continuous on V;

P2: g is continuously differentiable at all points of V' (that is, ¢' exists and is con-

tinuous on 'V );

P3: g is strictly conver on V.
Define also, for Cases 2 and 4,

' RT ' A
g'(b) =limg'(t) = f < +o0, (7.1)
and, for Cases 3 and /,
Ja) =limg' () 20 > ~oc, (7:2)

For s,t € V define an extended scalar Bregman distance with respect to g by

9(s) = 9(t) —g'(t)(s = 1), if g'(t) is finite,
dy(s,t) 2 o, if s=1t e bdV and ¢'(t) is infinite,  (7.3)

+00, if s#t,t € bdV and ¢'(t) is infinite.

We further define, for any fixed 0 > 0, the partial level set
Li(s,0) 2 {t € V| d,(s,t) <6}, (7.4)

and make the additional assumption
P4: For all 0 > 0 and all s € V, the level sets L3(s,0) are bounded.

A function g having all the properties as in Definition 7.1 will be called an extended
scalar Bregman function. Tusem [44, Proposition 9.2] relates, under certain conditions,
the properties (7.1)—(7.2) to a property he calls the “zone coerciveness” of a Bregman

function.

Proposition 7.1 If g is an extended scalar Bregman function then ¢' is strictly in-

creasing on 'V, i.e., for u >t in 'V we have g'(u) > ¢'(t).

Proof: From the strict convexity property P3, we have g(u) > g(t) +¢'(t)(u—t) and
g(t) > g(u) + ¢'(u)(t — u). Together these give (¢'(u) — ¢'(t))(u —t) > 0. |

Since the derivative ¢’ is strictly increasing on V it makes sense to define the
(possibly infinite-valued) derivative of g at the boundaries through the one-sided

limits.
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Let us denote, here and henceforth, the expression in the first row of (7.3) by
0y(s,1), i.e., 0g4(s,t) 2 g(s) — g(t) — ¢'(t)(s — t). Then, from the strict convexity of g
we know that, if ¢’(¢) is finite, then d,(s,¢) > 0, for all s € V and all t € V, and
d4(s,t) = 0 if and only if s = ¢, see, e.g., Bazaraa, Sherali and Shetty [4, Theorem
3.3.3]. The extension in (7.3) preserves this property.

Proposition 7.2 If g is an extended scalar Bregman function then, for allt €V, we

have lim,,_,; dy(t,u) = 0.

Proof: We prove this by showing that lim,_,; ¢'(u)(u —¢t) = 0. If ¢'(¢) is finite
the result clearly holds. Consider the case in which ¢ = b and ¢'(b) = +o00. Since
the derivative of ¢ is positive for u near b we have g(u) < ¢(b) and ¢'(u) > 0.
Then g(b) > g(u) + ¢'(u)(b — u), so that g(b) — g(u) > ¢'(u)(b —u) > 0. Since
(g(b) — g(u)) — 0, as u b, we have ¢'(u)(b —u) — 0, as u  b. The case t = a
follows in a similar manner. |

From Proposition 7.2, and under the same conditions, the next two corollaries
hold.

Corollary 7.1 If g is an extended scalar Bregman function and if, for any fixed
s €V, we let n(t) = d,(s,t) and, for any fired t € V, we let £(s) = dy(s,t), then both

n and & are continuous on V.

Corollary 7.2 Let g be an estended scalar Bregman function, let s € V be fized and
let {tx}r>0 CV be a bounded sequence. If d,(s,tx) — 0 then ty — s, as k — ~+oo.

We present some examples of such functions g, taking as V' the largest set satisfying
the conditions of Definition 7.1. In each of the next five examples d,(s,?) denotes the

expression in the first row of (7.3).

Example 7.1 If g(¢t) = ¢* then we have d,(s,t) = L*(s,t) = (s — t)?, the square of
the Euclidean distance and V = R.

Example 7.2 If g(t) = tlogt then §,(s,t) = KL(s,t) = slog(s/t) +t — s, the scalar
Kullback-Leibler distance and V' = (0, +00).

Example 7.3 If g(t) = (t — a) log(t — a) then §,(s,t) = (s —a)log((s —a)/(t —a)) +
t—s=KL(s—a,t—a)and V = (a,+00).

