
Regularized Nonsmooth Newton Algorithms

for Best Approximation

with Applications ∗

Yair Censor† Walaa M. Moursi‡ Tyler Weames‡ Henry Wolkowicz‡

Version 1 Dec. 19, 2022/Revision Monday 12th June, 2023

Abstract

We consider the problem of finding the best approximation point from a polyhedral set,
and its applications, in particular to solving large-scale linear programs. The classical best
approximation problem has many various solution techniques as well as applications. We study
a regularized nonsmooth Newton type solution method where the Jacobian is singular; and we
compare the computational performance to that of the classical projection method of Halpern-
Lions-Wittmann-Bauschke (HLWB).

We observe empirically that the regularized nonsmooth method significantly outperforms the
HLWBmethod. However, the HLWBmethod has a convergence guarantee while the nonsmooth
method is not monotonic and does not guarantee convergence due in part to singularity of the
generalized Jacobian.

Our application to solving large-scale linear programs uses a parametrized best approx-
imation problem. This leads to a finitely converging stepping stone external path following
algorithm. Other applications are finding triangles from branch and bound methods, and gen-
eralized constrained linear least squares. We include scaling methods and sensitivity analysis to
improve the efficiency.

Keywords: best approximation, projection methods, Halpern-Lions-Wittmann-Bauschke al-
gorithm, nonsmooth and semismooth methods, sparse large-scale linear programming, constrained
linear least squares.

AMS subject classifications: 46N10, 49J52, 65K10, 90C05, 90C46, 90C59, 65F10

Contents

1 Introduction 3
1.1 Main Contributions . 4
1.2 Related Work . 4

∗PLEASE NOTE We are including a table of contents, lists of tables, index, to help the referees. We fully intend
to delete these before any final version of the paper.

†Departement of Mathematics, University of Haifa, Mt. Carmel, Haifa 3498838, Israel. Research supported by the
ISF-NSFC joint research plan Grant Number 2874/19 and by U.S. National Institutes of Health grant R01CA266467.

‡Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1; Research supported by The Natural Sciences and Engineering Research Council of
Canada

1

ar
X

iv
:2

21
2.

13
18

2v
2

 [
m

at
h.

O
C

]
 9

 J
un

 2
02

3

http://math.haifa.ac.il/yair/
https://uwaterloo.ca/combinatorics-and-optimization/about/people/wmoursi
https://uwaterloo.ca/combinatorics-and-optimization/about/people/tweames
http://www.math.uwaterloo.ca/~hwolkowi/

2 Projection onto a Polyhedral Set 5
2.1 Basic Theory and Algorithm . 5

2.1.1 Nonlinear Least Squares; Jacobians . 7
2.1.2 Well Conditioned Generalized Jacobian . 9
2.1.3 Vertices and Polar Cones . 11

3 Cyclic HLWBProjection for Best Approximation 12

4 Applications 13
4.1 Solving Linear Programs . 13

4.1.1 Warm Start; Stepping Stone External Path Following 15
4.1.2 Upper and Lower Bounds for the LP Problem 17

4.2 Projection and Free Variables . 18
4.2.1 Projection with Free Variables . 18

4.3 Triangle Inequalities . 20

5 Numerics 21
5.1 Time Complexity . 21
5.2 Comparison of Algorithms . 22

5.2.1 Numerical Comparisons . 23
5.3 Solving Large Sparse Linear Programs . 25

6 Conclusion 28

A Pseudocodes for Generalized Simplex 29

B Additional Performance Profiles 31
B.1 Nondegenerate . 31
B.2 Degenerate . 34

C Applications of the BAPand the HLWBalgorithm 38

Index 39

Bibliography 42

List of Tables

5.1 Varying problem sizes m; comparing computation time and relative residuals. 24
5.2 Varying problem sizes n; comparing computation time and relative residuals. 24
5.3 Varying problem density; comparing computation time and relative residuals. 24
5.4 LP application results averaged on 5 randomly generated problems per row. 27
5.5 Primal and Dual strict feasibility of NETLIB problems. 28
5.6 LP application results on the NETLIB problems. 28
B.1 Varying problem sizes m and comparing computation time with relative residual for

degenerate vertex solutions. 34

2

B.2 Varying problem sizes n and comparing computation time with relative residual for
degenerate vertex solutions. 34

B.3 Varying problem density and comparing computation time with relative residual for
degenerate vertex solutions. 34

List of Algorithms

3.1 cyclic HLWBalgorithm for linear inequalities . 13
A.1 BAPof v for constraints Ax = b, x ≥ 0; exact Newton direction 29
A.2 BAPof v for constraints Ax = b, x ≥ 0, inexact Newton direction 30
A.3 Extended HLWBalgorithm . 30

List of Figures

5.1 Performance profiles for problems with varying m, n, and densities for nondegenerate
vertex solutions. 25

5.2 Performance Profiles for LP application with respect to all problems. 27
5.3 Performance Profiles for LP application with respect to the Netlib problems. 28
B.1 Performance Profiles for varying m for nondegenerate vertex solutions. 31
B.2 Performance Profiles for varying n for nondegenerate vertex solutions. 32
B.3 Performance Profiles for varying density for nondegenerate vertex solutions. 33
B.4 Performance Profiles for varying m for degenerate vertex solutions. 35
B.5 Performance Profiles for varying n for degenerate vertex solutions. 36
B.6 Performance Profiles for varying density for degenerate vertex solutions. 37

1 Introduction

The best approximation problem, BAP , arises in many areas of optimization and approximation
theory. In particular, we study finding the best approximation x∗ to a given point v from a
polyhedral set, P ⊂ Rn, in the n-dimensional Euclidean space; namely, find x∗(v) ∈ Rn such that

x∗(v) = argmin
x∈P

∥x− v∥. (1.1)

There is an abundance of theory, algorithms, and applications for this problem, see e.g., [4, 13,
22], [6, Chap. 6], and the references therein. The optimum point x∗(v) is the projection of v
onto the polyhedral set P and is known to be unique. In this work we follow a Newton type
approach of an elegant compact optimality condition, even though the corresponding Jacobian
resulting from the optimality conditions is possibly a generalized Jacobian and/or singular. We
include a regularization, as well as an inexact approach for large-scale problems. Empirical evidence
illustrates the surprising success of this approach.

We include several applications. In particular, we solve large-scale linear programming, (LP),
problems using a parametrized best approximation problem. This introduces an efficient finitely
converging, stepping stone external path following algorithm. In addition, we consider large-scale
systems of triangle inequalities. In our applications we do not assume differentiability of our opti-
mality conditions and/or nonsingularity of the generalized Jacobian. We introduce a Newton type

3

approach for our applications that overcomes the nonsmooth difficulties by applying regularization
and scaling. We then provide extensive testing and comparisons to illustrate the surprisingly high
efficiency, accuracy, and speed of our proposed method.

1.1 Main Contributions

(i) First, we present the basics for the best approximation problem, see Theorem 2.1 below. This
includes an application of the Moreau decomposition that yields a single elegant equation that
captures all three KKT optimality conditions: primal and dual feasibility and complemen-
tary slackness. This emphasizes the equivalence of this single equation (2.4) in the small
dimensional dual variable y to solving the entire KKT optimality conditions. We include a
comparison with interior point methods in Remark 2.2.

(ii) Second, we present the nonsmooth, regularized Newton method. No line search is used. (See
Section 2.1.1 below.)

(iii) We show that the regularization from a modified, simplified, Levenberg-Marquardt, LM ,
method yields a descent direction. (See Lemma 2.5 below.)

(iv) We present our empirical test results that include an external path following approach to
solving large-scale linear programs that fully exploits sparsity. This is based on efficiently
solving the BAP subproblems accurately and applying sensitivity analysis. We compare our
results with several codes in the literature. The details are in Section 5 below.

(v) We compare computationally our algorithm with the Halpern-Lions-Wittmann-Bauschke,
(HLWB), algorithm that belongs to a class of projection methods usually developed and
investigated in the field of fixed point theory.

1.2 Related Work

Our approach uses a special decomposition from the optimality conditions that allows for a Newton
method with a cone projection applied to a system whose size is of the order of the number of linear
equality constraints forming the polyhedron P . This approach first appeared in infinite dimensional
Hilbert space applications, e.g., [11,17,18,44], where the projection mapping is differentiable, and
typically P is the intersection of a cone and a linear manifold. The approach was applied to
a parametrized quadratic problem to solve finite-dimensional linear programs in [53]. (See our
application Section 4.1, below. In this finite-dimensional case differentiability was lost.) The
approach in infinite-dimensional Hilbert spaces was followed up and extended in the theory of
partially finite programs in [9, 10] and the many references therein. Further references are given
in [3, 37,52].

As mentioned above, differentiability is lost in the finite-dimensional cases, see e.g., in [53]. This
led to the introduction of semismoothness [45]. In particular, semismoothness for a nondifferen-
tiable Newton type method is introduced and applied in [47, 48]. Further applications for nearest
doubly stochastic and nearest Euclidean distance matrices are presented in [2, 33]. A regularized
semismooth approach for general composite convex programs is given in [54].

Differentiability properties are nontrivial as discussed in, e.g., [32]. A characterization of dif-
ferentiability in terms of normal cones is given in [24]. Further results and connections to semis-

4

moothness are in, e.g., [28, 32]. A survey presentation on differentiability properties can be found
at the link [50].

