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Abstract

Problems in signal detection and image recovery can sometimes be formu�

lated as a convex feasibility problem �CFP� of �nding a vector in the intersection

of a �nite number of closed� convex sets� When the intersection is empty� one

can minimize a proximity function that measures the average distance to all the

closed convex sets� Algorithms for these purposes typically employ projections�

not necessarily orthogonal� onto the individual convex sets� The multiprojection
algorithm of Censor and Elfving provides a simultaneous method for solving the

CFP� in which di�erent generalized projections may be used at the same time�

Convergence of this multiprojection algorithm follows� for the case of nonempty

intersection� from Bregman�s theorem on convergence of sequential projections

via a product space formulation� An important application of their algorithm

is to the split feasibility problem� Still open is the issue of convergence of such

multiprojection algorithms when the set intersection is empty�

We use here the geometric alternating minimization approach of Csisz�ar and

Tusn�ady to obtain new multiprojection algorithms for proximity function min�

imization that converge even in the infeasible case� Special cases of these algo�

rithms include the 	Expectation Maximization Maximum Likelihood
 �EMML�
method in emission tomography� the 	Simultaneous Multiplicative Algebraic

Reconstruction Technique
 �SMART�� new methods for image reconstruction
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that impose pixel�by�pixel upper and lower bounds on the reconstructed image

and the related constrained maximum likelihood algorithm of Vardi and Zhang

for estimating mixing distributions in statistics�

� Introduction

Let Ci� i � �� � � � � I� be closed convex sets in the J�dimensional Euclidean space

RJ and let C be their intersection� In many applications such convex sets represent

constraints that we wish to impose on the solution and the algorithms employ pro�

jections onto these individual sets� see� e�g�� Youla ��	
� Combettes ���
� Typically�

the projections of a point onto the individual sets Ci are more easily calculated than

the projection onto the intersection C� therefore iterative methods whereby the latter

can be obtained from repeated use of the former are desirable� There are three cases

to be considered ��� the intersection C is nonempty� but �small� in the sense that all

members of C are quite similar� ��� the intersection C is nonempty and �large�� that

is� the members of C are quite varied� and ��� the set C is empty� meaning that the

constraints we impose are mutually contradictory� When we say that the members

of C are �quite similar� or �quite varied�� we mean that the real�world objects they

represent �e�g�� the images in an image reconstruction task� are �similar� or �varied�

according to some criteria appropriate for the task�

Case ��� usually occurs if I is large and�or the individual sets Ci are �small�� In

this case an algorithm that simply solves the convex feasibility problem �CFP�� that

is� one that �nds some member of C� is useful�

Case ��� occurs if there are few convex sets and�or they all are quite �large�� In

this case just obtaining some member of C may not be helpful� we want to get a

member of C near to some prior estimate of the solution� The orthogonal projection

onto C� or a generalized projection of the type to be discussed here� might be more

helpful in this case� see� e�g�� Dykstra ���� ��
� Censor and Reich ��	
� Bregman�

Censor and Reich ��
 and references therein�

Case ��� is dealt with by �nding a point that is� in some sense� close to all the

individual Ci� One way to achieve this is to set up a proximity function that measures

the average distance to all the convex sets and then to minimize this function� If we

also wish to impose as a hard constraint that x be a member of another closed convex

set �� then we minimize the proximity function subject to this additional restriction

on x� Case ��� is our main focus in the present paper�

These issues can be considered in a general context� involving Bregman distances

and projections� Let S be an open convex subset of RJ and f a Bregman function

�



from the closure S of S into R� see� e�g�� Censor and Lent ���
 or Censor and Zenios

���� Chapter �
�

For a Bregman function f�x�� the generalized distance Df is given by

Df �z� x�
�
� f�z�� f�x�� hrf�x�� z � xi� �����

where h�� �i is the standard inner product in RJ and rf�x� is the gradient of f

at x� When the function f has the form f�x� �
PJ

j�� gj�xj�� with the gj scalar

Bregman functions� we say that f and the associated Df �z� x� are separable �see

Appendix B at the end of this paper�� With gj�t� � g�t� � t�� for each j� the function

f�x� �
PJ

j�� gj�xj� �
PJ

j�� x
�
j is a separable Bregman function and Df�z� x� is the

squared Euclidean distance between z and x�

For each i� denote by P f
Ci
�x� the generalized projection of x � S onto the set

Ci with respect to the generalized distance Df � that is� for any x � S we have

Df�P
f
Ci
�x�� x� � Df�z� x�� for all z � Ci

T
S� If C

�
�
TI
i��Ci is nonempty then the

sequential iterative algorithm of successive projections xk�� � P f
i�k��x

k� converges to

a member of C� This was shown by Bregman ��
 for the cyclic control i�k� � k

�mod I� � �� k � �� by Censor and Reich ���
 and by Bauschke and Borwein ��
 for

the more general repetitive control� If the set C is empty then this scheme does not

converge� In such a case it has been shown by Gubin� Polyak and Raik ���
 that�

for orthogonal projections in Hilbert space� the sequential iterative scheme exhibits

cyclic convergence� i�e�� convergence of the cyclic subsequences�

In this paper we investigate iterative methods of the simultaneous type� In the

past such methods were proposed with arithmetic weighting for orthogonal projec�

tions� see� e�g�� Aharoni and Censor ��
� Bauschke and Borwein ��
� Butnariu and

Censor ��� 	
� Censor ���� ��
� Combettes ���� ��
� Iusem and De Pierro ���
� Kiwiel

���
 and references therein� Recently� Censor and Elfving ���
 proposed and studied

a simultaneous projections algorithm for the convex feasibility problem that employs

generalized projections of the Bregman type� However� the weighting of the simulta�

neous projections there is not arithmetic� but depends on the choice of the Bregman

function �or functions��

Byrne and Censor ��	
 studied recently simultaneous methods with arithmetic

weighting for generalized projections that are not necessarily orthogonal� Such a

possibility was mentioned� in passing� by Censor and Herman ���� Section ���
� and

was recently studied for the special case of entropic projections in Butnariu� Censor

and Reich ��
� the results in ��
 deal only with the consistent case C �� �� The focus

in ��	
 was on the behavior of simultaneous methods with arithmetic averaging for
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generalized projections in the inconsistent case C � �� It was shown there that� if

Df is separable and jointly convex� then such methods converge to a minimizer of a

proximity function F �x� that measures the average generalized distance of x to the

family fCigIi��� Recent work by Butnariu� Iusem and Burachik ���
 on stochastic con�

vex feasibility problems contains a similar proximity function minimization algorithm

and notes the importance of joint convexity of the distance�

In the standard presentation of Bregman functions and distances the zone S is an

open convex set with closure S� The Bregman distance Df�z� x� is de�ned for z � S

and x � S and the Bregman projections Pi�x� are de�ned for x � S� In ��	
 the

de�nition of the distance Df�z� x�� the projection Pi�x� and� thereby� the proximity

function F �x� are extended to include x � S� This permits the treatment of the fairly

common case in which the proximity function has no minimizer within S� but does

have a minimizer when extended to S� Similar extensions appear in Kiwiel ���
 and

in ���� Section ��	
� We adopt this approach in this paper as well� again restricting

our discussion to separable Bregman functions�

In contrast with ��	
� we shall be concerned here with proximity functions of the

multiprojection type� de�ned for x �
TI
i�� Si� by

F �x� �
IX
i��

Dfi�Pi�x�� x�� �����

where� for i � �� �� � � � � I� the Dfi�z� x� are generalized distances derived from separa�

ble Bregman functions fi and the Pi � P fi
Ci
are the associated Bregman projections

onto the Ci� In addition� we shall consider the second variable projection of x onto

the Ci� that is� the member �Pi�x� � �P fi
Ci
�x� of Ci for which the quantity Dfi�x� z�

is minimized over all z � Ci

T
S� provided that the minimum exists and is attained�

The associated proximity function to be minimized in this case is �F �x� having the

form

�F �x� �
IX
i��

Dfi�x�
�Pi�x��� �����

In what follows we shall make considerable use of three important tools of math�

ematical algorithm design� The �rst tool is the reformulation of the problem in a

