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Abstract

We present two extensions of Korpelevich’s extragradient method
for solving the Variational Inequality Problem (VIP) in Euclidean
space. In the first extension we replace the second orthogonal pro-
jection onto the feasible set of the VIP in Korpelevich’s extragradient
method with a specific subgradient projection. The second extension
allows projections onto the members of an infinite sequence of sub-
sets which epi-converges to the feasible set of the VIP. We show that
in both extensions the convergence of the method is preserved and
present directions for further research.

Keywords: Epi-convergence, extragradient method, Lipschitz map-
ping, subgradient, variational inequality.
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1 Introduction

In this paper we are concerned with the Variational Inequality Problem (VIP)
of finding a point x∗ such that

x∗ ∈ S and hf(x∗), x− x∗i ≥ 0 for all x ∈ S, (1.1)

where f : Rn → Rn is a given mapping, S is a nonempty, closed and con-
vex subset of Rn and h·, ·i denotes the inner product in Rn. This problem,
denoted by VIP(S, f), is a fundamental problem in Optimization Theory.
Many algorithms for solving the VIP are projection algorithms that employ
projections onto the feasible set S of the VIP, or onto some related set, in
order to iteratively reach a solution.
Korpelevich [10] proposed an algorithm for solving the VIP, known as

the Extragradient Method; see also Facchinei and Pang [3, Chapter 12].
In each iteration of her algorithm, in order to get the next iterate xk+1,
two orthogonal projections onto S are calculated, according to the following
iterative step. Given the current iterate xk, calculate

yk = PS(x
k − τf(xk)), (1.2)

xk+1 = PS(x
k − τf(yk)), (1.3)

where τ is some positive number and PS denotes the Euclidean nearest point
projection onto S. Although convergence was proved in [10] under the as-
sumptions of Lipschitz continuity and pseudo-monotonicity, there is still the
need to calculate two projections onto the closed convex set S.
We present two extensions of Korpelevich’s extragradient method. In our

first algorithmic extension we note that projection methods are particularly
useful if the set S is simple enough so that projections onto it are easily exe-
cuted. But if S is a general closed convex set, a minimum Euclidean distance
problem has to be solved (twice in Korpelevich’s extragradient method) in
order to obtain the next iterate. This might seriously affect the efficiency of
the method. Therefore, we replace the (second) projection (1.3) onto S by
a projection onto a specific constructible half-space which is actually one of
the subgradient half-spaces, as will be explained. We call this (Algorithm
2.1) the subgradient extragradient algorithm.
In our second algorithmic extension we develop a projection method for

solving VIP(S, f), with projections related to approximations of the set S.
This extension allows projections onto the members of an infinite sequence
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of subsets {Sk}∞k=0 of S which epi-converges to the feasible set S of the
VIP. We call this extension (Algorithm 4.3) the perturbed extragradient
algorithm. The proof methods of both extensions are quite similar and we
try to present both in a self-contained manner without repetitious texts. Our
work is admittedly a theoretical development although its potential numerical
advantages are obvious.
The paper is organized as follows. In Sections 2 and 4 the two algorithmic

extensions are presented. They are analyzed in Sections 3 and 5, respectively.
In Section 6 we present a hybrid of the two extensions (Algorithm 6.1) and
a two-subgradient extragradient algorithm (Algorithm 6.2) about which
we are able to prove only boundedness. Finally, we present a conjecture.

1.1 Relation with previous work

The literature on the VIP is vast and Korpelevich’s extragradient method has
received great attention by many authors who improved it in various ways;
see, e.g., [7, 8, 14] and references therein, to name but a few. In general,
projection algorithms that use metric projections onto the set S require that
f be Lipschitz continuous, meaning that there exists an L ≥ 0 such that

kf(x)− f(y)k ≤ Lkx− yk, (1.4)

and strongly monotone, meaning that there exists an α ≥ 0 such that

hf(x)− f(y), x− yi ≥ αkx− yk2. (1.5)

By adding the extra projection onto S, Korpelevich was able to replace the
strong monotonicity assumption on f by a weaker assumption called pseudo-
monotonicity, meaning that

hf(y), x− yi ≥ 0 ⇒ hf(x), x− yi ≥ 0. (1.6)