2 Projection onto a Polyhedral Set

We begin with the projection onto the polyhedral set given in standard form, since every polyhedron
can be transformed into this form. Suppose we are given v ∈ Rn, b ∈ Rm, A ∈ Rm×n, rankA = m
and no columns of A are 0. We define the following projection onto a polyhedral set , i.e., the best
approximation problem, BAP to the generalized simplex ,

(P)

x∗(v) := argminx
1
2 ∥x− v∥2

s.t. Ax = b
x ∈ Rn

+,

optimal value: p∗(v) = 1
2 ∥x

∗(v)− v∥2 ,

(2.1)

i.e., the optimum and optimal value are, respectively, x∗(v), p∗(v); and Rn
+ is the nonnegative

orthant. We now proceed to derive the regularized nonsmooth Newton method, (RNNM) to
solve (2.1).

2.1 Basic Theory and Algorithm

In this section we briefly describe the properties of problem (2.1) as well as some background and
motivation behind using a generalized Newton method. We assume that

P := {x ∈ Rn
+ : Ax = b} ≠ ∅. (2.2)

Problem (2.1) has a strongly convex smooth objective function and nonempty closed convex con-
straint set. Therefore, the optimal value is finite, uniquely attained, and strong duality holds. In
the following, we precisely formulate this conclusion.

Throughout the rest of the paper we set1

F (y) := A(v +AT y)+ − b, f(y) :=
1

2
∥F (y)∥2. (2.3)

Theorem 2.1. Consider the generalized simplex best approximation problem (2.1) with primal
optimal value and optimum p∗(v) and x∗(v), respectively. Then the following hold:

(i) The optimum x∗(v) exists and is unique. Moreover, strong duality holds and the dual problem
of (2.1) is the maximization of the dual functional, ϕ(y, z):

p∗(v) = d∗(v) := max
z∈Rn

+
y∈Rm

ϕ(y, z) := −1

2

∥∥z +AT y
∥∥2 + yT (Av − b)− zT v.

1Let x ∈ Rn. Here and elsewhere we use x+ (respectively x−) to denote the projection of the vector x onto
the nonnnegative orthant defined as x+ = (max{0, xi})ni=1 (respectively onto the nonpositive orthant defined by
x− = (min{0, xi})ni=1).

5

(ii) Let y ∈ Rm. Then

F (y) = 0 ⇐⇒ y ∈ argmin
u

f(u) and x∗(v) = (v +AT y)+. (2.4)

Proof. Recall that the Lagrangian L(x, y, z) for (2.1), and its gradient, are respectively

L(x, y, z) =
1

2
∥x− v∥2 + yT (b−Ax)− zTx, ∇xL(x, y, z) = x− v −AT y − z. (2.5)

(i): The solution of the problem (2.1) is a projection onto a nonempty polyhedral set, which is
a closed and convex set, see (2.2). Therefore, the optimum exists and is unique and strong duality
holds, i.e., there is a zero duality gap and the dual is attained.

Let x be a stationary point of the Lagrangian i.e., ∇xL(x, y, z) = 0. Then by (2.5) we have the
following equivalent representation

x = v +AT y + z.

It then follows that at a stationary point x we have

L(x, y, z) = 1
2

∥∥v +AT y + z − v
∥∥2 + yT (b−A(v +AT y + z))− zT (v +AT y + z)

= 1
2

∥∥AT y + z
∥∥2 + yT b− yTAv − (AT y)T (AT y + z)− zT v − zT (AT y + z)

= 1
2

∥∥AT y + z
∥∥2 + yT b− yTAv − (AT y + z)T (AT y + z)− zT v

= −1
2

∥∥z +AT y
∥∥2 + yT (b−Av)− zT v.

The Lagrangian dual is

d∗ = maxy∈Rm,z∈Rn
+
minx∈Rn

+
L(x, y, z) (= 1

2 ∥x− v∥2 + yT (b−Ax)− zTx)

= maxx∈Rn
+,y∈Rm,z∈Rn

+
{L(x, y, z) : ∇xL(x, y, z) = 0}

= maxx∈Rn
+,y∈Rm,z∈Rn

+
{L(x, y, z) : x = v +AT y + z}

= maxy∈Rm,z∈Rn
+

−1
2

∥∥z +AT y
∥∥2 + yT (b−Av)− zT v.

Moreover, p∗ := p∗(v) = d∗ := d∗(v), and the dual value is attained.
(ii): Now the KKT optimality conditions for the primal-dual variables (x, y, z) are2:

∇xL(x, y, z) = x− v −AT y − z = 0, z ∈ Rn
+, (dual feasibility)

∇yL(x, y, z) = Ax− b = 0, x ∈ Rn
+, (primal feasibility)

∇zL(x, y, z) ∼= x ∈ (Rn
+ − z)+. (complementary slackness zTx = 0)

The above KKT conditions can be rewritten as :x− v −AT y − z
Ax− b
zTx

 =

0
0
0

 , x, z ∈ Rn
+, y ∈ Rm. (2.6)

It follows from the dual feasibility that v + AT y = x − z = x + (−z). Together with the comple-
mentary slackness we have

2Let S ⊂ Rn. We use S+ = {ϕ : ⟨ϕ, s⟩ ≥ 0,∀s ∈ S} to denote the (nonnegative) polar cone of the set S.

6

xT z = 0, x, z ∈ Rn
+, −z ∈ Rn

− = (Rn
+)

+,

and we learn that x− z is the Moreau decomposition of v +AT y. That is

x = (v +AT y)+ and −z = (v +AT y)−; equivalently, z = −(v +AT y)−. (2.7)

Substituting for x = (v +AT y)+ we obtain a simplification of the optimality conditions in (2.6) as
follows

A(v+AT y)+ = b, x = (v+AT y)+ =⇒ z = −(v+AT y)−, z
Tx = 0, x, z ∈ Rn

+, x−v−AT y−z = 0,

equivalently; F (y) = 0, for some y ∈ Rm.
For the converse, let y ∈ Rm be given and suppose that F (y) = 0. Let x̄ = (v+AT y)+. There-

fore, x̄ is primal feasible. Let z̄ = −(v+AT y)−. We get nonnegative feasibility and complementary
slackness: z̄ ≥ 0, z̄T x̄ = 0. And,

(v +AT y) = x̄− z̄ =⇒ x̄− v −AT y − z = 0,

i.e., dual feasibility holds. The KKT conditions now imply that x̄(v) is optimal. Moreover, F (y) = 0
implies that y ∈ argminu f(u), i.e., y solves the nonlinear least squares problem.

Remark 2.2. Interior point methods use perturbed KKT conditions with zTx = 0 in (2.6) replaced
by zjxj = µ, xj > 0, zj > 0,∀j, where µ > 0 is the log-barrier parameter. A Newton step is
taken with backtracking to stay strictly feasible. Therefore, our method is equivalent to fixing µ = 0
throughout the iterations and not staying strictly feasible for x, z. This is comparable to the predictor
step in predictor-corrector methods, or to affine scaling method.

2.1.1 Nonlinear Least Squares; Jacobians

The BAPas described in (2.1) is equivalent to the minimization of f(y) in (2.3), i.e, to a nonlinear
least squares problem where the nonlinearity arises from the projection.

This system can be recharacterized by introducing the (possibly nonsmooth) projection of a
vector p onto the nonnegative, respectively nonpositive, orthant denoted p+ = argminx{∥x − p∥ :
x ≥ 0}, respectively p− = argminx{∥x − p∥ : x ≤ 0}. In general, we can define the Moreau
decomposition of p with respect to Rn

+ as p = p+ + p−, p
T
+p− = 0.

Note that in the differentiable case the gradient of the squared residual f(y) in (2.3) is

∇f(y) = (F ′(y))∗F (y),

where (·)∗ denotes the adjoint (here adjoint is transpose) and F ′ denotes the Jacobian matrix. We
note that we have differentiability of the function h(w) := w+ if, and only if, {i : wi = 0} = ∅ if,
and only if, w−w+ is in the relative interior of the normal cone of Rn

+ at w+ (negative of the polar
cone at w+), see [50, Page 7], [24].

We now discuss the framework of nonsmooth terminology needed for generalized gradients of a
general function H : Rn → Rn.

7

Definition 2.3 ((local) Lipschitz continuity). Let Ω ⊆ Rn. A function H : Ω → Rn is Lipschitz
continuous on Ω if there exists K > 0 such that

∥H(y)−H(z)∥ ≤ K∥y − z∥, ∀y, z ∈ Ω.

H is locally Lipschitz continuous on Ω if for each x ∈ Ω there exists a neighbourhood U of x such
that H is Lipschitz continuous on U .

Let Ω ⊆ Rn. It follows from Rademacher’s Theorem [25, 49] that if H : Ω → Rn is locally
Lipschitz on Ω then H is Frechét differentiable almost everywhere on Ω. Following Clarke [19, Def.
2.6.1], we recall the following definition of the generalized Jacobian3.

Definition 2.4 (generalized Jacobian). Suppose that H : Rm → Rm is locally Lipschitz.
Let DH be the set of points where H is differentiable. Let H ′(y) be the usual Jacobian matrix at

y ∈ DH . The generalized Jacobian of H at y, ∂H(y), is the convex hull4 of the set of all matrices
obtained as limits of usual Jacobians, defined as follows

∂H(y) := conv

 lim
yi→y

yi∈DH

H ′(yi)

 .