product space� as suggested by Pierra ���
� The second tool is the concept of general�

ized distances and their projections onto convex sets� as introduced by Bregman in ��


and studied extensively under the names Bregman distances and Bregman projections

by Censor and co�authors and by others �see ���
 and the references therein�� The

third tool is the framework of alternating minimization of a functional of two vector
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variables� as proposed by Csisz�ar and Tusn�ady ���
� The �rst two of these tools were

used in the work of Censor and Elfving ���
� but� because they were only concerned

with the feasible case� they used Bregman�s successive projections approach� instead

of the alternating minimization method of ���
� The proximity function minimization

algorithm developed in ��	
 can be recast in terms of Pierra�s product space and the

alternating minimization approach of Csisz�ar and Tusn�ady� but neither of these no�

tions was explicitly used there� In recent work Eggermont and LaRiccia ��	
 make use

of alternating minimization and prove the useful result that jointly convex Bregman

distances enjoy the �four�point property� of ���
� As we shall see� this is an important

aid in the present work�

To keep this presentation within reasonable bounds and make it accessible and

useful to a wide audience we adopt a tutorial style� deliberately sacri�cing some math�

ematical rigour of the presentation at places in order to present the new algorithms

themselves and their applications as clearly as possible�

� Pierra�s product space formulation

Given closed convex subsets Ci� i � �� � � � � I� with �possibly empty� intersection

C
�
�
TI
i��Ci� we reformulate the CFP in a product space framework� Following Pierra

���
 we let V be the product of I copies of the Euclidean space RJ � so that a typical

element v � �v�� v�� � � � � vI� of V is such that vi � RJ � i � �� � � � � I� We de�ne

C � �I
i��Ci to be the product of all sets Ci� i�e�� the subspace of V consisting of all

v such that vi � Ci� i � �� � � � � I� and we let D be the ��diagonal�� subspace of V

consisting of all v such that vi � x� i � �� � � � � I� where x � RJ � and express this by

writing v � d�x�� Our goal is to �nd a member of V in C
T
D� It is easy to verify that

an element d�x�� belongs to D
T
C� if and only if x� �

TI
i��Ci and� therefore� �nding a

solution of the two�sets feasibility problem in V yields a solution of the original CFP

in RJ �

We shall have occasion later to consider the problem of minimizing a proximity

function over all x within a given closed convex set �� For such problems we let H

be the subspace of V consisting of all v such that vi � x� i � �� � � � � I� where x � �

and we write for this v � h�x��

In ���
 Censor and Elfving obtain an iterative algorithm for solving the CFP by

performing successive Bregman projections onto C and D with respect to a generalized

�



distance in V� given by�

D��v� w�
�
�

IX
i��

�iDfi�vi� wi�� �����

where � � ��i� � RI is a �xed vector such that all �i are positive and
PI

i�� �i � � �

Here we construct a distance measure D�v� w� between v � S and w � S� where

S
�
��I

i��Si� as follows

D�v� w� �
IX
i��

Dfi�vi� wi�� �����

where Dfi is the Bregman distance associated with the Bregman function fi with

zone Si� With this distance at hand we attempt to solve the CFP by �nding iterative

algorithms that will minimize D��� ��� over � � C� � � D� If the CFP has a solu�

tion� then the minimum value will be zero� This approach involves the alternating

minimization method of ���
� which we describe in the following section�

� The alternating minimization method of Csisz�ar

and Tusn�ady

In this section we present a slightly simpli�ed version of the alternating minimization

method of Csisz�ar and Tusn�ady ���
� Suppose that P and Q are two closed convex

sets in the n�dimensional Euclidean space Rn� Let ��p� q� be a real�valued function

de�ned for all p � P� q � Q�

Algorithm ��� �The alternating minimization method�

Initialization� q� � Q is arbitrary�

Iterative Step� Given qk �nd pk�� by solving

pk�� � argmin f��p� qk� j p � Pg� �����

then calculate qk�� by solving

qk�� � argminf��pk��� q� j q � Qg� �����

Assuming that all the minima exist� the sequences fpkg� fqkg are obtained� De�ne

Fk
�
���pk� qk�� �����

We then have the following monotonicity result

�



Lemma ��� The sequence fFkg is decreasing�

Proof� We have

Fk � ��p
k� qk� � ��pk��� qk� � ��pk��� qk��� � Fk��� �����

To obtain further results Csisz�ar and Tusn�ady introduce two geometric axioms�

the three�point property ��PP� and the four�point property ��PP�� which we discuss

now�

De�nition ��� �The three�point property� The function ��p� q� has the three�

point property if there is a nonnegative�valued function  �p� p��� de�ned for all p� p� �

P� such that� for every p � P and for every pair of iterative sequences� de�ned by

Algorithm ���� the following inequality holds�

��p� qk� �  �p� pk��� � ��pk��� qk�� �����

In many applications ��p� q� � � and  �p� p�� � ��p� p��� As we shall see� this

holds for the distance measure de�ned in ������

Lemma ��� If ��p� q� has the �PP and if the sequence fFkg is bounded below �in

particular� if Fk � �� then the sequence f �pk� pk���g converges to zero�

Proof� Using the �PP and the de�nitions of the vectors pk and qk� we have

Fk � ��p
k� qk� �  �pk� pk��� � ��pk��� qk� � ��pk��� qk��� � Fk��� �����

Since fFkg is bounded below� the sequence fFk � Fk��g converges to zero and the

result follows�

Suppose now that there exist !p � P and !q � Q for which ��p� q� is minimized

over all p � P and q � Q� From the �PP we have

��!p� qk� �  �!p� pk��� � ��pk��� qk�� �����

and we also have

��!p� qk� � ��!p� qk����!p� !q� � ��!p� !q�� ���	�

It follows then that

��!p� qk����!p� !q� �  �!p� pk���� �����

�



We would like to have the related inequality

 �!p� pk��� � ��!p� qk���� ��!p� !q�� ������

in order to establish the double inequality

��!p� qk� �  �!p� pk��� � ��!p� !q� � ��!p� qk���� ������

from which it would follow that the sequences f��!p� qk�g and f �!p� pk�g are decreas�

ing� The �PP is precisely what we need to establish the second part of the double

inequality �������

De�nition ��� �The four�point property� The function ��p� q� has the four�point

property if there is a nonnegative�valued function  �p� p��� de�ned for all p� p� � P�

such that� for any p � P and q � Q and for every pair of iterative sequences� de�ned

by Algorithm ���� the following inequality holds�

 �p� pk� � ��p� q� � ��p� qk�� ������

Special cases of the double inequality ������ have appeared in the literature� al�

though it does not appear in ���
 itself� see� e�g�� Byrne ���
� where it is used in the

proof of convergence of the EMML algorithm� and also in Mat�u"s ���
� in connection

with entropic projections�

We now apply the alternating minimization method of Csisz�ar and Tusn�ady and

the results given above for ��p� q� in Rn to the distance measure D� de�ned by �����

in the product space V� To do this we let n � I�J and identify ��p� q� with D�v� w�

�and in doing so we also take the freedom to use interchangeably �p� q� and �v� w���

Then� of course� we must assume that either P � S and Q � S or that P and Q have

nonempty intersections with S and S� respectively� In the latter case an assumption

of �zone consistency� must be made that will guarantee that the sequences fpkg and

fqkg remain in S and S� respectively� throughout the iterations �see Assumption 	��

in Appendix B�� The �PP then follows from a standard inequality in the theory of

Bregman distances� i�e�� inequality �	��� in Appendix B� In order to have the �PP for

D we shall assume that each of the Bregman distances Dfi�x� z� involved is jointly�

convex� that is� convex as a function of the concatenated vector u � �x� z�� so that

D in ����� is also a jointly�convex Bregman distance� We then invoke the following

lemma� due to Eggermont and LaRiccia ��	� Lemma ����


Lemma ��� A jointly�convex Bregman distance Df has the 	PP with  � Df � that

is

Df �p� p
k� �Df�p� q� � Df�p� q

k�� ������

	