The next development, proposed by Iusem and Svaiter [7], consists of remov-
ing the Lipschitz continuity assumption. This is important not only because
f might fail to be Lipschitz continuous, but also because the constant L
might be difficult to estimate, and even when L is known, 1/L (and con-
sequently the step-size τ) might be very small, so that progress toward a
solution becomes exceedingly slow. Solodov and Svaiter [14] presented an
algorithm, which is an improvement of [7], so that their next iterate xk+1
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is closer to the solution set of VIP(S, f) than the next iterate computed by
the method of [7]. They were able to drop the Lipschitz continuity by using
an Armijo search in each iteration in order to construct some hyperplane to
project onto. Though in [14] the assumptions required for convergence were
weakened, there is still the need to compute the metric projection onto S at
least once in each iteration and another projection onto an intersection of a
hyperplane with S. In some other developments, Iiduka, Takahashi and Toy-
oda [5] introduced an iterative method for solving the VIP(S, f) in Hilbert
space, but again they have to calculate the projection onto S twice. The
main difference between their method and Korpelevich’s method is that the
second step (1.3) of Korpelevich’s method is replaced by

xk+1 = PS(αkx
k + (1− αk)y

k), (1.7)

for some sequence {αk}∞k=0 ⊆ [−1, 1]. Noor [11, 12] suggested and analyzed
an extension of the extragradient method which still employs two orthogonal
projections onto S, but (1.3) is replaced by

xk+1 = PS(y
k − τf(yk)). (1.8)

So, Noor’s and all other extensions of Korpelevich’s method mentioned above,
still require two projections onto S or that one projection is replaced by a
projection onto a set which is the intersection of S with some hyperplane
found through a line search.

2 The subgradient extragradient algorithmic
extension

Our first algorithmic extension is a modification of the extragradient method,
which we call the subgradient extragradient algorithm. The name derives
from the replacement of the second projection onto S in (1.3) with a specific
subgradient projection. Let the set S be given by

S = {x ∈ Rn | c(x) ≤ 0} , (2.1)

where c : Rn → R is a convex function. It is known that every closed
convex set can be represented in this way, i.e., take c(x) = dist(x, S), where

4



dist is the distance function; see, e.g., [4, Subsection 1.3(c)]. We denote the
subdifferential set of c at a point x by

∂c(x) := {ξ ∈ Rn | c(y) ≥ c(x) + hξ, y − xi for all y ∈ Rn}. (2.2)

For z ∈ Rn, take any ξ ∈ ∂c(z) and define

T (z) := {w ∈ Rn | c(z) + hξ, w − zi ≤ 0} . (2.3)

This is a half-space the bounding hyperplane of which separates the set S
from the point z. In the next algorithm we replace the second orthogonal
projection onto S in (1.3) by a specific selection of a subgradient half-space.

Algorithm 2.1 The subgradient extragradient algorithm
Step 0: Select an arbitrary starting point x0 ∈ Rn and τ > 0, and set

k = 0.
Step 1: Given the current iterate xk, compute

yk = PS(x
k − τf(xk)), (2.4)

construct the half-space Tk the bounding hyperplane of which supports S at
yk,

Tk := {w ∈ Rn |
­¡
xk − τf(xk)

¢
− yk, w − yk

®
≤ 0} (2.5)

and calculate the next iterate

xk+1 = PTk(x
k − τf(yk)). (2.6)

Step 2: If xk = yk, then stop. Otherwise, set k ← (k + 1) and return to
Step 1.

Remark 2.2 Observe that if c is not differentiable at yk, then
¡
xk − τf(xk)

¢
−

yk ∈ ∂c(yk); otherwise {
¡
xk − τf(xk)

¢
− yk} = ∂c(yk) = {∇c(yk)}.

Figure 1 illustrates the iterative step of this algorithm.
We need to assume the following conditions in order to prove convergence

of our algorithm.

Condition 2.3 The solution set of (1.1), denoted by SOL(S, f), is non-
empty.
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Figure 1: In the iterative step of Algorithm 2.1, xk+1 is a subgradient pro-
jection of the point xk − τf(yk) onto the set S.

Condition 2.4 The mapping f is pseudo-monotone on S with respect to
SOL(S, f).