In addition, ∂H(y) is called nonsingular if every V ∈ ∂H(y) is nonsingular.

We now return to the nonlinear least squares problem (2.3) with functions f and F . In the
differentiable case, the Gauss-Newton direction is the solution of the (consistent) Gauss-Newton
equation5

F ′(y))∗(F ′(y))∆y = −(F ′(y))∗F (y). (equivalently invertible case, F ′(y)∆y = −F (y)). (2.8)

In the sequel A† denotes the generalized (Moore-Penrose) inverse of a matrix A. Solving for the
best least squares solution ∆y in (2.8) yields

∆y = −F ′(y))†F (y). (2.9)

Therefore, the directional derivative of f in the direction ∆y satisfies

∆yT∇f(y) = (F ′(y))†F (y))T (−(F ′(y))∗F (y))
= −∥Projrange((F ′(y))∗) F (y))∥2
< 0, if F (y) /∈ null((F ′(y))∗),

(2.10)

where ProjΩ(u) denotes the orthogonal projection of the point u onto the set Ω. We conclude in
the differentiable case that: the Gauss-Newton direction ∆y is a descent direction when F (y) ̸= 0.

The Levenberg-Marquardt, LM , method is a popular method for handling singularity in F ′(y)
by using the substitution/regularization (F ′(y))∗F ′(y)← ((F ′(y))∗F ′(y)) + λI, λ > 0. We now see

3For our application we restrict ourselves to square Jacobians.
4Let S ⊂ Rn. The convex hull of S, denoted conv(S) is the smallest convex set containing S.
5The Gauss-Newton direction is the minimum of the quadratic model f(y + ∆y) ≈ f(y) + ∇f(y)T∆y +

1
2
∆yT ((F ′(y))∗F ′(y))∆y, i.e., the higher order quadratic terms are ignored, e.g., [27]. This is particularly suitable

here as the higher order terms involve the F (y) that is converging to zero.

8

that we maintain a descent direction with a similar simplified approach if the basic assumption in
(2.11) holds. This simplified approach avoids the product (F ′(y))∗F ′(y) and thus avoids increased
ill-conditioning and loss of sparsity.

Lemma 2.5. Consider the nonlinear least squares problem in (2.3). Let y ∈ Rm, with F differen-
tiable at y. Let λ > 0 and let ∆y be the (unique) solution of

(F ′(y) + λI)∆y = −F (y).

Then F ′(y) is positive semidefinite, F ′(y) ⪰ 0, and moreover, ∆y is the simplified LM direction
and is a descent direction if, and only if,

F (y) ̸= 0. (2.11)

Proof. For simplicity, set J = J(y) = F ′(y). By the feasibility assumption for (1.1), we conclude
that 0 = miny f(y) and that the basic assumption satisfies

F (y) ̸= 0 ⇐⇒ JF (y) ̸= 0. (2.12)

We observe that J is symmetric positive semidefinite follows from the definitions; see (2.16) below.
Let J = UDUT denote the orthogonal spectral decomposition. The simplified regularization of

LM type uses (J + λI)∆y = −F . Therefore,

∆y = − (J + λI)−1 F = −U (D + λI)−1 UTF.

Therefore, the directional derivative of f at y in the direction of ∆y is

∆yT∇f(y) = −
(
U (D + λI)−1 UTF

)T
(UDUTF)

= −(UTF)T (D + λI)−1D(UTF)

= −(UTF)TD1/2 (D + λI)−1D1/2(UTF)

< 0 ⇐⇒ (D1/2UT)F ̸= 0.

By (2.12), the latter is not zero if, and only if, (2.11) holds. This completes the proof.

2.1.2 Well Conditioned Generalized Jacobian

Recall the optimality conditions derived following (2.6). If we denote the orthogonal projection
operator onto the nonnegative orthant by P+w = w+, then

Aw+ = A(P+w) = (AP+)w+ = (AP+)(P+w) =
∑
wi>0

wiAi.

Here Ai is the i-th column of A. Thus, we see that at points where the projection is differentiable,
the columns of A that are chosen correspond to the positive variables of w. We note that

v +AT y > 0 =⇒ F ′(∆y) = AIAT∆y = AAT∆y.

Define the three index sets, I+, I0, I−, respectively, by

9

I+,0,− := I+,0,−(y) = {i : (v +AT y)i > 0,= 0, < 0}.

Then, for sufficiently small ∆y we can ignore I− to get

F (y +∆y)− F (y) = A(v +AT (y +∆y))+ −A(v +AT y)+
=

∑
i∈I+(y+∆y)(v +AT (y +∆y))iAi −

∑
i∈I+(y)(v +AT y)iAi

=
∑

i∈I+(y)(A
T∆y)iAi +

∑
i∈I+(y+∆y)∩I0(y)(v +AT (y +∆y))iAi

=
∑

i∈I+(y)AiA
T
i ∆y +

∑
i∈I+(y+∆y)∩I0(y)(v +AT (y +∆y))iAi

=
∑

i∈I+(y)AiA
T
i ∆y +

∑
i∈I+(y+∆y)∩I0(y)(A

T∆y)iAi

=
∑

i∈I+(y)AiA
T
i ∆y +

∑
i∈I+(y+∆y)∩I0(y)AiA

T
i ∆y.

We note that the first summation is over the fixed index set I+(y), while the second is dependent
on (AT∆y)i > 0. Suppose that AT

I0∆y = ei is consistent for each i ∈ I0. Then we can add or not
add the corresponding column to the generalized Jacobian. This means we only need a maximum
linearly independent subset of the columns AI0 . Let Ī0 ⊆ I0 be a maximum linearly independent
subset6.

Following [33] with the change using licols and Ī0, we define the following set

U(y) :=

u ∈ Rn : ui ∈

{1}, if i ∈ I+
[0, 1] , if i ∈ Ī0
{0}, if i ∈ I− ∪ (I0\Ī0)

 . (2.13)

Then the generalized Jacobian of the nonlinear system at y ∈ Rm is given by the set

∂F (y) = {A Diag(u)AT : u ∈ U(y)}. (2.14)

Let y0 ∈ Rm. Here Diag is the diagonal matrix formed from u. The nonsmooth Newton method
for solving F (y) = 0 consists of the following iterative process.

yk+1 = yk − V −1
k F (yk), Vk ∈ ∂F (yk). (2.15)

Here Vk is a generalized Jacobian (matrix) taken from the generalized Jacobian ∂F (yk).
We note that, defining M = Diag(u) with u ∈ U(y), we have

AMAT =
∑

i∈I+∪Ī0

uiAiA
T
i , ui = 1, i ∈ I+, ui ∈ [0, 1], i ∈ Ī0.7 (2.16)

Note that for an index set T , AT denotes the submatrix of A formed using the columns indexed
by T .

Remark 2.6. Since we have freedom in choosing the values ui ∈ [0, 1], i ∈ Ī0, we follow the optimal
diagonal scaling in [21, Prop. 2.1(v)], [34, Thm. 5.2] to minimize a condition number, and choose
the generalized Jacobian by setting

ui = min{1, 1/∥Ai∥2}, ∀i ∈ Ī0.
6We use the variant of the QR decomposition licols to extract a nice subset of linearly independent columns.
7Note that for positive diagonal M , and rectangular B, the ranks of B,BM, (BM)(BM)T are all the same.

10

https://www.mathworks.com/matlabcentral/fileexchange/77437-extract-linearly-independent-subset-of-matrix-columns

This means that the generalized Jacobian matrix we choose is nonsingular if, and only if, AI+∪I0
is full rank m. Moreover, for large problems we expect ∥Ai∥ > 1 and therefore ui < 1. This goes
against the intuitive choice of making ui as large as possible, i.e., = 1. Note that all elements of
∂F (y) are invertible if, and only if, AI+ is invertible; while there exists an invertible element if,
and only if, AI+∪I0 is full rank m.

2.1.3 Vertices and Polar Cones

In our numerical tests we can decide on the characteristics of the optimal solution using the prop-
erties of (degenerate) vertices.

Lemma 2.7 (vertex and polar cone). Suppose that x(y) = (v +AT y)+ ∈ P , where y ∈ Rm. Then
the following are equivalent:

(i) x(y) is a vertex of P ;

(ii) AI+(y) is full column rank;

(iii)

[
AI+ AI0∪I−
0 II0∪I−

]
is full column rank n.

Moreover:

(a) the corresponding generalized Jacobian in (2.16), Remark 2.6, is nonsingular if x(y) is a
nondegenerate vertex;

(b) the (nonnegative) polar cone of the feasible set P at x = x(y) is

(P − x)+ = {w : w = ATu+ z, u ∈ Rm, z ∈ Rn
+, x

T z = 0}. (2.17)

Proof. Without loss of generality we can permute the columns of A and corresponding components
of x and have A =

[
AI+ AI0 AI−

]
. We know that x(y) is a vertex (equivalently an extreme

point, a basic feasible solution) if, and only if AI+ can be completed to a basis matrix if, and only
if, the active set is full rank n. The active set of constraints is[

AI+ AI0∪I−
0 II0∪I−

]
x =

(
b
0

)
. (2.18)

This has the unique solution x(y) if, and only if, AI+ is full column rank. This shows the three
equivalences items (i) to (iii), as well as the nonsingularity of the generalized Jacobian that we
choose as claimed in item (a).

