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 Abstract– In early studies of proton computed tomography 
(pCT), images were reconstructed with the fast and robust 
filtered backprojection (FBP) algorithm. Due to multiple 
Coulomb scattering of the protons within the object, the straight 
line path assumption of FBP resulted in poor spatial resolution. 
In an attempt to improve spatial resolution, a formalism to 
predict the proton path of maximum likelihood through the 
image space was created. The use of these paths with the iterative 
algebraic reconstruction technique (ART), have shown an 
improvement in spatial resolution, but also an increase in image 
noise, resulting in poor density resolution.  

In this work, we propose a reconstruction method that 
attempts to optimize both spatial and density resolution of pCT 
images. The new reconstruction approach makes use of the 
block-iterative diagonally relaxed orthogonal projections 
(DROP) algorithm with an initial FBP-reconstructed image 
estimate. Reconstruction of Monte Carlo simulated pCT data sets 
of spatial and density resolution phantoms demonstrated that  
the combined reconstruction approach resulted in better spatial 
resolution than the FBP algorithm alone and better density 
resolution than the DROP algorithm starting from a uniform 
initial image estimate. 

I. INTRODUCTION 

roton computed tomography (pCT) was first experimentally 
investigated as an alternative to diagnostic X-ray CT in the 

1970s and early 1980s [1,2]. Although dose advantages were 
found with pCT, greater development efforts were made with 
X-ray CT due to the greater spatial resolution achievable and 
the lack of proton accelerators. With the expansion of proton 
therapy over the last decade, interest has again been placed in 
pCT. Now, pCT is being developed as a means for 
maximizing the potential benefits of proton therapy. 

The pCT design proposed by Schulte et al. [3] employs 
position sensitive silicon tracking planes at the boundaries of 
the image space, to allow for individual proton entry and exit 
position and direction measurements. Proton exit energy is 
also measured with downstream scintillation crystal 
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calorimeters. The energy lost by individual protons is 
converted to an integral relative stopping power (RSP) by the 
Bethe-Bloch relationship. This forms the basis for a 
reconstruction of the RSP map. 

In a number of previous pCT reconstruction studies [1,2,4], 
the geometrical path of protons through the image space was 
assumed to be a straight line. This assumption allowed the use 
of the fast and robust filtered backprojection (FBP) 
reconstruction algorithm. These studies found that pCT 
images reconstructed with FBP exhibited good density 
contrast (low noise) in comparison to X-ray CT, but poor 
spatial resolution. The poor spatial resolution is due to 
multiple Coulomb scattering (MCS) within the object, making 
the straight line approximation inaccurate. 

Li et al. [5] showed that superior spatial resolution can be 
achieved when a path of maximum likelihood [6,7] that takes 
MCS into account is used instead of the straight-line 
assumption. The algebraic reconstruction technique (ART) 
[8], an iterative projection method for solving a system of 
equations, has been found to deal well with these nonlinear 
paths. However, accounting for MCS in the reconstruction is a 
computer intensive procedure, so we are looking to inherently 
parallel block-iterative or string-averaging iterative projection 
methods executed on multiple processors simultaneously as 
the next step forward. 

In this study, we investigated a reconstruction method that 
combines FBP with an iterative projection algorithm in the 
reconstruction of simulated pCT data sets. The new 
reconstruction approach uses the block-iterative diagonally 
relaxed orthogonal projection (DROP) algorithm [9] with an 
FBP-reconstructed image as the initial image estimate. Thus, 
the FBP initial estimate provides a low-noise starting point for 
the iterative procedure. 
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Fig. 1. Cross-sections of the cylindrical phantoms used in the GEANT4 
pCT simulations. (a) Phantom with central dense structure (indicated by 
arrow) to quantify spatial resolution. (b) Phantom with uniform interior. 