Substituting y = x∗ in (1.6), we get

hf(x), x− x∗i ≥ 0 for all x ∈ S and for all x∗ ∈ SOL(S, f). (2.7)

Condition 2.5 The mapping f is Lipschitz continuous on Rn with constant
L > 0.

3 Convergence of the subgradient extragra-
dient algorithm

In a recent paper [2] we have studied further extensions of Korpelevich’s
method including weak convergence of the subgradient extragradient Algo-
rithm 2.1. The proof there is similar to the one given here only until a certain
point. We give here a full proof for convenience, since steps in it are needed
in later sections. First we show that the stopping criterion in Step 2 of
Algorithm 2.1 is valid.

Lemma 3.1 If xk = yk in Algorithm 2.1, then xk ∈ SOL(S, f).

6



Proof. If xk = yk, then xk = PS(x
k − τf(xk)), so xk ∈ S. By the

variational characterization of the projection with respect to S, we have­
w − xk, (xk − τf(xk))− xk

®
≤ 0 for all w ∈ S, (3.1)

which implies that

τ
­
w − xk, f(xk)

®
≥ 0 for all w ∈ S. (3.2)

Since τ > 0, (3.2) implies that xk ∈ SOL(S, f).
The next lemma is central to our proof of the convergence theorem.

Lemma 3.2 Let {xk}∞k=0 and {yk}∞k=0 be the two sequences generated by Al-
gorithm 2.1 and let x∗ ∈ SOL(S, f). Then, under Conditions 2.3—2.5, we
have°°xk+1 − x∗

°°2 ≤ °°xk − x∗
°°2 − (1− τ 2L2)

°°yk − xk
°°2 for all k ≥ 0. (3.3)

Proof. Since x∗ ∈ SOL(S, f), yk ∈ S and f is pseudo-monotone with
respect to SOL(S, f),­

f(yk), yk − x∗
®
≥ 0 for all k ≥ 0. (3.4)

So, ­
f(yk), xk+1 − x∗

®
≥
­
f(yk), xk+1 − yk

®
. (3.5)

By the definition of Tk (2.5), we have­
xk+1 − yk,

¡
xk − τf(xk)

¢
− yk

®
≤ 0 for all k ≥ 0. (3.6)

Thus,­
xk+1 − yk, (xk − τf(yk))− yk

®
=
­
xk+1 − yk, xk − τf(xk)− yk

®
+ τ

­
xk+1 − yk, f(xk)− f(yk)

®
= τ

­
xk+1 − yk, f(xk)− f(yk)

®
. (3.7)

Denoting zk = xk − τf(yk), we obtain°°xk+1 − x∗
°°2 = °°PTk(z

k)− x∗
°°2

=
­
PTk(z

k)− zk + zk − x∗, PTk(z
k)− zk + zk − x∗

®
=
°°zk − x∗

°°2 + °°zk − PTk(z
k)
°°2 + 2 ­PTk(z

k)− zk, zk − x∗
®
.

(3.8)

7



Since

2
°°zk − PTk(z

k)
°°2 + 2 ­PTk(z

k)− zk, zk − x∗
®

= 2
­
zk − PTk(z

k), x∗ − PTk(z
k)
®
≤ 0 for all k ≥ 0, (3.9)

we get°°zk − PTk(z
k)
°°2+2 ­PTk(z

k)− zk, zk − x∗
®
≤ −

°°zk − PTk(z
k)
°°2 for all k ≥ 0.

(3.10)
Hence,°°xk+1 − x∗

°°2 ≤ °°zk − x∗
°°2 − °°zk − PTk(z

k)
°°2

=
°°(xk − τf(yk))− x∗

°°2 − °°(xk − τf(yk))− xk+1
°°2

=
°°xk − x∗

°°2 − °°xk − xk+1
°°2 + 2τ ­x∗ − xk+1, f(yk)

®
≤
°°xk − x∗

°°2 − °°xk − xk+1
°°2 + 2τ ­yk − xk+1, f(yk)

®
, (3.11)

where the last inequality follows from (3.5). So,°°xk+1 − x∗
°°2 ≤ °°xk − x∗

°°2 − °°xk − xk+1
°°2 + 2τ ­yk − xk+1, f(yk)