From the optimality conditions we have that the gradient of the objective satisfies

x− v = AT y +
∑

j∈I0∪I−

zjej ,

where ej is the j-th unit vector. And we know that x− v is in the polar cone at x if, and only if, x
is optimal. Therefore, this yields the description of the polar cone at x as claimed in item (b).

11

Remark 2.8 (degeneracy of optimal solutions). Let x be a boundary point of P . Then the polar
cone of P at x is given in (2.17). Moreover, x is the optimal solution of (2.1) if, and only if,
x− v ∈ (P − x)+, i.e., we can choose v with

v = x−ATu−z, z ≥ 0, zTx = 0.

In fact, we can choose z so that x+ z > 0 and have no degeneracy or choose z = 0 and have high
degeneracy. For these choices we still get x optimal. As mentioned above, it is shown in [24] that

x∗(v) is differentiable at v̄ ⇐⇒ (x∗(v̄)− v̄) ∈ relint(P − x∗(v̄))+,

where relint refers to the relative interior. This justifies our use of the Levenberg-Marquardt regu-
larization.

The pseudocodes for solving (2.1) using the exact and inexact nonsmooth Newton methods are
presented below in Appendix A in Algorithms A.1 and A.2, respectively.

3 Cyclic HLWBProjection for Best Approximation

A notable aspect of this work is the computational comparison of our semismooth algorithm with the
method of Halpern-Lions-Wittmann-Bauschke, (HLWB). The convergence analysis of the method
has its roots in the field of fixed point theory. For the readers’ convenience we provide a brief
description and some relevant references.

Problem 3.1 (The best approximation problem for linear inequalities). Given an m× n matrix A
and a vector b ∈ Rm such that

Q := {x ∈ Rn : Ax ≤ b} ≠ ∅, (3.1)

and a point v ∈ Rn, v /∈ Q, called the anchor point, find the orthogonal projection of v onto Q,
denoted by PQ(v).

The set Q is the intersection of m half-spaces. Denote the i-th half-space of (3.1) by

Hi := {x ∈ Rn : xTai ≤ bi}, (3.2)

where ai is the i-th row of A and bi is the i-th component of b. The orthogonal projection of a
point v ∈ Rn onto Hi, denoted by Pi(v), is

Pi(v) = v +min

{
0,

bi − xTai

∥ai∥2

}
ai. (3.3)

The HLWBalgorithm for this problem is a projection method that employs projections onto the
individual half-spaces of (3.2) and makes use of a sequence of, so called, steering parameters.

Definition 3.2 (steering sequence). A real sequence (σk)
∞
k=0 is called a steering sequence if it has

the following properties:

12

σk ∈ [0, 1] for all k ≥ 0, and lim
k→∞

σk = 0,∑∞
k=0 σk =∞, (or equivalently,

∏∞
k=0(1− σk) = 0) ,∑∞

k=0 |σk+1 − σk| <∞.

(3.4)

Observe that although σk ∈ [0, 1], the definition rules out the option of choosing all σk equal
to zero or all equal to one because of contradictions with the other properties. The third property
in (3.4) was introduced by Wittmann, see, e.g., the review paper of López, Martin-Márquez and
Xu [40].

Algorithm 3.1 cyclic HLWBalgorithm for linear inequalities

Initialization: Choose an arbitrary initialization point x0 ∈ Rn

Iterative Step: Given the current iterate xk, calculate the next iterate xk+1 by

xk+1 = σkv + (1− σk)Pik(xk), (3.5)

where v is the given anchor point, ik = k mod m+1 and (σk)
∞
k=0 is a steering sequence.

The HLWBalgorithm has a much broader formulation that applies to the BAPwith respect
to the common fixed points set of a family of firmly nonexpansive (FNE) operators presented in
Bauschke [4]; see also Bauschke and Combettes [6, Chap. 30]. For more on the BAP , see, e.g.,
Deutsch’s book [22]. The family of iterative projection methods for the BAP includes, in addition to
the HLWBmethod, also Dykstra’s algorithm [12], [6, Theorem 30.7], Haugazeau’s algorithm [29], [6,
Corollary 30.15], and Hildreth’s algorithm [31,36]. There are also simultaneous versions of some of
these algorithms available, see, e.g., [13]. A string-averaging HLWBalgorithm, which encompasses
the sequential, the simultaneous and other variants of the HLWBalgorithm, recently appeared
in [14].

More on applications of BAPand the HLWBalgorithm are given in Appendix C.

4 Applications

We consider several applications of the best approximation problem, (2.1). Of special interest is
the following approach to solving a linear program, (LP).

4.1 Solving Linear Programs

We consider a maximization primal LP in standard equality form

(PLP)
p∗LP := max cTx

s.t. Ax = b ∈ Rm

x ∈ Rn
+.

(4.1)

The dual LP is

(DLP)
d∗LP := min bT y

s.t. AT y − z = c ∈ Rn

z ∈ Rn
+.

(4.2)

13

We assume that A is full row rank and that the optimal value is finite. Note that the fundamental
theorem of linear programming now guarantees that strong duality holds for both the primal and
dual problems, i.e., equality p∗LP = d∗LP holds and both optimal values are attained.

We now see in Lemma 4.1 that the solution to (PLP) is the limit of the sequence of projections
of the vectors vR = Rc ∈ Rn onto the feasible set as8 R ↑ ∞.

Lemma 4.1 ([41–43,53]). Let the given LP data be A, b, c with finite optimal value p∗LP . For each
R > 0 define

x∗(R) := argminx
1
2 ∥x−Rc∥2

s.t. Ax = b ∈ Rm

x ∈ Rn
+.

(4.3)

Then x∗ is the minimum norm solution of (PLP) if, and only if, there exists R̄ > 0 such that

R ≥ R̄ =⇒ x∗ = x∗(R) = argmin

{
1

2
∥x−Rc∥2 : Ax = b, x ∈ Rn

+

}
. (4.4)

Remark 4.2. Note that the objective function in (4.3) when expanded is equivalent to R(−cTx+
1
2R ∥x∥

2)+ (12∥Rc∥2), i.e., this is equivalent to minimizing −cTx+ 1
2R ∥x∥

2, an exact regularization
of the original LP (4.1), e.g., [26,51]. In fact, using a Lagrange multiplier argument, we observe
that this is equivalent to adding a trust region constraint ∥x∥2 ≤ δ to the LP . The trust region
radius δ is inversely proportional to the regularization parameter 1

2R and so directly proportional
to R, for R ≤ R̄, where R̄ is given in Lemma 4.1. We note that if δ is too small, we would have
an infeasible problem. Equivalently, if R is too small, then the BAP solution x∗(R) is not near the
optimal solution x∗ of the LP .

In our application, we ignore the regularization property but exploit the fact that we can solve
the BAP efficiently for each R.

We would like an R that is not too large but large enough so that Rc > ∥x∗∥. We use the
following estimate to start our algorithm:

R = min

{
50,

√
mn ∥b∥
1 + ∥c∥

}
. (4.5)

To avoid numerical complications from large numbers, we consider the following equivalent problem
that uses the scaling 1

Rb rather than Rc.

Corollary 4.3. Let A, b, c, R, x∗(R) be defined as in Lemma 4.1. Then

1
Rx

∗(R) = w∗(R) := argminw
1
2 ∥w − c∥2

s.t. Aw = 1
Rb ∈ Rm

w ∈ Rn
+.

(4.6)

Proof. From

∥x−Rc∥2 = R2

∥∥∥∥ 1

R
x− c

∥∥∥∥2 = R2 ∥w − c∥2 , x = Rw,

8Note that our algorithm identifies infeasibility, but we do not consider that aspect in this paper.

14

we substitute for x in (4.3) and obtain: A(Rw) = b ⇐⇒ Aw = 1
Rb. The result follows from the

observation that argmin does not change after discarding the constant R2.

4.1.1 Warm Start; Stepping Stone External Path Following

We consider the scaling in Corollary 4.3 and recall the relation between the scaling for c with
variable x:

x(R) = Rw(R).

(To simplify notation, we ignore the optimality symbol (·)∗.) The optimality conditions from The-
orem 4.6 for w = w(R) in Corollary 4.3 are:w − c−AT y − z

Aw − 1
Rb

zTw

 =

0
0
0

 , w, z ∈ Rn
+, y ∈ Rm. (4.7)

We conclude that

lim
R→∞

Projrange(AT)w(R) = 0, lim
R→∞

Rw(R) = x∗, the optimum of the LP.

The optimality conditions are now

w = c+AT y + z, b = ARw = AR(c+AT y)+, wT z = 0, w, z ≥ 0. (4.8)

This means that ∥w∥ is an estimate for the error in dual feasibility, i.e., an estimate for the accuracy
of Rw as the optimum of the original LP.

Given the current R and the approximate optimal triplet (w(R), y(R), z(R)), we would like to
find a good new Rn ≥ R and a corresponding yn to send to the projection algorithm for a warm
start process. We use sensitivity analysis for the best approximation problem.