II. METHODS 

A. Proton CT Simulation 
The Monte Carlo software toolkit GEANT4 [10] was used 

to simulate a realistic pCT system. A monoenergetic 200 MeV 
proton beam was generated in a vacuum environment 
simulating the proton accelerator. The beam exited vacuum 
through a 25 µm thick titanium foil and was subsequently 
collimated with a 7 cm long, 2 mm hole brass collimator. A 
2.5 mm thick lead scattering foil was placed on the 
downstream face of the brass collimator to generate a proton 
cone beam. 

A cylindrical phantom was placed 2 m downstream of the 
lead scattering foil. Cross sections of the cylindrical phantoms 
used for spatial and density resolution studies are shown in 
Fig. 1(a) and 1(b), respectively. Both phantoms had a diameter 
of 16 cm containing materials of brain and cranial bone 
chemical composition and density as set out by the 
International Commission on Radiological Protection (ICRP) 
[11]. The spatial resolution phantom also contained a central 
rectangular prism structure, having a cross-section of (0.82 × 
0.82) mm2, equal to the reconstruction pixel size. The density 
of this structure was 20 times greater than the surrounding 
material.  

Four 2D position sensitive silicon modules were centered at 
-30 cm, -20 cm, 20 cm and 30 cm relative to the phantom. 
Each module consisted of one x and one y dimensionally 
sensitive 30 × 5 cm silicon strip detector 400 µm thick. The 
resolution of individual silicon strip detectors was set at 228 
µm. Note that thickness and resolution match the 
specifications of a prototype pCT scanner currently 
constructed at the University of California at Santa Cruz, 

A single cesium iodide crystal calorimeter was placed 
downstream of the exiting tracking modules. The crystal shape 
corresponded to a segment of a spherical shell, mimicking the 
segmented crystal geometry currently under development for 
the prototype pCT system.  

 180 projection angles in 2 degree intervals were simulated 
for each phantom. In each projection angle, the position in 
each tracking plane and energy deposited in the calorimeter 
was recorded for 200,000 protons. 

B. Proton CT Filtered Backprojection Reconstruction 
In this work the Feldkamp, Davis and Kress (FDK) 

approximation [12] for cone beams was used in the FBP pCT 
reconstructions. In the FDK approximation, protons must be 
assigned to a pseudo source position and equispaced lateral 
and vertical displacement bins. Due to MCS within the 
imaged object, proton path integrals do not coincide with a 
uniform sinogram grid. To account for this, each individual 
proton was rebinned. This rebinning of individual proton 
histories was calculated with the information provided by the 
silicon tracking modules and a straight line path assumption 
through the reconstruction space. 

In our work, protons were assigned to 2 degree angular 
bins, 1 mm lateral displacement bins and 5 mm vertical bins. 
The Ram-Lak [13] filter was used to avoid further 
degradations in spatial resolution. 

C. Proton CT Iterative Projection Reconstruction 
The primary advantage of using iterative projection 

algorithms is the ability to incorporate a more realistic proton 
path model in the reconstruction. In this work, the most likely 
path formalism of Schulte et al. [7] was used to improve 
spatial resolution. 

The calculation of proton paths with the MLP subroutine is 
computationally expensive. This has led to the adoption of 
parallelizable block-iterative or string-averaging projection 
algorithms executed on multi-core processors to allow for fast 
reconstructions. The block-iterative diagonally relaxed 
orthogonal projections (DROP) [9] scheme was used in the 
current work, as promising results had been found in our 
previous work [14]. A recently developed method that takes 
variations in the voxel-intersection length into account [15] 
was used for the calculation of system matrix elements. 

Most studies with iterative algorithms begin the cyclic 
reconstruction process with a uniform initial image estimate. 
In the current work, we reconstructed images with both a 
uniform initial image estimate corresponding to the relative 
stopping power of air, and with the FBP-reconstructed image 
as the initial estimate. 10 cycles were carried out for each 
reconstruction approach, where a cycle refers to one complete 
sweep of all collected proton histories with the DROP 
algorithm. 

D. Image Quality Measures 
Although 3D images were reconstructed with each 

approach, only the central slice was used in the analysis of 
image quality.  