®
=
°°xk − x∗

°°2 − ¡­xk − yk + yk − xk+1, xk − yk + yk − xk+1
®¢

+ 2τ
­
yk − xk+1, f(yk)

®
=
°°xk − x∗

°°2 − °°xk − yk
°°2 − °°yk − xk+1

°°2
+ 2

­
xk+1 − yk, xk − τf(yk)− yk

®
, (3.12)

and by (3.7)°°xk+1 − x∗
°°2 ≤ °°xk − x∗

°°2 − °°xk − yk
°°2 − °°yk − xk+1

°°2
+ 2τ

­
xk+1 − yk, f(xk)− f(yk)

®
. (3.13)

Using the Cauchy—Schwarz inequality and Condition 2.5, we obtain

2τ
­
xk+1 − yk, f(xk)− f(yk)

®
≤ 2τL

°°xk+1 − yk
°°°°xk − yk

°° . (3.14)

In addition,

0 ≤
¡
τL
°°xk − yk

°°− °°yk − xk+1
°°¢2

= τ 2L2
°°xk − yk

°°2 − 2τL°°xk+1 − yk
°°°°xk − yk

°°+ °°yk − xk+1
°°2 , (3.15)
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so,

2τL
°°xk+1 − yk

°°°°xk − yk
°° ≤ τ 2L2

°°xk − yk
°°2 + °°yk − xk+1

°°2 . (3.16)

Combining the above inequalities and using Condition 2.5, we see that°°xk+1 − x∗
°°2 ≤ °°xk − x∗

°°2 − °°xk − yk
°°2 − °°yk − xk+1

°°2
+ 2τL

°°xk+1 − yk
°°°°xk − yk

°°
≤
°°xk − x∗

°°2 − °°xk − yk
°°2 − °°yk − xk+1

°°2
+ τ 2L2

°°xk − yk
°°2 + °°yk − xk+1

°°2
=
°°xk − x∗

°°2 − °°xk − yk
°°2 + τ 2L2

°°xk − yk
°°2 . (3.17)

Finally, we get°°xk+1 − x∗
°°2 ≤ °°xk − x∗

°°2 − (1− τ 2L2)
°°yk − xk

°°2 , (3.18)

which completes the proof.

Theorem 3.3 Assume that Conditions 2.3—2.5 hold and let 0 < τ < 1/L.
Then any sequence {xk}∞k=0 generated by Algorithm 2.1 converges to a solu-
tion of (1.1).

Proof. Let x∗ ∈ SOL(S, f) and define ρ := 1 − τ 2L2. Since 0 < τ <
1/L we have ρ ∈ (0, 1). By Lemma 3.2, the sequence {xk}∞k=0 is bounded.
Therefore, it has at least one accumulation point x̄. From Lemma 3.2 it
follows that

ρ
°°yk − xk

°°2 ≤ °°xk − x∗
°°2 − °°xk+1 − x∗

°°2 . (3.19)

Summing up, we get for all integer K ≥ 0,

ρ
KX
k=0

°°yk − xk
°°2 ≤ °°x0 − x∗

°°2 . (3.20)

Since the sequence
nPK

k=0

°°yk − xk
°°2o

K≥0
is monotonically increasing and

bounded,

ρ
∞X
k=0

°°yk − xk
°°2 ≤ °°x0 − x∗

°°2 , (3.21)
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which implies that
lim
k→∞

°°yk − xk
°° = 0. (3.22)

So, if x̄ is the limit point of some subsequence {xkj}∞j=0 of {xk}∞k=0, then

lim
j→∞

ykj = x̄. (3.23)

By the continuity of f and PS, we have

x̄ = lim
j→∞

ykj = lim
j→∞

PS(x
kj − τf(xkj)) = PS(x̄− τf(x̄)). (3.24)

As in the proof of Lemma 3.1, it follows that x̄ ∈ SOL(S, f). We now ap-
ply Lemma 3.2 with x∗ = x̄ to deduce that the sequence {

°°xk − x̄
°°}∞k=0 is

monotonically decreasing and bounded, hence convergent. Since

lim
k→∞

°°xk − x̄
°° = lim

j→∞

°°xkj − x̄
°° = 0, (3.25)

the whole sequence {xk}∞k=0 converges to x̄.