Example 7.4 If g(t) = (b—t) log(b—1t) then 0 4(s,t) = (b—s)log((b—s)/(b—t))+s—t =
KL(b—s,b—t)and V = (—o00,b).
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Example 7.5 If g(t) = (t — a)log(t — a) + (b — t) log(b — t) then we have §,(s,t) =
(s—a)log((s—a)/(t—a))+(b—s)log((b—s)/(b—t)) = KL(s—a,t—a)+ KL(b—s,b—t)
and V' = (a,b).

For any fixed o > 0 we define the other partial level set of d,(s,t) by

Li(a,t) 2 {s € V|d,(s,t) < a}. (7.5)

Proposition 7.3 Ig g is an extended scalar Bregman function then, for anyt € V
and o > 0, the partial level set L](«a,t) is bounded.

Proof: Clearly, if V' is bounded there is nothing to prove. Now, if £ is on the boundary
of V' and dy(s,t) < a then t = s, so it is obvious that L{(«,t) is bounded in this
case. If there are & > 0 and ¢ € V such that L{(«,t) is not bounded, then there is a
sequence {s;} whose absolute values |s;| — +oo and such that g(si) — ¢'(t)s < «,
for all £ > 0. We must consider two cases: (1) sy — +00 and (2) s, — —o0.

We discuss case (1) in detail; since case (2) is similar, we omit it. As s —
+00 there are three possibilities: (1a) g(sx) — +oo; (1b) g(sx) — —oo; or (lc)
g(sk) — r, for some r € R. In case (1a) if ¢'(t) < 0 then we are done. So suppose
g'(t) > 0. If g(sk) — ¢'(t)sk, < a, for all k& > 0, then for some real ¢ we have
g(sk) < a+ g (t)sy < ¢+ g'(t)sk, for all k > 0. Since g is strictly convex, there is
u > t with g(u) > g(t) + ¢'(t)(u — t) and ¢'(u) > ¢'(¢t). The line [ tangent to the
graph of ¢g at (u, g(u)) has slope ¢'(u) > ¢'(t), so [ intersects the line y = ¢'(t)z + ¢
at some point © = v. Then g(v) > ¢'(t)v + ¢, since (v, g(v)) is above the line [. This
contradicts g(sg) < ¢ + ¢'(t)s, for all k > 0, since g(s) is increasing, as s — +0o0.
Cases (1b) and (1c) are similar and we omit the details. |

So, while the boundedness of L{(«, t) follows from the strict convexity of g, Prop-
erty P4 of Definition 7.1 does not follow from our other assumptions about g and
dy(s,t). Indeed, we can construct a function g on V' = (0, 4+o00) with ¢g(¢) = —oo and
g'(t) = —e <0, as t = +o00. Then d,(s,t) remains bounded as ¢t — +o0.

Proposition 7.4 Let g be an extended scalar Bregman function. Ift < u < s then
dg(s,t) > dy(s,u) +dg(u,t) and dy(t,s) > dy(t,u) + dy(u, s).

Proof: Both inequalities readily follow from Definition 7.1 and the fact that the
derivative ¢’ is strictly increasing. 1
From Proposition 7.4, and under the same assumptions, we obtain the next two

corollaries.
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Corollary 7.3 Let g be an extended scalar Bregman function. Ifty — t and {d,(sg, tx)}
is bounded, then {s;} is bounded.

Proof: Suppose not. We consider two cases: (1) ¢ \ ¢ and s +00; (2) ¢, 't and
sk /* +00. For case (1) we have dy(sg, ty) > dy(sk, t1)+dy(t1,tx), so that {dy(sk, t1)} is
bounded; it follows that {s;} is bounded. For case (2) we have d,(sg, tx) > dy(sg,t) +
dy(t,tr), so that {d, (s, t)} is bounded; it follows that {sj} is bounded. The remaining

cases are similar and we omit them. |

Corollary 7.4 Let g be an extended scalar Bregman function. If s, — s and {d,(sk, )}
is bounded, then {t;} is bounded.

Proof: The proof is similar to that of the previous corollary and we omit it. |

Proposition 7.5 Let g be an extended scalar Bregman Function, let s, t, €V, for
all k, and suppose that {t,} — t € V, {si} is bounded and dy(sg,t;) — 0. Then
S — t.