1. Quantitative accuracy 
The primary motivation for developing our pCT system is 

the need to directly reconstruct relative proton stopping 
powers for use in proton therapy treatment planning. In this 
application, quantitative accuracy of the reconstructed images 
is important. Histogram analysis is a useful method for 
assessing quantitative accuracy of the reconstructed images. 
We also used the relative error (εn) to obtain a single value to 
describe the quantitative accuracy. This was calculated as 
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Here, x’j is the relative stopping power in voxel j of the 
phantom and xn

j is the reconstructed relative stopping power 
in voxel j after n cycles. 

2. Spatial resolution 
Spatial resolution of the reconstructed images was 

quantified with the 2D modulation transfer function (MTF). 
For this measure, the point spread function (PSF) of the 
central dense rectangular prism in Fig. 1(a) was used. 
Following reconstruction, a 2D FFT of a 32 × 32 pixel region 
of interest centered on the PSF was carried out. The MTF was 
obtained by averaging the magnitude of the first row and 



 

column of the resulting spatial frequency representation of the 
image. 

3. Density resolution 
Density resolution was assessed with the contrast 

discrimination function (CDF). This is an objective statistical 
analysis method for determining the minimum contrast 
required to discriminate an object of a certain size from the 
surrounding tissue. The CDF is calculated by dividing the 
reconstructed image of a uniform phantom into a grid, where 
the sizes of the grid elements correspond to the size of the 
“object” to be discriminated. The distribution of mean pixel 
values within the grid elements can be used to determine the 
minimum contrast detectable with a given confidence level. 
See [16] for a complete description of the method. The 
uniform phantom (Fig. 1(b)) data set was used for this 
measure. In the analysis, “objects” ranging from 1 × 1 to 10 × 
10 pixels in size were considered. 

III. RESULTS 
The reconstructed images from the density resolution 

phantom and spatial resolution phantom pCT data sets are 
shown in Fig. 2. The images reconstructed with DROP 
correspond to the cycle of minimum relative error. This was 
cycle 9 for the uniform initial image estimate and cycle 3 for 
the FBP initial image estimate. Thus, the combined 
reconstruction algorithm reached the minimum relative error 
after fewer iterations. 

 
Fig. 2. Uniform and point source images reconstructed with FBP (left), 

DROP with a uniform initial image estimate (center) and DROP with an FBP-
reconstructed initial image estimate (right). 

A. Quantitative Accuracy 

 
Fig. 3. Histograms of the reconstructed images. The vertical lines 

correspond to the relative stopping power of the true phantom materials. The 
numbers in superscript for the DROP reconstructions refer to the cycle of 
minimum relative error. 

Histograms of the reconstructed images from Fig. 2 are 
shown in Fig. 3. All reconstruction approaches were found to 
match the phantom brain stopping power value within peak 
fitting uncertainty. The image reconstructed with FBP was 
found to overestimate the relative stopping power of bone 
regions by 2.1%. When DROP was used with a uniform initial 
image estimate assuming the relative stopping power of air, 
bone stopping powers were initially underestimated and 
iteratively improved through the reconstruction process. After 
9 cycles, the peak value of the bone region was 
underestimated by 2.1%. The image reconstructed with DROP 
and an FBP-reconstructed initial image estimate iteratively 
reduced the overestimation of the bone relative stopping 
power resulting from FBP. By the end of the 3rd cycle, the 
overestimation had been reduced to 1.6%. 

B. Spatial Resolution 
It was found that the spatial resolution resulting from an 

FBP reconstruction was 0.089 lp/pixel for an MTF value of 
0.5. This was inferior to both images reconstructed with 
DROP, for which 0.116 lp/pixel and 0.111 lp/pixel at an MTF 
value of 0.5 were found for the uniform and FBP-
reconstructed initial image estimates, respectively. Fig. 4 
demonstrates the improvement in spatial resolution with an 
increasing number of cycles for the iterative procedure. 