Remark 3.4 In the convergence theorem we assume that f is Lipschitz con-
tinuous on Rn with constant L > 0 (Condition 2.5). If we assume that f
is Lipschitz continuous only on S with constant L > 0, we can use a Lip-
schitzian extension of f to Rn in order to evaluate the mapping at xk. This
extension exists by Kirszbraun’s theorem [9], which states that there exists a
Lipschitz continuous map on Rn, f̃ : Rn → Rn, that extends f and has the
same Lipschitz constant L as f . Alternatively, we can take ef = fPS which
is Lipschitz continuous on Rn with constant L > 0.

4 The perturbed extragradient algorithmic
extension

Our next algorithmic extension is a modification of the extragradient method,
which we call the perturbed extragradient algorithm. Following [13], we
denote by NCCS(Rn) the family of all nonempty, closed and convex subsets
of Rn.
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Definition 4.1 [1, Proposition 3.21] Let S and {Sk}∞k=0 be a set and a se-
quence of sets in NCCS(Rn), respectively. The sequence {Sk}∞k=0 is said to
epi-converge to the set S (denoted by Sk

epi→ S) if the following two con-
ditions hold:
(i) for every x ∈ S, there exists a sequence {xk}∞k=0 such that xk ∈ Sk

for all k ≥ 0, and limk→∞ xk = x.
(ii) If xkj ∈ Skj for all j ≥ 0, and limj→∞ xkj = x, then x ∈ S.

The next proposition is [13, Proposition 7], but its Banach space variant
already appears in [6, Proposition 7].

Proposition 4.2 Let S and {Sk}∞k=0 be a set and a sequence of sets in
NCCS(Rn), respectively. If Sk

epi→ S and limk→∞ xk = x, then

lim
k→∞

PSk(x
k) = PS(x). (4.1)

We now formulate the perturbed extragradient algorithm.

Algorithm 4.3 The perturbed extragradient algorithm
Step 0: Let {Sk}∞k=0 be a sequence of sets in NCCS(Rn) such that Sk

epi→ S.
Select a starting point x1 ∈ S0 and τ > 0, and set k = 1.
Step 1: Given the current iterate xk ∈ Sk−1, compute

yk = PSk(x
k − τf(xk)) (4.2)

and
xk+1 = PSk(x

k − τf(yk)). (4.3)

Step 2: Set k ← (k + 1) and return to Step 1.

Figure 2 illustrates the iterative step of this algorithm.
We will need the following additional assumption for the convergence

theorem.

Condition 4.4 f is Lipschitz continuous on S with constant L > 0.
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Figure 2: In the iterative step of Algorithm 4.3, xk+1 is obtained by perform-
ing the projections of the original Korpelevich method with respect to the
set Sk.

5 Convergence of the perturbed extragradi-
ent algorithm

First we observe that Lemma 3.2 holds for Algorithm 4.3 under Conditions
2.3—2.5. The following lemma uses, instead of Condition 2.5, Condition 4.4,
which requires Lipschitz continuity on S and not on the whole space Rn.
This entails the main difference between the proofs of Lemmata 3.2 and 5.1,
which is that (3.6) becomes an inequality and this propagates down the rest
of the proof. We give, however, the next proof in full for the convenience of
the readers.

Lemma 5.1 Assume that Sk ⊆ Sk+1 ⊆ S for all k ≥ 0, that Sk
epi→ S, that

Conditions 2.3—2.4 and Condition 4.4 hold. Let {xk}∞k=0 and {yk}∞k=0 be two
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sequences generated by Algorithm 4.3. Let x∗ ∈ SOL(S, f). Then°°xk+1 − x∗
°°2 ≤ °°xk − x∗

°°2 − (1− τ 2L2)
°°yk − xk

°°2 for all k ≥ 0. (5.1)

Proof. Since x∗ ∈ SOL(S, f), yk ∈ Sk ⊆ S and f is pesudo-monotone
with respect to SOL(S, f),­

f(yk), yk − x∗
®
≥ 0 for all k ≥ 0. (5.2)

So, ­
f(yk), xk+1 − x∗

®
≥
­
f(yk), xk+1 − yk

®
. (5.3)