Proof� By joint�convexity we have the inequality

Df�p� q� � Df�p
k� qk� �

D
r�Df�p

k� qk�� p� pk
E
�
D
r�Df�p

k� qk�� q � qk
E
� ������

where riDf�p� q� denotes the partial gradient of Df � with respect to the ith vector

variable� evaluated at �p� q�� Since qk minimizes Df �p
k� q� over q� we have

D
r�Df �p

k� qk�� q � qk
E
� �� ������

Using the de�nition of Df �see ������� we obtain

D
r�Df�p

k� qk�� p� pk
E
�
D
rf�pk��rf�qk�� p� pk

E
� ������

It follows then that

Df �p� q
k��Df �p� p

k� � Df �p
k� qk� �

D
r�Df�p

k� qk�� p� pk
E

������

� Df �p� q��
D
r�Df�p

k� qk�� q � qk
E
� Df �p� q�� ����	�

from which the �PP follows�

Next� we impose further restrictions that will enable us to prove convergence of the

iterative sequences to a minimizing pair �!p� !q�� We assume thatD�v� w� �  �v� w� � �

is de�ned for v� w � S � V and that it has the �PP and the �PP� In the examples

considered later� these conditions hold� We also make the following assumptions on

D�

Assumption ��� �Bounded level sets� For any �xed v � S and t � �� the set

fw jD�v� w� � tg is bounded� Likewise� for any �xed w � S and t � �� the set

fv jD�v� w� � tg is bounded�

Assumption ��� The points !p and q� are chosen so that D�!p� q�� is �nite�

Assumption ��� If fD�p� pk�g converges to zero� for some p and some bounded

sequence fpkg� then fpkg converges to p�

From the double inequality ������ we know that the sequence fD�!p� qk�g is de�

creasing and from Assumption ��� it follows that fqkg is bounded� so we can extract a

subsequence converging to q�� Let p� minimize D�p� q��� Taking limits in the double

inequality ������ we have

D�!p� q�� � D�!p� !q� �D�!p� p��� ������

while� from the �PP� we also have

D�!p� q�� � D�p�� q�� �D�!p� p��� ������

�



Since fD�!p� qk�g is decreasing� it follows from Assumption ��� that D�!p� q�� is �nite�

and so D�p�� q�� � D�!p� !q�� the pair �p�� q��� therefore� minimizes D�p� q�� We can re�

place !p with p� in the double inequality� and conclude that the sequence fD�p�� pk���g

converges to zero� From Assumption ��� we then have that pk converges to p��

We summarize these results in the following theorem

Theorem ��� Let D satisfy the �PP� 	PP and Assumptions ���
���� listed above�

Let !p and !q be such that D�!p� !q� � D�p� q�� for all p and q� Then fpkg converges to

p�� fqkg converges to q� and the pair �p�� q�� satis�es that D�p�� q�� � D�p� q�� for all

p and q�

� The main results

In this section we present our new fully simultaneous algorithms which employ ex�

tended Bregman projections onto the convex sets fCigIi�� in RJ � The main algo�

rithmic di#erence between these algorithms and the multiprojections algorithm of

Censor and Elfving ���
 �see also ���� Section ���
� is the fact that here we use alter�

nating minimizations� instead of successive projections� For symmetric distances the

two approaches coincide� The multiprojections algorithm of Censor and Elfving has

been shown to converge� so far� only in the consistent case
TI
i��Ci �� �� whereas our

convergence results apply to both the consistent and inconsistent situations� In the

inconsistent case our algorithms become minimization tools for the proximity func�

tions de�ned below� and a minimizer might occur on the boundary of the zone Si of

the Bregman function fi� This possibility is the driving force behind our construction

of extended separable Bregman functions in Appendices A and B�

We assume that D�v� w� is de�ned in the product space V by ����� and that

the Dfi �s are jointly�convex separable extended Bregman distances� as de�ned in

Appendix B� As we reformulate our problem within the product space framework� in

order to apply the alternating minimization technique� we �nd that we must decide

which of sets C or D is to be identi�ed with P� Our algorithm will depend on this

choice� In Subsection ��� we consider the case in which C is taken to be P while the

other choice is taken up in Subsection ���� In the last two subsections we discuss the

modi�cations that must be made when D is replaced by H�

��



��� The case in which P is identi�ed with C and Q is identi�ed

with D

Here we let the set C in the product space V play the role of P and let D � V be

Q of Section �� We assume that ffig
I
i�� is a family of separable extended Bregman

functions with zones fSigIi��� as de�ned in Appendix B� and that Si
T
Ci �� �� for all

� � i � I� As discussed in Appendix B� we denote the extended Bregman projection

of z onto Ci with respect to fi� de�ned for all z � domPi� by

Pi�z�
�
�P fi

Ci
�z�� �����

The proximity function of the family of sets fCigIi�� with respect to the family of

separable extended Bregman functions ffig
I
i��� given in �	���� is de�ned as

F �x�
�
�

IX
i��

Di�Pi�x�� x�� �����

for all x in domF
�
�
TI
i��domPi�

Algorithm 	��

Initialization� x� � domF is arbitrary�

Iterative Step� Given xk �nd� for all i � �� � � � � I� the projections Pi�x
k� and calcu�

late xk�� from

IX
i��

r�fi�x
k���xk�� �

IX
i��

r�fi�x
k���Pi�x

k�� �����

where r�fi�x
k��� denotes the Hessian matrix �of second partial derivatives� of the

function fi� evaluated at x
k���

Since the fi are separable� we can rewrite ����� as

xk��j

IX
i��

g��ij�x
k��
j � �

IX
i��

g��ij�x
k��
j ��Pi�x

k��j� �����

In order to minimize the proximity function over all x � domF � we set q� � d�x��

to initialize the application of Algorithm ��� in the product space� In the iterative

step of Algorithm ���� given qk � d�xk�� we solve the minimization of ����� by letting

pk�� � �P��x
k�� P��x

k�� � � � � PI�x
k��� This is precisely the expression for the projection

of qk onto C in the product space V according to the separable extended Bregman

distance D�p� q� de�ned by ����� with the family of separable extended Bregman

functions de�ned in Appendix B� This follows from an argument similar to the one

��



used in the proof of ���� Lemma ���
 �also appearing in ���� Lemma �����
�� From this

pk�� we then calculate qk�� of ������ This minimization is realized by qk�� � d�xk���

where xk�� is the solution of ������ as can be veri�ed along similar lines to those of

���� Lemma ���
 �also appearing in ���� Lemma �����
�� Admittedly� the ability to

actually solve ����� for xk�� in practice cannot always be guaranteed� We have made

the additional assumption that� for all � � i � I� the generalized distances Di�x� z�

are jointly�convex with respect to both x and z� This implies the joint convexity of

D in ������ as well as the convexity of F � From our analysis of extended Bregman

functions and distances in Appendices A and B� we know that Assumptions ����

���� needed for proving convergence in the previous section� hold� We� therefore�

conclude that the iterative procedure of Algorithm ��� converges to a minimizer of

the proximity function F �x� whenever it has minimizers�

A special case of this algorithm is the iterative method presented in ��	
� There

the functions composing each fi in �	��� of Appendix B are of the form

gij � wj
i gj�xj�

where the wi
j are nonnegative weights such that� for each j�

PI
i��w

i
j � �� and each

gi�t� is an extended scalar Bregman function as in De�nition ��� of Appendix A� Then

each Di has the form �	��� with dij�xj� zj� � wi
jdj�xj� zj�� for all i and j� Equation

����� then simpli�es and becomes

g��j �x
k��
j �xk��j �

IX
i��

wi
j� � g��j �x

k��
j �

IX
i��

wi
j�Pi�x

k��j� �����

so that� for all j � �� � � � � J �

xk��j �
IX
i��

wi
j�Pi�x

k��j� �����

As noted in ��	
� special cases include Combettes� iterative algorithm for the Eu�

clidean case ���
 and the �Expectation Maximization Maximum Likelihood� �EMML�

method� as it occurs in emission tomography� See� e�g�� Vardi� Shepp and Kaufman

���
 and also Section � below�

When� instead of the choices made at the beginning of this subsection� we make

C the set Q and D the set P we get a di#erent algorithm� as we discuss next�

��� The case in which P is identi�ed with D and Q is identi�

�ed with C

Now we interchange the roles of the sets chosen in the beginning of the previous

subsection and let the set D in the product space V play the role of P and let

��



C � V be Q of Section �� We again assume that ffigIi�� is a family of separable

extended Bregman functions with zones fSigIi��� as de�ned in Appendix B� and that