 

 
Fig. 4. Modulation transfer function for images reconstructed with FBP, 

DROP with a uniform initial image estimate and DROP with an FBP-
reconstructed initial image estimate. The dashed lines represent the MTF at an 
early cycle of the iterative procedure and the solid lines represent the MTF at a 
later cycle.  Cycle number is shown in superscript. Spatial resolution increases 
with increasing cycle number.  

C. Density Resolution 
The image reconstructed with FBP was found to require less 

contrast than either DROP reconstructions to discriminate an 
object of a given size from background. That is, superior 
density resolution was observed for FBP. It was found that an 
object of 2.4 × 2.4 mm and 1% contrast could be 
discriminated with 95% confidence level when reconstructing 
with FBP. This is compared with objects 4.4 × 4.4 and 2.8 × 
2.8 mm in size for the images reconstructed with DROP 
starting from air and FBP, respectively. The decrease in 
density resolution with increasing number of cycles is shown 
in Fig. 5. 

 
Fig. 5. Contrast discrimination function for the various reconstruction 

approaches. Dashed lines represent an early cycle of the iterative procedure 
while solid lines represent later cycles of the iterative procedure. The cycle 
number is shown in superscript. 

IV. DISCUSSION 
There are a number of factors to consider when selecting the 

image reconstruction algorithm to use for pCT. If the images 
are to be used for proton therapy treatment planning, 

quantitative accuracy and the ability to delineate organ 
boundaries are both important aspects. If the images are to be 
used in pre-treatment patient positioning, spatial resolution 
and reconstruction time are key. 

From the results of the current work, it was demonstrated 
that iterative projection algorithms are better suited to pCT 
treatment planning applications than the FBP algorithm. 
While FBP-reconstructed images display good density 
resolution, the straight line path assumption leads to an 
underestimation of the proton path length, which, in turn, 
results in an overestimation of the stopping power in the 
reconstructed images. This effect is more evident in higher Z 
materials where the degree of MCS is larger (see Fig. 3). 
When MCS is accounted for by an iterative projection 
algorithm that incorporates the MLP formalism, this effect is 
significantly reduced. On the other hand, fast FBP algorithms 
may be used in pCT based image-guided alignment 
verification where high reconstruction speed is a requirement, 
but exact reproduction of stopping power is not crucial. 

The ability to delineate organ boundaries depends on both 
spatial and density resolution. It was found that superior 
spatial resolution could be achieved with an iterative 
projection algorithm starting from a uniform initial image in 
comparison to an FBP reconstruction, due to the MLP 
subroutine. In contrast, superior density resolution was found 
in images reconstructed with FBP than those reconstructed 
with an iterative projection algorithm starting from a uniform 
initial estimate. Images reconstructed with an iterative 
projection algorithm starting from an FBP-reconstructed 
estimate were found to produce better spatial resolution than 
that achieved with FBP alone and better density resolution 
than that found with DROP starting from a uniform initial 
image estimate. 

An ideal pCT reconstruction algorithm would have the 
flexibility to incorporate the MLP formalism into the 
reconstruction procedure and also be robust in dealing with 
noisy projection data. With this premise, we are currently 
investigating the use of perturbation resilient total variation 
superiorization [17] in pCT reconstruction. 

V. CONCLUSIONS 
Proton CT is a novel imaging modality that has potential 

applications in the field of proton radiation therapy planning 
and image guidance. Previous studies with pCT have made 
use of either FBP or iterative projection methods with a 
uniform initial image estimate for image reconstruction. While 
FBP-reconstructed images were found to display desirable 
density resolution, images lacked spatial resolution, and vice 
versa for the iterative algorithms. In this work it was 
demonstrated that if FBP is used as the initial image estimate 
for an iterative projection algorithm, images can be 
reconstructed with better spatial resolution than that achieved 
with FBP alone and better density resolution than DROP 
starting from a uniform initial image estimate. It was also 
found that the use of a most likely proton path model that 



 

accounts for MCS leads to more accurate reconstruction of 
stopping powers of high Z materials, such as bone, which is 
important for treatment planning applications. 
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