By the variational characterization of the projection with respect to Sk, we
have ­

xk+1 − yk,
¡
xk − τf(xk)

¢
− yk

®
≤ 0. (5.4)

Thus,­
xk+1 − yk, (xk − τf(yk))− yk

®
=
­
xk+1 − yk, xk − τf(xk)− yk

®
+ τ

­
xk+1 − yk, f(xk)− f(yk)

®
≤ τ

­
xk+1 − yk, f(xk)− f(yk)

®
. (5.5)

Denoting zk = xk − τf(yk), we obtain exactly equations (3.8)—(3.12) with
PTk replaced by PSk . By (5.5) we obtain (3.13) for the present lemma too.
Using the Cauchy—Schwarz inequality and Condition 4.4, we can repeat the
remainder of the proof as in the proof of Lemma 3.2 and obtain finally°°xk+1 − x∗

°°2 ≤ °°xk − x∗
°°2 − (1− τ 2L2)

°°yk − xk
°°2 , (5.6)

which completes the proof.
Next, we present our convergence theorem for the perturbed extragradient

algorithm.

Theorem 5.2 Assume that Sk ⊆ Sk+1 ⊆ S for all k ≥ 0, that Sk
epi→ S, and

that Conditions 2.3—2.4 and Condition 4.4 hold. Let 0 < τ < 1/L. Then
any sequence {xk}∞k=0, generated by Algorithm 4.3, converges to a solution of
(1.1).
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Proof. Let x∗ ∈ SOL(S, f) and define ρ := 1− τ 2L2. Using Lemma 5.1
instead of Lemma 3.2, we can obtain, by similar arguments, that here also

lim
k→∞

°°yk − xk
°° = 0.

So, if x̄ is the limit point of some subsequence {xkj}∞j=0 of {xk}∞k=0, then

lim
j→∞

ykj = x̄. (5.7)

Using the continuity of f and PSk , and Proposition 4.2, we have

x̄ = lim
j→∞

ykj = lim
j→∞

PSkj
(xkj − τf(xkj)) = PS(x̄− τf(x̄)). (5.8)

As in the proof of Lemma 3.1, it follows that x̄ ∈ SOL(S, f). We now ap-
ply Lemma 5.1 with x∗ = x̄ to deduce that the sequence {

°°xk − x̄
°°}∞k=0 is

monotonically decreasing and bounded, hence convergent. Since

lim
k→∞

°°xk − x̄
°° = lim

j→∞

°°xkj − x̄
°° = 0, (5.9)

the whole sequence {xk}∞k=0 converges to x̄.

6 Further algorithmic possibilities

As a matter of fact, Algorithm 4.3 can be naturally modified by combin-
ing the two algorithmic extensions studied above into a hybrid perturbed
subgradient extragradient algorithm, namely, to allow the second pro-
jection in Algorithm 4.3 to be replaced by a specific subgradient projection
with respect to Sk.

Algorithm 6.1 The hybrid perturbed subgradient extragradient al-
gorithm
Step 0: Select an arbitrary starting point x1 ∈ S0 and τ > 0, and set

k = 1.
Step 1: Given the current iterate xk, compute

yk = PSk(x
k − τf(xk)) (6.1)

construct the half-space Tk the bounding hyperplane of which supports Sk at
yk,

Tk := {w ∈ Rn |
­¡
xk − τf(xk)

¢
− yk, w − yk

®
≤ 0} (6.2)
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and calculate the next iterate

xk+1 = PTk(x
k − τf(yk)). (6.3)

Step 2: Set k ← (k + 1) and return to Step 1.

Figure 3 illustrates the iterative step of this algorithm.

Figure 3: In the iterative step of Algorithm 6.1, xk+1 is obtained by perform-
ing one subgradient projection and one projection onto the set Sk in each
iterative step.

We proved the convergence of this algorithm by using similar arguments
to those we employed in the previous proofs. Therefore we omit the proof of
its convergence.
Another possibility is the following one. In Algorithm 2.1 we replaced

the second projection onto S with a specific subgradient projection. It is
natural to ask whether it is possible to replace the first projection onto S as
well and, furthermore, if this could be done for any choice of a subgradient
half-space. To accomplish this, one might consider the following algorithm.