Si
T
Ci �� �� for all � � i � I� In contrast with the previous subsection� we now look

at

�Pi�x�
�
� �P fi

Ci
�x�� �����

the second�variable extended Bregman projection of x onto Ci with respect to fi�

de�ned for all x � dom �Pi� where �compare with �	����

dom �Pi
�
� fx � Si jDi�x� z� � �	� for some z � Ci

�
Sig�

The proximity function of the family of sets fCigIi�� with respect to the family of

separable extended Bregman functions ffigIi��� given in �	���� is� in this case� de�ned

as

�F �x�
�
�

IX
i��

Di�x� �Pi�x��� ���	�

for all x in dom �F
�
�
TI
i��dom �Pi�

Algorithm 	��

Initialization� x� � dom �F is arbitrary�

Iterative Step� Given xk �nd� for all i � �� � � � � I� the projections �Pi�x
k� and calcu�

late xk�� from

IX
i��

rfi�x
k��� �

IX
i��

rfi� �Pi�x
k��� �����

Since the fi are separable� we can rewrite ������ for j � �� � � � � J � as

IX
i��

g�ij�x
k��
j � �

IX
i��

g�ij�� �Pi�x
k��j�� ������

The justi�cation of Algorithm ��� is done along lines similar� but not identical�

to those of the previous subsection� In order to minimize the proximity function

over all z � dom �F � we set now p� � d�x�� to initialize the application of Algorithm

��� in the product space� Note that for this case we must apply Algorithm ��� by

doing �rst ����� and then ����� in every iterative step� So� given pk � d�xk�� we solve

the minimization of ��pk� q� � D�pk� q� by letting qk � � �P��x
k�� �P��x

k�� � � � � �PI�x
k���

Now this is precisely the expression for the second�variable projection of pk onto C in

��



the product space V according to the separable extended Bregman distance D�p� q�

de�ned by ����� with the family of separable extended Bregman functions de�ned in

Appendix B� Again� this follows from an argument similar to the one used in the

proof of ���� Lemma ���
 �also appearing in ���� Lemma �����
�� From this qk we

then calculate pk�� by doing the other minimization� This minimization is realized

by pk�� � d�xk��� where xk�� is the solution of ������ as can be veri�ed along similar

lines to those of ���� Lemma ���
 �also appearing in ���� Lemma �����
�� Once again

we must admit that the ability to actually solve ����� for xk�� in practice cannot

always be guaranteed� Having made� as before� the additional assumption that� for

all � � i � I� the generalized distancesDi�x� z� are jointly�convex with respect to both

x and z� This implies the joint convexity of D in ������ as well as the convexity of �F �

From our analysis of extended Bregman functions and distances in Appendices A and

B� we know that Assumptions �������� needed for proving convergence in the previous

section� hold� We� therefore� conclude that the iterative procedure of Algorithm ���

converges to a minimizer of the proximity function �F �x� whenever it has minimizers�

A special case of this algorithm is the �simultaneous multiplicative algebraic re�

construction technique� �SMART� presented in ���� ��
 �see also Section � below��

��� The case in which P is identi�ed with C and Q is identi�ed

with H

In this and the next subsections we replace the �diagonal� set D with the �sub�

diagonal� set

H
�
� fv � V j vi � x� i � �� � � � � I� x � �g�

where � � RJ is some given closed convex set� see Section �� Changing again the

roles of the sets P and Q chosen in the previous subsections� we let now the set C in

the product space V play the role of P and let H � V be Q of Section �� We again

assume that ffigIi�� is a family of separable extended Bregman functions with zones

fSigIi��� as de�ned in Appendix B� and that Si
T
Ci �� �� for all � � i � I� We now

look again at

Pi�x�
�
�P fi

Ci
�x�� ������

the extended Bregman projection of x onto Ci with respect to fi� de�ned for all

x � domPi�

The proximity function of the family of sets fCig
I
i�� with respect to the family of

separable extended Bregman functions ffigIi��� given in �	���� is� in this case� de�ned

��



as

F��x�
�
�

IX
i��

Di�Pi�x�� x�� ������

for all x in

domF�
�
��

�� I�
i��

domPi
�
�

Algorithm 	��

Initialization� x� � domF� is arbitrary�

Iterative Step� Given xk �nd� for all i � �� � � � � I� the projections Pi�x
k� and calcu�

late xk�� from

xk�� � argmin f
IX
i��

Di�Pi�x
k�� x� j x � �g ������

The justi�cation of Algorithm ��� is again done along lines similar� but not identi�

cal� to those of the previous subsections� In order to minimize the proximity function

of ������ over all x � domF�� we set now q� � h�x�� to initialize the application of

Algorithm ��� in the product space� So� given qk � h�xk�� we �rst solve the mini�

mization of D�p� qk� by letting pk�� � �P��x
k�� P��x

k�� � � � � PI�x
k��� This is precisely

the expression for the projection of qk onto C in the product space V according to

the separable extended Bregman distance D�p� q� de�ned by ����� with the family

of separable extended Bregman functions de�ned in Appendix B� Again� this follows

from an argument similar to the one used in the proof of ���� Lemma ���
 �also ap�

pearing in ���� Lemma �����
�� From this pk�� we then calculate qk�� by doing the

other minimization� This minimization is realized by qk�� � h�xk��� where xk�� is

the solution of ������� Having made� as before� the additional assumption that� for all

� � i � I� the generalized distances Di�x� z� are jointly�convex with respect to both

x and z� This implies the joint convexity of D in ������ as well as the convexity of F��

From our analysis of extended Bregman functions and distances in Appendices A and

B� we know that Assumptions �������� needed for proving convergence in the previous

section� hold� We� therefore� conclude that the iterative procedure of Algorithm ���

converges to a minimizer of the proximity function F��x� whenever it has minimizers�

A special case of this algorithm is the iterative method of Vardi and Zhang� pre�

sented in ���� ��
� for maximum likelihood estimation of mixing probabilities� In

that work the authors consider a random variable Z� whose values lie in the set

��



f�� �� � � � � Ig� such that the probability that Z takes on the value i is the entry gi of

the probability vector g � �g�� � � � � gI�
T � given by

gi �
JX
j��

fjpij� i � �� � � � � I� ������

where the pij are known nonnegative weights such that� for every j�
PI

i�� pij � � and

f � �f�� � � � � fJ�
T is an unknown probability vector� The goal is to estimate f from

N independent random samples of the random variable Z� For i � �� � � � � I let yi be

the number of times the value i occurs as the value of the random variable Z� out of

the sample of N � The likelihood function for f is then de�ned by

L�f� � �I
i���gi�

yi� ������

so that the log�likelihood function becomes

LL�f� �
IX
i��

yi log gi� ������

Vardi and Zhang consider the problem of maximizing LL�f� subject to the constraint

that f be a probability vector and that � � aj � fj � bj� for all j� To obtain their

algorithm we give each Di the form

Di�x� z� �
JX
j��

pijKL�xj � zj�� ������

so that dij�xj� zj� � pijKL�xj � zj�� for all i and j� For each i� we now have Ci �

fx j
PJ

j�� pijxj � yig� We take � to be the closed convex set

�
�
� fx � RJ j � � aj � xj � bj� for all j � �� � � � � J� and

JX
j��

xj � �g�

As shown in ���
� the iterative step can be calculated in closed�form using scaling and

chopping� When we make C the set Q and H the set P we get a di#erent algorithm�

as we discuss next�

��� The case in which P is H and Q is C

With H as P and C as Q� each q � Q � C has the form q � �qi�� with qi � Ci � RJ

and each p has the form p � h�x�� for some x � �� We assume that Si
Ci �� �� for all

� � i � I� and that dij�xj� zj� is extended to zj on the boundary of Vij as discussed in