Theorem 4.4. Suppose R > 0 is given and the triplet (w, y, z)= (w(R), y(R), z(R)) is primal-dual
optimal for (4.6); i.e., satisfies (4.7). Let

N = N (z) = {i : zi > 0}, B = B(w) = {i : wi > 0}, Z = Z(w, z) = {i : wi = zi = 0};

e =

(
bB −RwB
−(bN +RzN)

)
, f =

(
RbB
−RbN

)
,

(4.9)

where bB, bN are defined in (4.13) and (4.16), respectively. Then the maximum value for increasing
R and maintaining both optimality and the indices in the bases sets B,N ,Z is

Rn = min{fi/ei : ei > 0, fi > 0, ∀i}. (4.10)

The corresponding changes ∆w,∆y,∆z that result in w +∆w, y +∆y, z +∆z still optimal for Rn

are given in the proof in (4.13), (4.12), (4.16), respectively.
Moreover, if Rn =∞, then the optimal solution of the LP has been found.

15

Proof. We first want to find the maximum increase in R that keeps the current basis B optimal
for (4.6), i.e., we maintain

zi ≥ 0, ∀i ∈ N , wi ≥ 0, ∀i ∈ B, wi = zi = 0, ∀i ∈ Z.

To maintain the feasibility from the three basis sets in (4.9), we have

AB(wB +∆wB) =
1
Rn

b =⇒ AB∆wB =
(

1
Rn
− 1

R

)
b

wB +∆wB − cB −AT
B(y +∆y) = 0 =⇒ ∆wB = AT

B(∆y) =⇒ AB∆wB = ABA
T
B(∆y) =

(
R−Rn
RRn

)
b

−cZ −AT
Z(y +∆y) = 0 =⇒ AT

Z(∆y) = 0
−cN −AT

N (y +∆y)− (zN +∆zN) = 0 =⇒ ∆zN = −AT
N (∆y).

(4.11)
We have two equations to solve for ∆y. When strict complementarity fails, we choose a full column
rank matrix VZ that satisfies range(VZ) = null(AT

Z); otherwise VZ = I. Then we solve to get

∆yp := VZ
(
ABA

T
BVZ

)†
b, ∆y :=

(
R−Rn

RRn

)
∆yp.

9 (4.12)

Note that a solution exists since b ∈ range(AB).
10 We now have

−wB ≤ ∆wB = AT
B

(
R−Rn

RRn

)
∆yp = −

(
Rn −R

RRn

)
AT

B∆yp =: −
(
Rn −R

RRn

)
bB. (4.13)

We get that

(Rn −R)bB ≤ (RRn)wB ⇐⇒ Rn(bB −RwB) ≤ RbB. (4.14)

To find the maximum Rn and check that it is not Rn =∞, we use an LP type ratio test. We set
the two vectors to be

eB = (bB −RwB), fB = RbB.

Note that the inequalities in (4.14) hold trivially for Rn = R. For simplicity of notation, we ignore
the subscript B and use e, f . Therefore, we cannot have both ei > 0, fi ≤ 0. We choose Rn to be
the maximum that satisfies the ratio test, i.e., we get:

Rn = min
i
{fi/ei : fi > 0, ei > 0, i ∈ B}, (4.15)

where the minimum over the empty set is by definition +∞. Note that maxi{fi/ei : fi < 0, ei <
0, i ∈ B} ≤ Rn always holds since Rn = R > 0 satisfies the inequality. Moreover, the result
simplifies in the nondegenerate case as we have

AT
B

(
R−Rn

RRn

)
∆yp = −

(
Rn −R

RRn

)
A†

Bb = −
(
Rn −R

RRn

)
bB, bB = A†

Bb.

9Note that in applications we can include indices from Z in B. This allows for a greater choice for ∆y,∆wB .
10In the nondegenerate case we get a simplification since AT

B
(
ABA

T
B
)†

= A†
B.

16

We can then set Rn =∞ if AB is full column rank or bB = wB, i.e., we have the (best) least squares
solution.

Similarly we now need a ratio test for zN to maintain dual feasibility and nonnegativity. Note
that we set ∆zi = ∆wi = 0, ∀i ∈ Z. We have

−zN ≤ ∆zN = −AT
N

(
R−Rn

RRn

)
∆yp =

(
Rn −R

RRn

)
AT

N∆yp =:

(
Rn −R

RRn

)
bN . (4.16)

We get that

(Rn −R)bN ≥ −(RRn)zN ⇐⇒ Rn(−bN −RzN) ≤ −RbN .

We again find the maximum Rn and check that we do not have Rn = ∞ using an LP type ratio
test. We set the two vectors to be eN = −(bN + RzN), fN = −RbN . Recall that the inequality
holds trivially for Rn = R. Again, for simplicity of notation, we ignore the subscript N and use
e, f . Therefore, we cannot have ei > 0, fi ≤ 0. We choose Rn to be the maximum that satisfies:

max
i
{fi/ei, if fi < 0, ei < 0, i ∈ N} ≤ Rn = min

i
{fi/ei, if fi > 0, ei > 0, i ∈ N}.

We choose Rn as the minimum of the above two values found.
Finally, if Rn = ∞, then the bases do not change as R increases to infinity, i.e., the optimal

bases have been found.

The above Theorem 4.4 illustrates the external path following algorithm that we are using.
The theorem finds specific values of R, stepping stones on the path, where the current choice of
columns of A changes. Once we find that the next stepping stone is at infinity, we know that we
have found the optimal choice of columns of A. Thus, we have an external path following algorithm
with parameter R but we only choose specific points on this path to step on. The algorithm is
particularly efficient for nondegenerate problems, Z = ∅, where the sensitivity analysis is accurate.
For highly degenerate problems, restricting ∆wi = ∆zi = 0,∀i ∈ Z, can severely restrict increasing
R, see Section 5.3 below.

4.1.2 Upper and Lower Bounds for the LP Problem

The optimal solution from the projection problems (4.3) and (4.6) provides a feasible x, and we get
the corresponding LP lower bound cTx∗(R). The upper bound is not as easy and more important
in stopping the algorithm.

Note that in Section 4.1.1 primal feasibility and complementary slackness hold for x(R) = Rw
and z, and this is identical for the LP problem. Therefore, we need to find yLP to satisfy the LP
dual feasibility

zLP = AT yLP − c ≥ 0.

But, from the projection problem optimality conditions we have

AT (−y) = z + c− w, 0 ≤ z = AT (−y)− c+ w, w ≥ 0.

17

As seen above, this means that in the limit, w is small and we do get dual feasibility y(R)→ yLP.
But at each iteration we actually have

z − w = AT (−y)− c, z, w ≥ 0, zTw = 0, y ∼= yR. (4.17)

We can write the required dual feasibility equations using the indices for wi > 0.

AT
i y − ci ∈

{
{0}, if wi > 0,
R+, if wi = 0.

Recall the definitions of N ,B in (4.9). Then for a given yR from the optimality conditions from
the projection problem (4.17), we consider the nearest dual LP feasible system with unknowns
z ≥ 0, yLP. Note that we are using the projection with free variables, Section 4.2.

Lemma 4.5. Let w, y, z be approximate optimal solutions from (4.8) and B the support defined
in (4.9). Consider the following BAP for the given dual variables.(

y∗LP
z∗LP

)
∈ argmin 1

2∥(−y)− yLP∥2 + 1
2∥0− (zLP)B∥2 + 1

2∥zN − (zLP)N ∥2

s.t.

[
AT

B −I 0
AT

N 0 −I

] yLP

(zLP)B
(zLP)N

 =

(
cB
cN

)
yLP free, zLP =

(
(zLP)B
(zLP)N

)
≥ 0.

(4.18)

Then the optimal value of the LP (4.1) satisfies the upper bound

p∗LP ≤ bT y∗LP.

Moreover, suppose that zB = 0. Then equality holds and the LP is solved with primal-dual optimum
pair (w, yLP).

Proof. Recall that the optimal value p∗LP is finite. The proof of the bound follows from weak duality
in linear programming. Equality follows from the optimality conditions since primal feasibility and
complementary slackness hold with w.

4.2 Projection and Free Variables

For many applications, some of the variables are free and not all the variables are in the objective
function. We consider these two cases. Note this can arise when the objective is a general least
squares problem, e.g., min ∥Bx− c∥2 and we add the constraint Bx−w = 0 and substitute the free
variable w into the objective function.

4.2.1 Projection with Free Variables

We first consider the problem with some of the variables free:

18

(P)

x(v) := argminx1,x2

1
2 ∥x− v∥2 , x =

(
x1
x2

)
, v =

(
v1
v2

)
,

s.t. Ax = b ∈ Rm

x1 ∈ Rn1
+ , x2 ∈ Rn2 ,

optimal value: p∗f (v) = 1
2 ∥x(v)− v∥2 ,

(4.19)

Theorem 4.6. Consider the generalized simplex best approximation problem with free variables
(4.19). Assume that the feasible set is nonempty. Then the optimum x(v) exists and is unique.
Moreover, let

Ff (y) := A

((
(v +AT y)1

)
+

(v +AT y)2

)
− b, ff (y) =

1

2
∥Ff (y)∥2. (4.20)

Then Ff (y) = 0 ⇐⇒ y ∈ argmin ff (y), and

x(v) =

((
(v +AT y)1

)
+

(v +AT y)2

)
, for any root Ff (y) = 0. (4.21)

Let p∗f (v) =
1
2∥x(v)− v∥2 denote the primal optimal value. Then strong duality holds and the dual

problem of (4.19) is the maximization of the dual functional, ϕf (y, z1):

p∗f (v) = d∗f (v) := max
z1∈Rn1

+ ,y∈Rm
ϕ(y, z1) := −

1

2

∥∥∥∥(z10
)
−AT y

∥∥∥∥2 + yT (Av − b)− zT1 v1.