Proof: Without loss of generality we may assume that s, — s. If ¢/(¢) is finite then
the result follows from the strict convexity of ¢ and the continuity of ¢’. So assume
that ¢'(t) is infinite. From dg(sg, tx) = g(sk) — g(tx) — ¢'(te) (s — tx) — 0 it follows
that ¢'(tx) (s — tx) remains finite. But we know that |¢'(tx)| — +o0, s0 (sg —tx) — 0
and s = t follows. |
Remark 7.1 If s, — s and ¢, — ¢ it need not follow that d,(sg,tx) — d4(s,1t).
The implication is true if ¢'(¢) is finite or if s # ¢. But, if we let, for example,
g(zr) =xlogz, t =0, ty — 0 and s, = —1/(1 + logt;), we find that dy(sk, t) — +1.

8 Appendix B: Separable extended Bregman dis-
tances and projections

This material has its origin in Bregman’s paper [5], Censor and Lent [21], and further
developments which appear in the works of Bauschke and Borwein [3], Censor and
Zenios [22], Censor, Tusem and Zenios [26], De Pierro and Tusem [34], Eckstein [37],
Tusem [41], Teboulle [54] and others.

We use now the extended scalar Bregman functions and distances, presented in
Appendix A, as building bricks to construct extended Bregman functions, which are
not necessarily scalar, in the following natural way. Let V;; C R be nonempty, open

convex subsets of I, forall+ =1,...,1,j =1,...,J and let g;; be extended scalar
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Bregman functions with domains V;; and with associated extended scalar Bregman
distance d;; éalgi]., as in Definition 7.1 of Appendix A. In these circumstances, each

function
J
fil@) 2 Y gij(z;) (8.1)
j=1

is a separable extended Bregman function over the zone S; 2 H}']:1 Vi; € R, and the

generalized distance associated with each f; is, for any (z,2) € S; x S;,

J
Di(x,2) 2 Dy, (1, 2) = S dij (), 7). (8.2)
j=1
For every 1 < j < J, and x;, z; € V, the expression §,,; of the first row of Definition
7.11s

03 (4, 25) = 93 (x5) — i (23) — by (23) (5 — 2). (8.3)

Observe that here we construct each f; from extended scalar Bregman functions
over a closed domain (see Definition 7.1 of Appendix A). Therefore, the generalized
distances D;(z,2) are defined for all (z,2) € S; x S;. This is in contrast to the
standard theory of Bregman distances, which are defined only on S; x S;. See, e.g.,
[21, 22, 27, 28] or [23, Chapter 2] for the standard theory of Bregman functions and
the notions of Bregman function, zone and generalized distance. Note also that, by
construction, the zone S; for the separable case is a “box” in R’. We then have that
!y Dj(x,z) = +oo if and only if there are indices i, j such that z; # z; and g;(z;)
is infinite.
Let C; be a nonempty closed convex subsets of R/, for all i = 1,...,I. For any

given z € S; we have either

(1) Di(z,2) = +o0, for all z € C;N S;, or

(2) Di(z,2) < 400, for some x € C;NS;.

In case (2) there is a unique element of C; (N S;, denoted P;(z), for which D;(z, 2) >
D;(Pi(2), 2) for all x € C;NS;. Therefore, we define

domP; & {z € S;| Di(,2) < +o0, forsome z € C;()S;}, (8.4)

extending the applicability of the Bregman projection operator defined in Section
1. In oreder to propagate the property of case (2) along an iterative process which
employs projections we need the following “zone consistency” type assumption about

the projections P;:
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Assumption 8.1: If z € domP; then P;(z) € domP;, i.e., D;(x, Pi(z)) < 400, for
some x € C;NS;.

The following inequality plays an important role in our forthcoming analysis.

Proposition 8.1 Let f; be an extended separable Bregman function, as defined above,
and let Assumption 8.1 hold. Then, for any v € C;(S; and z € domP;, we have

D;(x,z) > D;(x, P(2)) + D;(P;(2), 2). (8.5)

Proof: This was proven originally by Bregman [5] for generalized Bregman distances
over S; x S;; see also, e.g., [23, Theorem 2.4.1]. With the added assumption made
above the same proof holds. 1

The next proposition establishes a continuity result for Bregman projections which
is, to the best of our knowledge, the first of its kind in the literature on Bregman

functions.