Appendix A� Denote again �Pi�x�
�
� �P fi

Ci
�x�� the second variable projection of x onto Ci

��



with respect to fi� de�ned� for all x for which there is z in Ci with Di�x� z� � �	� as

that member of Ci for which the distance D�x� z� is minimized� over all z � Ci

T
Si�

Now the proximity function becomes

�F��x�
�
�

IX
i��

Di�x� �Pi�x��� ����	�

de�ned for all x in

dom �F�
�
��

�� I�
i��

dom �Pi
�
�

Algorithm 	�	

Initialization� x� � dom �F� is arbitrary�

Iterative Step� Given xk �nd� for all i � �� � � � � I� the projections �Pi�x
k� and calcu�

late xk�� from

xk�� � argmin f
IX
i��

Di�x� �Pi�x
k�� j x � �g ������

One more time� the Algorithm ��� is justi�ed along lines similar� but not identical�

to those of the previous subsections� In order to minimize the proximity function

of ����	� over all x � dom �F�� we set now p� � h�x�� to initialize the application

of Algorithm ��� in the product space� So� given pk � h�xk�� we �rst solve the

minimization of D�pk� q� by letting qk � � �P��x
k�� �P��x

k�� � � � � �PI�x
k��� This expression

for the �second�variable� projection of pk onto C in the product space V according

to the separable extended Bregman distance D�p� q� de�ned by ����� with the family

of separable extended Bregman functions de�ned in Appendix B� Again� this follows

from an argument similar to the one used in the proof of ���� Lemma ���
 �also

appearing in ���� Lemma �����
�� From this qk we then calculate pk�� by doing the

other minimization� This minimization is realized by pk�� � h�xk��� where xk�� is

the solution of ������� Having made� as before� the additional assumption that� for all

� � i � I� the generalized distances Di�x� z� are jointly�convex with respect to both

x and z� This implies the joint convexity of D in ������ as well as the convexity of �F��

From our analysis of extended Bregman functions and distances in Appendices A and

B� we know that Assumptions �������� needed for proving convergence in Section ��

hold� We� therefore� conclude that the iterative procedure of Algorithm ��� converges

to a minimizer of the proximity function �F��x� whenever it has minimizers�

In the next section we discuss the application of our results to the split feasibility

problem considered by Censor and Elfving in ���
�

��



� The split feasibility problem

In ���
 Censor and Elfving discuss what they call the split feasibility problem which is

the following� Given closed convex sets C�Q in RJ and an invertible matrix A� �nd

x � C such that Ax � Q� For the consistent case� in which there are such x� one can� in

principle� use the sequential projection method� projecting orthogonally alternatingly

onto the two sets A�C� and Q� However� the set A�C� may not be simple to describe

and computing the orthogonal projection onto it may not be easy since this orthogonal

projection is equivalnet to an oblique projection onto C� followed by A� see ���� Section

���
� Censor and Elfving were motivated to consider multiprojection algorithms by

the desire to replace the orthogonal projection onto A�C� by the orthogonal projection

onto C�

The iterative step of their algorithm is the following

xk�� � A���I � AAT ����APCx
k � AATPQAx

k�� �����

where A�� and AT are the inverse and the transpose of A� respectively� and PC and

PQ are the orthogonal projections onto C and Q� respectively� In the consistent case�

it follows from ���
 that any sequence fxkg� generated by this algorithm� converges

to x� � C� such that Ax� � Q�

We can put this algorithm into the framework discussed above and prove conver�

gence for the inconsistent case� Let C be the product of C� � A�C� and C� � Q� D the

diagonal subspace of V� as before� Let f��x� � �Ax�
TAx and f��x� � xTx� with asso�

ciated Bregman distances D��x� z� � �����jjx� zjj�ATA and D��x� z� � �����jjx� zjj��

where jjxjjG � hx�Gxi� Since these distances are symmetric� the �rst variable projec�

tion and the second variable projection coincide� The iterative algorithm we obtain

is that given in ������ But now we can conclude that the iterative sequence con�

verges in the inconsistent case to a minimizer of the proximity function F �x� �

D��P
f�
A�C�x� x� �D��P

f�
Q x� x��

� The ABSMART and ABEMML algorithms

In this section we consider two iterative algorithms� called the ABSMART and ABE�

MML algorithms� that can be derived as special cases of the algorithms discussed in

Section �� These algorithms are quite similar to the EMML and SMART algorithms�

but incorporate lower and upper bounds a � �aj� and b � �bj� on the vector of un�

knowns x by using the functions KL�s� aj� t� aj� and KL�bj � s� bj � t� instead of

KL�s� t��

�	



��� The EMML and SMART algorithms

The �Expectation Maximization Maximum Likelihood� �EMML� algorithm� as it is

used in emission tomography �see� e�g�� Byrne ���� ��� ��
� Lange and Carson ���
�

Tanaka ���
� Vardi� Shepp and Kaufman ���
�� is a special case of the more general

EM algorithm of Dempster� Laird and Rubin ���
 for computing maximum likelihood

estimators� see also McLachlan and Krishnan ���
� The EMML algorithm considered

here provides a nonnegative minimizer of the Kullback�Leibler distance as we explain

now�

Shannon�s entropy function maps the nonnegative orthant RJ
� into R according

to

ent x
�
� �

JX
j��

xj log xj �����

where �log� denotes the natural logarithms and� by de�nition� � log � � �� Its nega�

tive� f�x�
�
�� ent x� is a Bregman function and the generalized distance associated

with it is the Kullback�Leibler �KL� distance �see Kullback and Leibler ��	
� see also

���� Example ����� and Lemma �����
�� given by

Df �x� z� � KL�x� z� �
JX
j��

�
xj log

�xj
zj

�
� zj � xj

�
� �����

For positive scalars a� b� de�ne KL�a� b� � a log�a�b� � b � a� KL��� b� � b and

KL�a� �� � �	�

For a given positive vector y � RI and a given nonnegative matrix A � �aij� �

RI�J all of whose column�sums are equal to one� consider the distance

KL�y� Ax�
�
�Df�y� Ax� �

IX
i��

�
yi log

yi
�Ax�i

� �Ax�i � yi
�
� �����

De�ne the sets Ci as

Ci
�
� fx � RJ j x � �� �Ax�i � yig� �����

and let wi
j

�
� aij� for all � � i � I and � � j � J � The functions gj are de�ned as

gj�xj�
�
� xj log xj� for all � � j � J� �����

The generalized projection Pi�x� of a point x � RJ
� onto Ci� is a member z of Ci

which minimizes the distance

Di�z� x� �
JX
j��

wi
jKL�zj � xj�� �����

��



It can be veri�ed that� in this case� Pi has the explicit form

�Pi�x��j � xj
yi
�Ax�i

� � � j � J� �����

If wi
j � � for some values of j then there will be other members of Ci that also

minimize the distance given by ������

It is important to note that if there is an index j for which xj � � but zj �� �

then KL�z� x� � �	� When we seek the generalized projection of x onto a closed

convex set Ci we must allow for the possibility that the generalized distance from x

to each member of Ci is in�nite and then we do not de�ne the generalized projection

of x onto this set� In our case� however� we see from ����� that �Pi�x��j � � if and

only if xj � �� so the generalized distance from x to such Ci is always �nite and the

generalized projection is always de�ned�

The proximity function F is de�ned� in this case� as

F �x�
�
�

IX
i��

Di�Pi�x�� x� �
IX
i��

JX
j��

aijKL��Pi�x��j� xj� ���	�

�
IX
i��

JX
j��

aijKL
�
xj

yi
�Ax�i

� xj
�
� KL�y� Ax�� �����

The iterative step of the EMML algorithm is given by

xk��j �
IX
i��

wi
j�Pi�x

k��j �
IX
i��

aij
xkjyi

�Axk�i
� xkj

IX
i��

aijyi
�Axk�i

� ������

for all � � j � J � The F �x� of ����� clearly has nonnegative minimizers and the

following result holds �see Iusem ���� ��
� Vardi� Shepp and Kaufman ���
��

Theorem 
�� Any sequence fxkgk��� generated by the EMML algorithm� converges

to a minimizer of KL�y� Ax��

In the inconsistent case fx � RJ j x � �� Ax � yg � � the nonnegative minimizer

of KL�y� Ax� is almost always unique� regardless of the values of I and J �

De�nition 
�� We say that a matrix A � �aij� � RI�J has the full rank property

�FRP� if A and every submatrix obtained from A by deleting columns have full rank�

The following result can be found in Byrne ���� Proposition �
�

Theorem 
�� If A has the FRP and if y � Ax has no nonnegative solutions then

there is a subset L � f�� �� � � � � Jg� having at most I � � elements� such that� for all

nonnegative minimizers !x � � of KL�y� Ax�� !xj � � only if j � L� Consequently�

there can be only one such !x�

��



We note that� according to this theorem� the minimizer of the proximity function

can be on the boundary of the region within which the function f is de�ned� It is�

therefore� necessary to de�ne the proximity function for all boundary points for which

the generalized projections are de�ned�

Turning now to the SMART algorithm� we note that the second variable projection
�Pi�x�� of a point x � RJ

� onto Ci� is a member z of Ci which minimizes the distance

Di�x� z� �
JX
j��

wi
jKL�xj � zj�� ������

It can be veri�ed that� in this case� �Pi has the same explicit form as above� that is�

� �Pi�x��j � xj
yi
�Ax�i

� � � j � J� ������

Again� if wi
j � � for some values of j then there will be other members of Ci that also

minimize �������

The proximity function �F in this case is

�F �x�
�
�

IX
i��

Di�x� �Pi�x�� �
IX
i��

JX
j��

aijKL�xj� � �Pix�j� ������

�
IX
i��

JX
j��

aijKL
�
xj� xj

yi
�Ax�i

�
� KL�Ax� y�� ������

The iterative step of the SMART algorithm is given by

xk��j � �I
i����Pi�x

k��j�
wi
j � xkj exp

� IX
i��

aij log
yi

�Axk�i

�
� ������

for all � � j � J � The �F �x� of ������ clearly has nonnegative minimizers and we have

the following result �see ���
��

Theorem 
�� Any sequence fxkgk�� generated by the SMART algorithm converges

to the minimizer of KL�Ax� y� for which KL�x� x�� is minimized�

There is no loss of generality in considering here only systems of linear equations

Ax � y in which all entries of the matrix are nonnegative� For suppose that A is

an arbitrary �real� matrix A � �aij�� Rescaling if necessary� we may assume that for

each j the column sum
P

i aij is nonzero� Now rede�ne A and x without changing

the notation as follows replace akj with
akjP
i
aij
and xj with xj

P
i aij� This leaves the

product Ax unchanged but the new A has all its column sums equal to one� The

system Ax � y still holds� but now we know that y�
�
�
P

i yi �
P

j xj
�
� x�� Let

��



U be the matrix whose entries are all one and let � � � be large enough so that

Anew � A � �U has all nonnegative entries� Then Anewx � Ax � ��x��u� where u

is the vector whose entries are all one� So the new system of equations to solve is

Anewx � y � ��y��u � ynew�

There are also block�iterative versions of the SMART and EMML algorithms� as

well as of the ABEMML and ABSMART algorithms� given in the next subsections�

These algorithms use only part of the data at each step of the iteration� See� e�g��

Byrne ���� ��� ��� ��
 and Censor and Segman ���
 for further details�

Suppose that� instead of the nonnegativity constraints xj � �� we wish to impose

the box constraints aj � xj � bj� for j � �� � � � � J � for some given a � �aj� and

b � �bj� which are prior lower and upper bounds on x � �xj�� The ABEMML

and ABSMART algorithms presented below converge to a solution of y � Ax with

a � x � b and� in addition� the ABSMART algorithmminimizes the quantity KL�x�

a� x� � a� � KL�b � x� b � x�� over these same x� provided that a � x� � b and

that there is a solution of y � Ax with a � x � b� The negative of the quantity

KL�x�a� x��a��KL�b�x� b�x�� is a generalization of the Fermi�Dirac generalized

entropy� which is obtained by taking aj � � and bj � �� for all j � �� � � � � J �

In both cases considered below we �nd that calculating Bregman projections onto

the sets Ci � fx j yi � Axig using the distance

Dab
i �x� z� �

JX
j��

aij
�
KL�xj � aj� zj � aj� �KL�bj � xj� bj � zj�

�
������

cannot be done in closed form� whereas closed�form projections onto the Ci using

either the distance

Da
i �x� z� �

JX
j��

aijKL�xj � aj� zj � aj� ������

or the distance

Db
i �x� z� �

JX
j��

aijKL�bj � xj� bj � zj�� ����	�

are possible� We obtain our algorithms by considering duplicates of each of the Ci

and letting Di � Da
i � for i � �� � � � � I� and Di � Db

i�I � for i � I � �� � � � � �I�

��� The ABSMART algorithm

The ABSMART algorithm is the fully simultaneous version of the ABMART algo�

rithm studied in ���� Section �
� We assume that �Aa�i � yi � �Ab�i� for all i�

��



Algorithm 
�� �ABSMART�

Initialization� x� � RJ such that aj � x�j � bj� for all j� is arbitrary�

Iterative Step� Given xk �nd� for all j � �� � � � � J � the components of xk�� from

xk��j � �kj bj � ��� �kj �aj ������

with

�kj �
ckj
QI
i���d

k
i �
aij

� � ckj
QI
i���d

k
i �
aij
� ������

ckj �
xkj � aj

bj � xkj
� ������

and

dki �
�yi � �Aa�i���Ab�i � �Ax

k�i�

��Ab�i � yi���Axk�i � �Aa�i�
� ������

All terms in ������ are positive� We see from ������ that each term of the iterative

sequence fxkjg is a convex combination of the aj and bj� the iteration proceeds until

convergence to a convex combination for which y � Ax� if such exists� If there

is no such solution of y � Ax then the algorithm will converge to an approximate

solution satisfying the constraints� speci�cally� the limit is the unique vector satisfying

a � x � b for which the function KL�Ax � Aa� y � Aa� � KL�Ab � Ax�Ab � y� is

minimized�

��� The ABEMML algorithm

The ABEMML algorithm is the fully simultaneous version of the algorithm presented

in ���� Section �
� Here we also assume that �Aa�i � yi � �Ab�i� for all i�

Algorithm 
�� �ABEMML�

Initialization� x� � RJ such that aj � x�j � bj� for all j� is arbitrary�

Iterative Step� Given xk �nd� for all j � �� � � � � J � the components of xk�� from

xk��j �
�kj bj � �kj aj

dkj
� ������

with

�kj � �x
k
j � aj�e

k
j � ������

��



�kj � �bj � xkj �f
k
j � ������

ekj �
X

i
aij
� yi � �Aa�i
�Axk�i � �Aa�i

�
� ������

fkj �
X

i
aij
� �Ab�i � yi
�Ab�i � �Axk�i

�
� ������

and

dkj � �kj � �kj � ����	�

We see from ������ that each term of the iterative sequence fxkjg is a convex

combination of the aj and bj� The iterations proceed until convergence to a convex

combination for which y � Ax� if such exists� If there is no such solution of y � Ax

then the algorithmwill converge to an approximate solution satisfying the constraints�

speci�cally� the limit is the unique vector satisfying a � x � b for which the function