Proof. We modify the proof of Theorem 2.1. The Lagrangian, Lf (x, y, z) for (4.19) is

Lf (x, y, z) =
1

2
∥x− v∥2 + yT (b−Ax)− zT1 x1, ∇xLf (x, y, z) = x− v −AT y −

(
z1
0

)
. (4.22)

Solving for a stationary point means

0 = ∇xLf (x, y, z) =⇒ x = v +AT y + z, z =

(
z1
0

)
.

Therefore, with this definition of z, we still have at a stationary point that

Lf (x, y, z) = 1
2

∥∥v +AT y + z − v
∥∥2 + yT (b−A(v +AT y + z))− zT (v +AT y + z)

= 1
2

∥∥AT y + z
∥∥2 + yT b− yTAv − (AT y)T (AT y + z)− zT v − zT (AT y + z)

= 1
2

∥∥AT y + z
∥∥2 + yT b− yTAv − (AT y + z)T (AT y + z)− zT v

= −1
2

∥∥z +AT y
∥∥2 + yT (b−Av)− zT v.

19

As in Theorem 2.1, the problem (4.19) is a projection onto a nonempty polyhedral set, a closed
and convex set. The optimum exists and is unique and strong duality holds, i.e., there is a zero
duality gap p∗f = d∗f , and the dual value is attained. The Lagrangian dual is

d∗ = maxz1∈R
n1
+ ,y minx Lf (x, y, z) =

1
2 ∥x− v∥2 + yT (b−Ax)− zT1 x1

= maxz1∈R
n1
+ ,y,x {Lf (x, y, z1) : ∇xLf (x, y, z1) = 0}

= maxz1∈R
n1
+ ,y,x {Lf (x, y, z) : x = v +AT y + z}

= maxz1∈R
n1
+ ,y −1

2

∥∥z +AT y
∥∥2 + yT (b−Av)− zT v.

Therefore, we derive the KKT optimality conditions for the primal dual variables (x, y, z) with

z =

(
z1
0

)
, x1 ≥ 0, z1 ≥ 0, as follows

∇xLf (x, y, z) = x− v −AT y − z = 0, (dual feasibility)
∇yLf (x, y, z) = Ax− b = 0, (primal feasibility)
∇zLf (x, y, z) ∼= x ∈ (Rn

+ − z)+. (complementary slackness zT1 x1 = 0)

The standard KKT optimality conditions for primal-dual variables (x, y, z) can be rewritten as:x− v −AT y − z
Ax− b
zTx

 =

0
0
0

 , x1, z1 ∈ Rn1
+ , y ∈ Rm, z =

(
z1
0

)
.

Note v + AT y = x − z = x + (−z). Therefore this is a Moreau decomposition of v + AT y, with
xT z = 0, x, z ∈ Rn

+, x = (v + AT y)+. Therefore, we get A(v + AT y)+ = b, where we modify the
definition of + so that we project only the first part corresponding to x1 onto the nonnegative
orthant Rn1

+ and then this means z1 = −
(
(v +AT y)1

)
−.

We see that the optimality conditions

A

((
(v +AT y)1

)
+

(v +AT y)2

)
= b, x1 =

(
(v +AT y)1

)
+
, x2 = (v +AT y)2

imply that
z = −(v +AT y)−, z

Tx = 0, x, z ∈ Rn
+ , x− v −AT y − z = 0,

i.e., Ff (y) = 0, for some y ∈ Rm.

For a vertex, a basic feasible solution, we need n active constraints. The equality constraints
Ax = b account for m, leaving n−m to choose among 1, 2, . . . , n1, the constrained variables in x1.
This leaves

m1 = n1 − (n−m) = m− (n− n1) = m− n2 =⇒ m1 = m− n2, basic variables.

4.3 Triangle Inequalities

We can obtain an efficient projection onto a large set of triangle inequalities that arise as cuts in
graph problems, e.g., [46]. We let G = (V,E) denote a graph with vertex set V and edge set E,
and define the sets:

20

T := {(u, v, w) : u < v < w ∈ V },

and the corresponding triangle inequalities, where the weight vector x = (xuv)uv∈E here has two
indices for the edge uv connecting vertices u, v,

(I)

xvw − xuv − xuw ≤ 0
xuw − xuv − xvw ≤ 0
xuv − xvw − xuw ≤ 0
∀(u, v, w) ∈ T

0 ≤ xuv ≤ 1, ∀(u, v) ∈ E

 . (4.23)

We could rewrite this as a standard feasibility-seeking problem or as a best approximation
problem, i.e., given an x̄ we want to find the nearest point to x̄ that is in a subset of triangle
inequalities defined by the matrix T , namely with slacks s, t and e the vector of ones,

min
1

2
∥x− x̄∥2 s.t. Tx+ s = 0, x+ t = e, x, t ≥ 0, s ≥ 0.

We generated and solved random problems. The algorithm was very efficient though we do not
report the details here.

5 Numerics

In this section we compare the Regularized Nonsmooth Newton Method, (RNNM), (exact and
inexact) with the HLWBmethod [4] described in Section 3, MATLAB’s lsqlin interior point solver,
and the quadratic programming proximal augmented Lagrangian method, (QPPAL) [39]. Recall
our BAP, (2.1), and the pseudocode for HLWB in Algorithm A.3 in Appendix A. We show in our
experiments that RNNM(exact) significantly outperforms the other methods. These experiments
are performed with an i7-4930k @ 3.2GHz, 16 GBs of RAM, and MATLAB 2022b software.

Before comparing the differences in performance of the algorithms we are experimenting with,
we elaborate on our implementation of the HLWBmethod, see also Section 3. HLWBprojects onto
individual convex sets and computes the next iterate, xk+1, by taking a specific convex combination.
This combination is determined by a sequence of steering parameters, as defined in Definition 3.2,
and the initial point v, commonly referred to as the anchor point in Problem 3.1. Traditionally,
each projection is called an iteration, and the collection of these iterations is defined as a sweep [6].
In the context of problem (2.1), HLWB is iterating onto one of the hyperplanes (sets) defined by the
rows of A, denoted aik , as well as the nonnegative orthant. We complete a sweep once we project
onto all the hyperplanes and onto the nonnegative orthant. (See steps 13-15 of Algorithm A.3.)
Thus, we relate one sweep of HLWBwith one iteration of RNNM .

5.1 Time Complexity

Since RNNM is a second-order method and HLWB is a first-order method, we now discuss theoretical
time complexity differences. From the RNNMalgorithm, Algorithm A.1, we can see that worst-
case time complexity is O(m3 +m2n) 11 flops, of which every step but solving the linear system is

11See Algorithm A.1 lines 4-12, the total time complexity respectively is: m2n+m2 +m3 + n+ 2n+mn+ 2n+
mn+ n+m+ 1 = m2n+m3 +m2 + 2mn+ 5n+m+ 1 = O(m3 +m2n).

21

efficiently parallelizable. It is worth mentioning that in line 7 of Algorithm A.1, the linear system
we are solving is positive definite and sparse. Therefore, it can be solved efficiently using the
Cholesky decomposition. From the HLWBalgorithm, Algorithm A.3, we can see that worst-case
time complexity per iteration is O(mn) and per sweep is O(m2n), of which every step is efficiently
parallelizable. 12

From the perspective of theoretical time complexity it would be easy to assume that HLWB is
the preferable algorithm as each of it’s iterations are composed of operations that are completely
parallelizable and each first-order sweep has an overall lower time-complexity. However, without
performing numerical tests with varying parameters m and n, we cannot yet conclude how a first-
order method compares to a second-order method in terms of desired performance, especially as m
and n get extremely large as observed in practice.

5.2 Comparison of Algorithms

When performing our numerical experiments, we refer to the discussion on techniques for compar-
isons of algorithms given in [8]. In particular, we include performance profiles [23], and tables of
the performances for RNNM(exact and inexact), HLWB , lsqlin, and for QPPAL.

We compare the HLWBalgorithm to RNNMby generating a test problem with the form specified
in (2.1). In this test problem, the anchor v lies in the relative interior of the normal cone (negative
of the polar cone) of a vertex of the feasible polyhedron. Therefore, the vertex is the closest point to
v. Additionally, to ensure meaningful comparisons, we set ∥A∥ = 1 and ∥v∥ = 1 as no convergence
results for RNNMsolving (2.1) have been proven, as far as we know.

The RNNMalgorithm starts with initializing x0 ← (v + AT y0)+, where either y0 = 0m or we
are given a y0 for a warm start (as discussed in our LP application). Then, x0 ← (v + AT y0)+
reduces to x0 ← max(v, 0) in the initialization stage of RNNM. Therefore, to ensure all algorithms
start at the same point, we initialize x0 ← max(v, 0) for HLWB , and provide x0 ← max(v, 0) as
a warm start for MATLAB’s lsqlin solver. Since QPPALperforms an ADMMwarm-start, there is
no way to provide a warm start point for it.