Algorithm 6.2 The two-subgradient extragradient algorithm
Step 0: Select an arbitrary starting point x0 ∈ Rn and set k = 0.
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Step 1: Given the current iterate xk, choose ξk ∈ ∂c(xk), consider Tk :=
T
¡
xk
¢
as in (2.3), and then compute

yk = PTk(x
k − τf(xk)) (6.4)

and
xk+1 = PTk(x

k − τf(yk)). (6.5)

Step 2: If xk = yk, then stop. Otherwise, set k ← (k + 1) and return to
Step 1.

Figure 4 illustrates the iterative step of this algorithm.

Figure 4: In the iterative step of Algorithm 6.2, xk+1 is obtained by perform-
ing two subgradient projections in each iterative step.

We now observe that under Conditions 2.3—2.5, where Condition 2.4 is
on Rn, that Lemma 3.1 and 3.2 still hold, that is, the generated sequence
{xk}∞k=0 is bounded and limk→∞

°°yk − xk
°° = 0. It is still an open question

whether these sequences converge to x∗ ∈ SOL(S, f). First we show that
Step 2 of Algorithm 6.2 is valid.

Lemma 6.3 If xk = yk for some k in Algorithm 6.2, then xk ∈ SOL(S, f).

Proof. If xk = yk, then xk = PTk(x
k − τf(xk)), so xk ∈ Tk. Therefore

by the definition of Tk (see (2.3)), we have c(xk) + hξk, xk − xki ≤ 0, so
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c(xk) ≤ 0 and by the representation of the set S, xk ∈ S. By the variational
characterization of the projection with respect to Tk, we have­

w − yk, (xk − τf(xk))− yk
®
≤ 0 for all w ∈ Tk (6.6)

and
τ
­
w − xk, f(xk)

®
≥ 0 for all w ∈ Tk. (6.7)

Now we claim that S ⊆ Tk. Let x ∈ S, and consider ξk ∈ ∂c(xk). By the
definition of the subdifferential set of c at a point xk (see (2.2)), we get for
all y ∈ Rn, c(y) ≥ c(xk) + hξk, y − xki, so, in particular, for x ∈ S ⊆ Rn,

c(x) ≥ c(xk) + hξk, x− xki. (6.8)

By the representation of the set S (see (2.1)), we obtain

0 ≥ c(x) ≥ c(xk) + hξk, x− xki (6.9)

which means that x ∈ Tk and so S ⊆ Tk, as claimed. Since S ⊆ Tk, we have
by (6.7),

τ
­
w − xk, f(xk)

®
≥ 0 for all w ∈ S. (6.10)

Since τ > 0 and xk ∈ S, we finally get xk ∈ SOL(S, f).
The proof of the next lemma is similar to that of Lemma 5.1 above.

Lemma 6.4 Let {xk}∞k=0 and {yk}∞k=0 be two sequences generated by Algo-
rithm 6.2. Let x∗ ∈ SOL(S, f). Then under Conditions 2.3, 2.4 and 4.4, we
have for every k ≥ 0,°°xk+1 − x∗

°°2 ≤ °°xk − x∗
°°2 − (1− τ 2L2)

°°yk − xk
°°2 . (6.11)

It is not difficult to show, by following the arguments given in Theorem
3.3, that under the conditions of this lemma and if 0 < τ < 1/L, then any
sequence {xk}∞k=0 generated by Algorithm 6.2 is bounded and

lim
k→∞

°°yk − xk
°° = 0. (6.12)

The second algorithmic extension of Korpelevich’s extragradient method
proposed here can be further studied along the lines of the following conjec-
ture.
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Conjecture 6.5 The set inclusion condition that Sk ⊆ Sk+1 ⊆ S for all
k ≥ 0, which appears in our analysis of the perturbed extragradient algorithm,
could probably be removed by employing techniques similar to those of [15],
i.e., using the definition of the γ-distance between S1 and S2, where γ ≥
0, S1, S2 ∈ NCCS(Rn),

dγ(S1, S2) := sup{kPS1(x)− PS2(x)k | kxk ≤ γ} (6.13)

and the equivalence between the conditions (a) limk→∞ dγ(Sk, S) = 0 for all

γ ≥ 0 and (b) Sk
epi→ S. See [13, 15].
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