Proposition 8.2 Under the assumptions of Proposition 8.1, the function 7r§., defined
for all x € domP;, by 7' (x) 2 (P;(z)); is continuous for all j.

Proof: Let x,2¥ € domP;, and 2¥ — z. Then D;(P;(x),z%) > D;(P;(z), P;(z%))
follows from the inequality (8.5). We show that {D;(P;(z),2z*)} is bounded. If
not, then there is a j such that {dy;((P;(z));,#¥)} is unbounded. It follows that
{9i;(@5)((Pi(x)); — «%)} is unbounded; therefore gj;(z;) is infinite. So (P;(z)); = 5,
since D;(P;(x), z) is finite. Consequently, {d;;(x;, xf)} is unbounded; this cannot be,
since it converges to zero. Therefore, { D;(P;(x), z*)} and thus also { D;(P;(z), P;(z*))}
are bounded. It follows that {P;(z*)} is bounded. Let {P;(z*")} be a subsequence
converging to some ¢ € C;. Then, from Proposition 8.1, we have D;(P;(x),z) >
D;(P;(z), Py(x*)) + D;(P;(z*), z%). The convergence of {dij((]%(ka))j,xfm)} to
dij(cj, ;) is clear, for all j for which g};(x;) is finite. Since {D;(Pi(z*m),z*)} is
a bounded sequence it follows that, for those j for which g;(z;) is infinite, ¢; =
z; = (P(z));. Finally, taking k, — +oo in D;(P;(z),z*") > D;(P;(x), P;(z*)) +
D;(P;(z*m), z%m), we get D;(P;(x),x) > D;(P;(z),c) + lim sup{ D;(P;(z*"), %)} >
D;(P;(x),c) + D;(c,x), from which we conclude that ¢; = (P;(z));.

Proposition 8.3 Under the assumptions of Proposition 8.1, let + € S;. Then

x € domP; if and only if, for some sequence z* € S;, ¥ — =z, the sequence
{D;(P;(z*),2%)} is bounded.
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Proof: Let x € domP;; then D;(P;(x),2*) > D;(P;(x), P;(z*))+D;(P;(«*), 2*). Since
{D;(Pi(x),2*)} converges to D;(P;(x),z), the sequence {D;(P;(z*),z*)} is bounded.
Conversely, if the sequence {D;(P;(x*), z*)} is bounded, then, since 2¥ — z, we have
that {P;(z*)} is bounded. Select a convergent subsequence {P;(zf)} — ¢ € C;. We
show that D;(c,z) < +oc. Since {D;(P;(z"*), 2*)} is bounded, it follows that, for all j
for which g}(x;) = 400, we must have {(P;(z*") — ")} — 0. It follows that ¢; = z;
for all such j; therefore, D;(c, x) < +00. 1
The classical examples are

Example 8.1 When g;(t) £ ¢(t) = 12 we have that f(z) = >y gi(x5) = 5l
and, taking f; = f, we get

1

Dl(ZL‘,Z) :Df(a?,Z)25“37—2“2%[12(1‘,2), (86)
and V; =R, forall j =1,...,J.
Example 8.2 Forall j =1,...,J, let

g;(t) 2 (t — a;) log(t — a;) + (b; — 1) log(b; — 1)
, fort € 'V 2 (aj,b;), where a; < b; are real numbers . Then

J J

f@) =" gi(x) > (xj — a;) log(x; — aj) + (bj — x;) log(b; — ;)
j=1 j=1

and, taking f; = f, we get

Tj— Gy

)+ (b — ;) log(1— ).

J .
D; ) =D ) = —aj)l
(@2) = Dyw,2) = 2 () = ) og(S— b~z

If a; =0 and b; = 400 then D(z, 2) becomes the Kullback-Leibler distance (6.2).
Further results on Bregman projections and additional examples can be found,
e.g., in Censor and Reich [27], De Pierro and Iusem [34], Eckstein [37], Teboulle [54].
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