Since RNNMsolves a reduced KKT condition for a convex problem, the term ∥F (yk)∥
1+∥b∥ is a

sufficient relative residual to serve as a stopping condition for RNNM. Since HLWB is a first
order method, its stopping criterion is measured at the end of a sweep, rather than at the end of
an iteration. Furthermore, HLWBdoes not have any proper stopping criterion, but converges in
the limit. Therefore, we use the relative primal feasibility residual, i.e., ∥Ax̂k−b∥

1+∥b∥ , as the stopping
criterion. Note that we use yk instead of xk in the stopping criterion as x̂k is nonnegative at
the end of every sweep. The lsqlin solver uses first-order optimality conditions. As in lsqlin,
QPPALuses first-order optimality conditions, and we report the relative optimality gap, |p∗ −
d∗|/ (1 + (|p∗|+ |d∗|)/2) for the relative residual of QPPAL . Before discussing the generation of
the problems, it is worth noting that we are choosing to use QPPAL ’s Cholesky decomposition
direct solver instead of its inexact solver. In addition, we increase the maximum number of iterations
for the two phases of QPPAL to match the maximum number of sweeps the other methods utilize.
Furthermore, we inform QPPAL that the quadratic has Q = I, the identity.

12See Algorithm A.3 lines 5-12; the total time complexity respectively per iteration that projects onto a half space is
(2n+2)+1+(n+2)+(mn+m+1) = mn+3n+m+6 = O(mn) flops. Similarly, the total time complexity respectively
per iteration that projects onto the nonnegative orthant is: n+1+(n+2)+(mn+m+1) = mn+2n+m+4 = O(mn)
flops of which all flops are efficiently parallelizable. Therefore, in terms of sweeps the HLWBmethod computes
m(mn+ 3n+m+ 6) +mn+ 2n+m+ 4 = m2n+ 4mn+m2 + 2n+ 7m+ 4 = O(m2n) flops.

22

In Section 5.2.1, we generate problems such that v lies in the relative interior of the normal cone
of a nondegenerate vertex. We also experiment with degenerate vertices, but observe very similar
results. These tests, and the performance of the RNNMalgorithm help to motivate the theory and
potential practice of using RNNMfor LP applications, as seen in Section 5.3.

For the performance profiles in Section 5.2.1, we use the following notation from [8]. Let P
denote our set of problems with varying m, n, and density. Similarily, let S represent our set
of solvers, RNNM(exact and inexact), HLWB , lsqlin, and QPPAL . We define the performance
measure tp,s > 0 for each pair (p, s) ∈ P ×S as the computational time of solver s to solve problem
p. For each problem p ∈ P and solver s ∈ S, we define the performance ratio as

rp,s =

{
tp,s

min{tp,s : s∈S} , if convergence test passed,

∞, if convergence test failed.

The solver s that performs the best on problem p will have a performance ratio of 1. Solvers that
perform worse than s on problem p will satisfy tp,s > 1. In other words, the larger the performance
ratio, the worse the solver performed on problem p.

The performance profile of a solver s is defined as

ρs(τ) =
1

|P |
size{p ∈ P : rp,s ≤ τ}.

Therefore, ρs(τ) represents the relative portion of time in which the performance ratio rp,s for solver
s is within a factor τ ∈ R of the best possible performance ratio.

5.2.1 Numerical Comparisons

We tested the algorithms with optimal solutions at: nondegenerate vertices, degenerate vertices
and non-vertices. They all exhibited similar results. Therefore, we present results restricted to
nondegenerate vertices. We begin with choosing v for (2.1) such that the optimum is uniquely a
nondegenerate vertex of P . In the tables below we vary m, n, and the problem density to illustrate
the changes in each solver’s performance. A data point in each table is the arithmetic mean of 5
randomly generated problems of the specified parameters that also satisfy ∥A∥ = 1, ∥v∥ = 0.1. For
example, the first row of Table 5.1 represents a problem with parameters m = 500, n = 3000, and
a density of 0.0081, and each solver will solve 5 randomly generated problems of the form discussed
in (2.1), and the average time and relative residual from solving all 5 problems is displayed in
the table. The desired stopping tolerance for the tables and performance profiles is ε = 10−14

and maximum iterations (sweeps) is 2000 for all solvers. Lastly, it should be noted that the
regularization parameter of RNNMfor these experiments is chosen in an adaptive way. It takes
into account the relative residual as defined in line 13 of Algorithm A.1, the norm of the Newton
direction, and the norm of v. The purpose of this is to decrease the amount of regularization as we
approach the optimal solution while accounting for the norms of the Newton direction and v. This
regularization parameter is explicitly defined as

λk+1 = mean
((
10−2Fk

)
max(1, log10(∥dk∥)),

(
10−3Fk

)
max(1, log10(∥v∥)), 10−3Fk

)
, (5.1)

where Fk is the relative residual at iteration k, and dk is the Newton direction.

23

From Tables 5.1 to 5.3, the empirical evidence demonstrates the superiority of the RNNM(exact)
approach over the other solvers. Since the RNNM’s reduced KKT system is m×m and solved using
the Cholesky Decomposition, it’s performance should be affected most noticeabley as m varies or
density increases. This theoretical observation can be seen in Tables 5.1 to 5.3, as the RNNM(exact
and inexact) algorithm is slower to converge for increasing m and density,

but is not affected by an increase in n.
From Figure 5.1 the empirical evidence shows similar results to the tables, but better demon-

strates the differences in performance between RNNM(exact) and the other solvers. The problems
in Figure 5.1a are similar to those of Table 5.1 except m varies by 100 from 100 to 2000. Simi-
larly, the problems in Figure 5.1b have n varying by 100 from 3000 to 5000, and Figure 5.1c has
density varying by 1% from 1% to 100%. In every performance profile, the RNNM(exact) algo-
rithm clearly outperforms the other solvers in our experiments, with RNNM(inexact) performing
well for an inexact method on mid-sized problems. Conversely, HLWB is relatively slow on these
problems. This can be attributed to its linear convergence rate. Due to it’s linear convergence,
it will perform a large number of sweeps, which can amount to millions of iterations on certain
problems with large m. Performance profiles can be found in Appendix B.1 with the stopping tol-
erances ε = 10−2, 10−4, to illustrate that RNNM(exact) outperforms HLWB and lsqlin at different
tolerances, but QPPAL remains competitive.

Table 5.1: Varying problem sizes m; comparing computation time and relative residuals.

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB lsqlin QPPAL Exact Inexact HLWB lsqlin QPPAL
500 3000 8.1e-01 4.23e-02 1.51e-01 1.54e+02 3.77e+00 1.14e+00 1.96e-16 8.26e-16 2.25e-04 7.26e-17 1.72e-17
1000 3000 8.1e-01 4.40e-01 9.97e-01 3.71e+02 5.37e+00 2.15e+00 2.70e-16 1.95e-15 2.14e-04 3.87e-17 2.70e-17
1500 3000 8.1e-01 1.17e+00 3.23e+00 6.09e+02 7.02e+00 4.69e+00 3.41e-17 6.73e-16 2.27e-04 3.95e-17 1.16e-17
2000 3000 8.1e-01 2.49e+00 7.51e+00 8.67e+02 1.02e+01 7.81e+00 6.11e-17 3.11e-17 2.24e-04 3.14e-17 -2.74e-17

Table 5.2: Varying problem sizes n; comparing computation time and relative residuals.

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB lsqlin QPPAL Exact Inexact HLWB lsqlin QPPAL
200 3000 8.1e-01 3.12e-03 3.69e-02 4.45e+01 3.50e+00 8.66e-01 8.64e-18 7.39e-17 2.56e-04 6.52e-16 5.89e-17
200 3500 8.1e-01 3.08e-03 4.05e-02 5.17e+01 4.93e+00 1.00e+00 9.07e-18 1.26e-17 2.78e-04 1.23e-15 2.15e-17
200 4000 8.1e-01 3.24e-03 3.70e-02 5.82e+01 7.31e+00 1.09e+00 1.46e-16 8.91e-16 2.80e-04 3.21e-16 -9.18e-18
200 4500 8.1e-01 3.99e-03 4.17e-02 6.58e+01 1.01e+01 1.18e+00 1.80e-15 2.05e-16 3.13e-04 4.61e-17 1.71e-16

Table 5.3: Varying problem density; comparing computation time and relative residuals.

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB lsqlin QPPAL Exact Inexact HLWB lsqlin QPPAL
300 1000 25 5.69e-02 2.66e-01 4.55e+01 3.30e-01 1.20e+00 2.83e-17 1.14e-17 1.50e-04 8.61e-17 5.99e-17
300 1000 50 5.43e-02 2.28e-01 5.39e+01 3.08e-01 1.82e+00 1.23e-16 1.97e-17 1.44e-04 8.08e-16 1.42e-17
300 1000 75 7.75e-02 2.86e-01 5.36e+01 3.16e-01 1.49e+01 4.83e-16 1.72e-17 1.62e-04 3.49e-16 -3.43e-16
300 1000 100 7.27e-02 2.47e-01 4.65e+01 3.00e-01 2.54e+02 5.66e-16 2.15e-17 1.63e-04 1.91e-15 1.04e-14

24

(a) Varying problem sizes m. (b) Varying problem sizes n.

(c) Varying problem density.