KL�y � Aa�Ax� Aa� �KL�Ab� y� Ab� Ax� is minimized�

� Appendix A	 Extended scalar Bregman func


tions and distances

In this appendix we present a class of functions that we call �extended scalar Bregman

functions� and use them to construct �extended scalar Bregman distances� between

two real numbers� The latter are then used� in Appendix B� to de�ne separable

extended Bregman distances between vectors� Some of the results presented here can

be deduced also from the work of Kiwiel ���
�

Let V be a nonempty open convex subset of the real line R� with closure V and

boundary bdV � V n V � those points in V but not in V � Then� for any a� b � R�

there are four cases to consider

Case � V � V � R thus bdV � ��

Case � V � ��	� b�� V � ��	� b
 thus bdV � fbg�

Case � V � �a��	�� V � �a��	� thus bdV � fag�

Case � V � �a� b�� V � �a� b
 thus bdV � fa� bg�

De�nition ��� �Extended Scalar Bregman Distance�� Let V be a nonempty open

convex subset of R and let g  V � R be a function with the following properties�

��



P�� g is continuous on V �

P�� g is continuously di�erentiable at all points of V �that is� g� exists and is con�

tinuous on V ��

P�� g is strictly convex on V �

De�ne also� for Cases  and 	�

g��b� � lim
t�b

g��t�
�
� � � �	� �����

and� for Cases � and 	�

g��a� � lim
t�a

g��t�
�
�� � �	� �����

For s� t � V de�ne an extended scalar Bregman distance with respect to g by

dg�s� t�
�
�

�������
������

g�s�� g�t�� g��t��s� t�� if g��t� is �nite�

�� if s � t � bdV and g��t� is in�nite�

�	� if s �� t� t � bdV and g��t� is in�nite�

�����

We further de�ne� for any �xed 	 � �� the partial level set

Lg
��s� 	�

�
� ft � V j dg�s� t� � 	g� �����

and make the additional assumption

P	� For all 	 � � and all s � V � the level sets Lg
��s� 	� are bounded�

A function g having all the properties as in De�nition ��� will be called an extended

scalar Bregman function� Iusem ���� Proposition ���
 relates� under certain conditions�

the properties ����������� to a property he calls the �zone coerciveness� of a Bregman

function�

Proposition ��� If g is an extended scalar Bregman function then g� is strictly in�

creasing on V � i�e�� for u � t in V we have g��u� � g��t��

Proof� From the strict convexity property P�� we have g�u� � g�t��g��t��u� t� and

g�t� � g�u� � g��u��t� u�� Together these give �g��u�� g��t���u� t� � ��

Since the derivative g� is strictly increasing on V it makes sense to de�ne the

�possibly in�nite�valued� derivative of g at the boundaries through the one�sided

limits�

��



Let us denote� here and henceforth� the expression in the �rst row of ����� by


g�s� t�� i�e�� 
g�s� t�
�
� g�s�� g�t�� g��t��s � t�� Then� from the strict convexity of g

we know that� if g��t� is �nite� then 
g�s� t� � �� for all s � V and all t � V � and


g�s� t� � � if and only if s � t� see� e�g�� Bazaraa� Sherali and Shetty ��� Theorem

�����
� The extension in ����� preserves this property�

Proposition ��� If g is an extended scalar Bregman function then� for all t � V � we

have limu�t dg�t� u� � ��

Proof� We prove this by showing that limu�t g
��u��u � t� � �� If g��t� is �nite

the result clearly holds� Consider the case in which t � b and g��b� � �	� Since

the derivative of g is positive for u near b we have g�u� � g�b� and g��u� � ��

Then g�b� � g�u� � g��u��b � u�� so that g�b� � g�u� � g��u��b � u� � �� Since

�g�b� � g�u�� � �� as u � b� we have g��u��b � u� � �� as u � b� The case t � a

follows in a similar manner�

From Proposition ���� and under the same conditions� the next two corollaries

hold�

Corollary ��� If g is an extended scalar Bregman function and if� for any �xed

s � V � we let ��t� � dg�s� t� and� for any �xed t � V � we let ��s� � dg�s� t�� then both

� and � are continuous on V �

Corollary ��� Let g be an extended scalar Bregman function� let s � V be �xed and

let ftkgk�� � V be a bounded sequence� If dg�s� tk�� � then tk � s� as k � �	�

We present some examples of such functions g� taking as V the largest set satisfying

the conditions of De�nition ���� In each of the next �ve examples 
g�s� t� denotes the

expression in the �rst row of ������

Example ��� If g�t� � t� then we have 
g�s� t� � L��s� t� � �s � t��� the square of

the Euclidean distance and V � R�

Example ��� If g�t� � t log t then 
g�s� t� � KL�s� t� � s log�s�t� � t� s� the scalar

Kullback�Leibler distance and V � ����	��

Example ��� If g�t� � �t� a� log�t� a� then 
g�s� t� � �s� a� log��s� a���t� a�� �

t� s � KL�s� a� t� a� and V � �a��	��

Example ��	 If g�t� � �b�t� log�b�t� then 
g�s� t� � �b�s� log��b�s���b�t���s�t �

KL�b� s� b� t� and V � ��	� b��

��



Example ��� If g�t� � �t � a� log�t� a� � �b� t� log�b � t� then we have 
g�s� t� �

�s�a� log��s�a���t�a����b�s� log��b�s���b�t�� � KL�s�a� t�a��KL�b�s� b�t�

and V � �a� b��

For any �xed � � � we de�ne the other partial level set of dg�s� t� by

Lg
���� t�

�
� fs � V j dg�s� t� � �g� �����

Proposition ��� Ig g is an extended scalar Bregman function then� for any t � V

and � � �� the partial level set Lg
���� t� is bounded�

Proof� Clearly� if V is bounded there is nothing to prove� Now� if t is on the boundary

of V and dg�s� t� � � then t � s� so it is obvious that Lg
���� t� is bounded in this

case� If there are � � � and t � V such that Lg
���� t� is not bounded� then there is a

sequence fskg whose absolute values jskj � �	 and such that g�sk� � g��t�sk � ��

for all k � �� We must consider two cases ��� sk � �	 and ��� sk � �	�

We discuss case ��� in detail� since case ��� is similar� we omit it� As sk �

�	 there are three possibilities ��a� g�sk� � �	� ��b� g�sk� � �	� or ��c�

g�sk� � r� for some r � R� In case ��a� if g��t� � � then we are done� So suppose

g��t� � �� If g�sk� � g��t�sk � �� for all k � �� then for some real  we have

g�sk� � � � g��t�sk �  � g��t�sk� for all k � �� Since g is strictly convex� there is

u � t with g�u� � g�t� � g��t��u � t� and g��u� � g��t�� The line l tangent to the

graph of g at �u� g�u�� has slope g��u� � g��t�� so l intersects the line y � g��t�x � 

at some point x � v� Then g�v� � g��t�v � � since �v� g�v�� is above the line l� This

contradicts g�sk� �  � g��t�sk� for all k � �� since g�s� is increasing� as s � �	�

Cases ��b� and ��c� are similar and we omit the details�

So� while the boundedness of Lg
���� t� follows from the strict convexity of g� Prop�

erty P	 of De�nition ��� does not follow from our other assumptions about g and

dg�s� t�� Indeed� we can construct a function g on V � ����	� with g�t�� �	 and

g��t�� �� � �� as t� �	� Then dg�s� t� remains bounded as t� �	�

Proposition ��	 Let g be an extended scalar Bregman function� If t � u � s then

dg�s� t� � dg�s� u� � dg�u� t� and dg�t� s� � dg�t� u� � dg�u� s��

Proof� Both inequalities readily follow from De�nition ��� and the fact that the

derivative g� is strictly increasing�

From Proposition ���� and under the same assumptions� we obtain the next two

corollaries�

��



Corollary ��� Let g be an extended scalar Bregman function� If tk � t and fdg�sk� tk�g

is bounded� then fskg is bounded�

Proof� Suppose not� We consider two cases ��� tk  t and sk � �	� ��� tk � t and

sk � �	� For case ��� we have dg�sk� tk� � dg�sk� t���dg�t�� tk�� so that fdg�sk� t��g is

bounded� it follows that fskg is bounded� For case ��� we have dg�sk� tk� � dg�sk� t��

dg�t� tk�� so that fdg�sk� t�g is bounded� it follows that fskg is bounded� The remaining

cases are similar and we omit them�

Corollary ��	 Let g be an extended scalar Bregman function� If sk � s and fdg�sk� tk�g

is bounded� then ftkg is bounded�

Proof� The proof is similar to that of the previous corollary and we omit it�

Proposition ��� Let g be an extended scalar Bregman Function� let sk� tk � V � for

all k� and suppose that ftkg � t � V � fskg is bounded and dg�sk� tk� � �� Then

sk � t�

Proof� Without loss of generality we may assume that sk � s� If g��t� is �nite then

the result follows from the strict convexity of g and the continuity of g�� So assume

that g��t� is in�nite� From dg�sk� tk� � g�sk� � g�tk� � g��tk��sk � tk� � � it follows

that g��tk��sk� tk� remains �nite� But we know that jg
��tk�j � �	� so �sk� tk�� �

and s � t follows�

Remark ��� If sk � s and tk � t it need not follow that dg�sk� tk� � dg�s� t��

The implication is true if g��t� is �nite or if s �� t� But� if we let� for example�

g�x� � x logx� t � �� tk � � and sk � ����� � log tk�� we �nd that dg�sk� tk�� ���

� Appendix B	 Separable extended Bregman dis


tances and projections

This material has its origin in Bregman�s paper ��
� Censor and Lent ���
� and further

developments which appear in the works of Bauschke and Borwein ��
� Censor and

Zenios ���
� Censor� Iusem and Zenios ���
� De Pierro and Iusem ���
� Eckstein ���
�

Iusem ���
� Teboulle ���
 and others�

We use now the extended scalar Bregman functions and distances� presented in

Appendix A� as building bricks to construct extended Bregman functions� which are

not necessarily scalar� in the following natural way� Let Vij � R be nonempty� open

convex subsets of R� for all i � �� � � � � I� j � �� � � � � J and let gij be extended scalar

�	



Bregman functions with domains V ij and with associated extended scalar Bregman

distance dij
�
�dgij � as in De�nition ��� of Appendix A� In these circumstances� each

function

fi�x�
�
�

JX
j��

gij�xj� �	���

is a separable extended Bregman function over the zone Si
�
�
QJ
j�� Vij � RJ � and the

generalized distance associated with each fi is� for any �x� z� � Si � Si�

Di�x� z�
�
�Dfi�x� z� �

JX
j��

dij�xj� zj�� �	���

For every � � j � J � and xj� zj � V ij� the expression 
gij of the �rst row of De�nition

��� is


ij�xj� zj�
�
� gij�xj�� gij�zj�� g�ij�zj��xj � zj�� �	���

Observe that here we construct each fi from extended scalar Bregman functions

over a closed domain �see De�nition ��� of Appendix A�� Therefore� the generalized

distances Di�x� z� are de�ned for all �x� z� � Si � Si� This is in contrast to the

standard theory of Bregman distances� which are de�ned only on Si � Si� See� e�g��

���� ��� ��� �	
 or ���� Chapter �
 for the standard theory of Bregman functions and

the notions of Bregman function� zone and generalized distance� Note also that� by

construction� the zone Si for the separable case is a �box� in R
J � We then have that

PI
i��Di�x� z� � �	 if and only if there are indices i� j such that xj �� zj and g

�
ij�zj�

is in�nite�

Let Ci be a nonempty closed convex subsets of R
J � for all i � �� � � � � I� For any

given z � Si we have either

��� Di�x� z� � �	� for all x � Ci

T
Si� or

��� Di�x� z� � �	� for some x � Ci

T
Si�

In case ��� there is a unique element of Ci

T
Si� denoted Pi�z�� for which Di�x� z� �

Di�Pi�z�� z� for all x � Ci

T
Si� Therefore� we de�ne

domPi
�
� fz � Si jDi�x� z� � �	� for some x � Ci

�
Sig� �	���

extending the applicability of the Bregman projection operator de�ned in Section

�� In oreder to propagate the property of case ��� along an iterative process which

employs projections we need the following �zone consistency� type assumption about

the projections Pi

��



Assumption ��� If z � domPi then Pi�z� � domPi� i�e�� Di�x� Pi�z�� � �	� for

some x � Ci

T
Si�

The following inequality plays an important role in our forthcoming analysis�

Proposition �� Let fi be an extended separable Bregman function� as de�ned above�

and let Assumption ��� hold� Then� for any x � Ci

T
Si and z � domPi� we have

Di�x� z� � Di�x� Pi�z�� �Di�Pi�z�� z�� �	���

Proof� This was proven originally by Bregman ��
 for generalized Bregman distances

over Si � Si� see also� e�g�� ���� Theorem �����
� With the added assumption made

above the same proof holds�

The next proposition establishes a continuity result for Bregman projections which

is� to the best of our knowledge� the �rst of its kind in the literature on Bregman

functions�

Proposition �� Under the assumptions of Proposition ���� the function �ij� de�ned

for all x � domPi� by �ij�x�
�
��Pi�x��j is continuous for all j�

Proof� Let x� xk � domPi� and xk � x� Then Di�Pi�x�� x
k� � Di�Pi�x�� Pi�x

k��

follows from the inequality �	���� We show that fDi�Pi�x�� x
k�g is bounded� If

not� then there is a j such that fdij��Pi�x��j� xkj �g is unbounded� It follows that

fg�ij�x
k
j ���Pi�x��j � xkj �g is unbounded� therefore g

�
ij�xj� is in�nite� So �Pi�x��j � xj�

since Di�Pi�x�� x� is �nite� Consequently� fdij�xj� xkj �g is unbounded� this cannot be�

since it converges to zero� Therefore� fDi�Pi�x�� x
k�g and thus also fDi�Pi�x�� Pi�x

k��g

are bounded� It follows that fPi�xk�g is bounded� Let fPi�xkm�g be a subsequence

converging to some c � Ci� Then� from Proposition 	��� we have Di�Pi�x�� x
km� �

Di�Pi�x�� Pi�x
km�� � Di�Pi�x

km�� xkm�� The convergence of fdij��Pi�xkm��j� x
km
j �g to

dij�cj� xj� is clear� for all j for which g�ij�xj� is �nite� Since fDi�Pi�x
km�� xkm�g is

a bounded sequence it follows that� for those j for which g�ij�xj� is in�nite� cj �

xj � �Pi�x��j� Finally� taking km � �	 in Di�Pi�x�� x
km� � Di�Pi�x�� Pi�x

km�� �

Di�Pi�x
km�� xkm�� we get Di�Pi�x�� x� � Di�Pi�x�� c� � lim supfDi�Pi�x

km�� xkm�g �

Di�Pi�x�� c� �Di�c� x�� from which we conclude that cj � �Pi�x��j�

Proposition �� Under the assumptions of Proposition ���� let x � Si� Then

x � domPi if and only if� for some sequence xk � Si� xk � x� the sequence

fDi�Pi�x
k�� xk�g is bounded�

��



Proof� Let x � domPi� then Di�Pi�x�� x
k� � Di�Pi�x�� Pi�x

k���Di�Pi�x
k�� xk�� Since

fDi�Pi�x�� x
k�g converges to Di�Pi�x�� x�� the sequence fDi�Pi�x

k�� xk�g is bounded�

Conversely� if the sequence fDi�Pi�x
k�� xk�g is bounded� then� since xk � x� we have

that fPi�xk�g is bounded� Select a convergent subsequence fPi�xkm�g � c � Ci� We

show that Di�c� x� � �	� Since fDi�Pi�x
k�� xk�g is bounded� it follows that� for all j

for which g�j�xj� � �	� we must have f�Pi�x
km��xkm�g � �� It follows that cj � xj

for all such j� therefore� Di�c� x� � �	�

The classical examples are

Example �� When gj�t�
�
� g�t� � �

�
t� we have that f�x� �

PJ
j�� gj�xj� �

�
�
kxk��

and� taking fi � f � we get

Di�x� z� � Df �x� z� �
�

�
kx� zk�

�
�L��x� z�� �	���

and Vj � R� for all j � �� � � � � J �

Example �� For all j � �� � � � � J � let

gj�t�
�
��t� aj� log�t� aj� � �bj � t� log�bj � t�

� for t � Vj
�
��aj� bj�� where aj � bj are real numbers � Then

f�x� �
JX
j��

gj�xj�
JX
j��

�xj � aj� log�xj � aj� � �bj � xj� log�bj � xj�

and� taking fi � f � we get

Di�x� z� � Df�x� z� �
JX
j��

�xj � aj� log�
xj � aj
zj � aj

� � �bj � xj� log�
bj � xj
bj � zj

��

If aj � � and bj � �	 then Df�x� z� becomes the Kullback�Leibler distance ������

Further results on Bregman projections and additional examples can be found�

e�g�� in Censor and Reich ���
� De Pierro and Iusem ���
� Eckstein ���
� Teboulle ���
�
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