Figure 5.1: Performance profiles for problems with varying m, n, and densities for nondegenerate
vertex solutions.

5.3 Solving Large Sparse Linear Programs

We now apply (4.3) and Theorem 4.4 to solve large-scale randomly generated LP s, and problems
from the NETLIB dataset. We call this method the stepping stones external path following algo-
rithm, (SSEPF), and note that we use the estimate for a starting R given in (4.5). The stepping
stones are found using Rn in (4.10). We add a small decreasing scalar to Rn to ensure that we
change the basis of A at each iteration. For simplicity, we restrict ourselves to nondegenerate LP s
for the randomly generated problems.

We compare SSEPF with the MATLAB linprog code, using both the dual simplex and the
interior-point algorithms. We also compare with Mosek’s dual simplex and interior point method,
and with the semismooth Newton inexact proximal augmented Lagrangian method, (SNIPAL) [38].
We use randomly generated problems scaled so that ∥A∥ = 1, and the optimal solution x∗ satisfies
∥x∗∥ = 1. A data point in Table 5.4 is the arithmetic mean of 5 randomly generated problems
of the specified parameters. We exclude instances where a method fails to provide a solution
from Table 5.4 for clarity, but these instances are plotted in Figure 5.2 as a failure to converge.
Since the smallest stopping tolerance allowed by linprog is ε = 10−10, a linear program is considered
successfully solved in the performance profile of Figure 5.2 if the optimality gap is less than or equal

25

to ε = 10−8. The maximum number of iterations for linprog and Mosek is the default number,
and for SNIPAL it is 2000. The relative residual shown in Table 5.4 is the sum of the relative
primal feasibility, dual feasibility, and complementary slackness. In other words, let (x∗, y∗, z∗) be
the optimal solution an algorithm returns, then the relative residual as shown in the table is

∥Ax∗ − b∥
1 + ∥b∥

+

∥∥z∗ −AT y∗ + c
∥∥

1 + ∥c∥
+

(x∗)T z∗

1 + max(∥x∗∥ , ∥z∗∥)
.

When discussing the performance of SSEPF, it should be noted that we are using the exact
RNNMdirection to solve the BAP subproblem, and using (5.1) to compute the regularization
parameter. We denote this in Table 5.4 and Figure 5.2 as SSEPF-RNNM. Furthermore, we use the
abbreviations Linprog DS and Linprog IPM to refer to linprog’s dual simplex and interior point
method, respectively. Likewise, we use similar abbreviations for Mosek.

From Table 5.4, the empirical evidence demonstrates that the stepping stone approach performs
better than MATLAB’s dual simplex and interior point method on most problems, and has proven
to be quite competitive with Mosek’s dual simplex and interior point method. This becomes more
evident as

the sizes of the problems grow and the problems become sparser. In other words, we see that
our code fully exploits sparsity in LP . This can be seen when observing the performance of SSEPF-
RNNM with respect to time on the rows of Table 5.4 where the problem density decreases. Despite
the increase in problem dimension, the decrease in density leads to an increase in performance in
comparison to the previous row. Another thing to notice is that in rows 5-9 of Table 5.4, linprog’s
interior point method and Mosek’s dual simplex method failed to converge to a solution after having
reached the default maximum number of iterations.

In Section 5.2.1, the performance profiles were constructed by looking at smaller intervals of
varying m,n and density. For example Table 5.1 shows results where m varies by increments of
500, but in Figure 5.1a m varies by increments of 100. Since linprog’s interior point method and
Mosek’s dual simplex method struggled with obtaining the desired primal feasibility, as seen in
Table 5.4, Figure 5.2 shows the performance of each solver with respect to all 50 problems instead
of examining the average performance.

It is important to note that the performance profile exhibits more failed solutions from the
dual simplex and interior point methods of MATLAB. We have tried taking the maximum of the
primal feasibility, dual feasibility, and complementary slackness returned by MATLAB’s linprog
function instead of the sum, and both revealed equivalent results. In other words, we are not
sure why there are more problems failing at this tolerance than reported by MATLAB, but it
further distinguishes our stepping stone approach from MATLAB’s linprog algorithms. Mosek,
and more specifically Mosek’s interior point method is very competitive, as Figure 5.2 shows.
Unfortunately, SNIPAL failed to converge on every problem in this dataset. We have seen it
converge successfully on some random linear programming problems, but none of the ones that we
generated in our Numerical Experiments section. It is worth noting that the table which shows
the average performance of 5 randomly generated problems with respect to a set of parameters
indicates that SSEPF-RNNMperforms better than Mosek’s interior point method in 7 out of 10
rows in the table.

26

Specifications Time (s) Rel. Resids.
m n % density SSEPF-RNNM Linprog DS Linprog IPM MOSEK DS MOSEK IPM SNIPAL SSEPF-RNNM Linprog DS Linprog IPM MOSEK DS MOSEK IPM SNIPAL

2e+03 5e+03 1.0e-01 8.94e-02 3.09e-02 4.50e-02 1.46e-01 1.64e-01 6.90e+00 3.38e-17 2.63e-16 4.88e-09 1.31e-16 1.53e-16 2.14e-04
2e+03 1e+04 1.0e-01 9.64e-02 4.84e-02 7.53e-02 1.49e-01 1.93e-01 8.31e+00 2.82e-17 6.00e-16 1.60e-04 1.31e-16 2.89e-16 1.72e-04
2e+03 1e+05 1.0e-01 1.68e-01 3.91e-01 7.45e-01 5.41e-01 6.56e-01 1.94e+01 1.48e-17 7.45e-17 1.72e-05 8.84e-17 8.57e-17 1.55e-04
5e+03 1e+04 1.0e-01 9.97e+01 2.08e-01 1.39e+01 4.26e-01 2.65e+00 5.54e+01 5.55e-17 4.16e-16 5.02e-07 1.67e-14 3.20e-16 2.29e-04
5e+03 1e+05 1.0e-01 7.64e+01 7.24e-01 1.42e+02 1.12e+00 8.51e+00 7.85e+01 2.36e-17 9.31e-11 6.38e-05 3.13e-16 1.79e-16 1.58e-04
5e+03 5e+05 1.0e-01 2.30e+02 6.97e+00 6.54e+02 7.02e+00 1.52e+01 1.70e+02 1.52e-17 1.87e-10 3.73e-05 3.92e-16 1.68e-16 1.48e-04
2e+04 1e+05 1.0e-02 6.32e-01 9.46e-01 5.68e+00 1.05e+00 2.49e+00 4.28e+01 1.36e-17 3.55e-06 4.33e-07 1.99e-06 1.28e-16 1.42e-04
2e+04 5e+05 1.0e-02 6.66e-01 4.46e+00 3.78e+01 5.63e+00 9.28e+00 1.23e+02 8.48e-18 3.37e-06 8.83e-07 1.36e-06 2.89e-16 1.10e-04
2e+04 1e+06 1.0e-02 1.85e+00 9.30e+00 6.50e+01 1.17e+01 1.59e+01 2.06e+02 7.08e-18 4.34e-06 6.27e-06 1.76e-06 9.65e-17 1.12e-04
1e+05 1e+07 1.0e-03 7.38e+00 1.06e+01 6.14e+00 9.35e+01 9.60e+01 1.56e+03 1.39e-18 1.39e-18 1.39e-18 1.76e-17 1.76e-17 5.90e-05

Table 5.4: LP application results averaged on 5 randomly generated problems per row.

Figure 5.2: Performance Profiles for LP application with respect to all problems.

We also consider the first five problems in alphabetical order from the subset of the NETLIB
dataset where primal strict feasibility (PSF) holds [35, Sect. 4.2.2]. We then check dual strict
feasibility (DSF) and include the value of the constant we obtain from solving the theorem of the
alternative, i.e., a large, respectively small, constant indicates an algebraically fat, respectively thin,
feasible set. Failure, or near failure, of strict feasibility correlates with the difficulty of the numerics.
We successfully solve two of the five problems. We think that the difficulties from the NETLIB
dataset is due to the dual feasible set being very thin for some problems. For example, in Table 5.5,
the problems 25fv47 and lotfi have a very thin feasible set in the dual problem.

It is important to note that the performance of SSEPF-RNNM on the blend problem is signif-
cantly worse than the other solvers. A common issue with SSEPF-RNNM when solving the blend
problem as well as rows 4-6 of Table 5.4 is that at certain tolerances, RNNMuses the maximum
number of iterations (2000) to solve the BAP subproblem. In other words, even though we are
performing a warm-start with the solution from the previous BAP subproblem, RNNMcan fail
to converge to the desired relative tolerance. However, even though RNNMfailed to converge,
it still provides a solution that is very close to the optimal solution, i.e., instead of solving the
BAP subproblem to within a relative tolerance of 10−14, it returns a solution that is within a rel-
ative tolerance of 10−12 or 10−13. There are at least two solutions to this issue. First, we can
decrease the length of the Newton step when the iteration count is large. Using this heuristic shows
significant improvement in performance when solving the blend problem. Secondly, if RNNM fails
to converge to within the specified relative tolerance of 10−14, we can try a larger relative tolerance,
such as 10−13. This strategy has shown to be crucial when trying to solve problems like 25fv47,
where we are not able to solve the BAP subproblem with high accuracy due to it’s thin dual feasible

27

set.

Problem: Primal Strict Feas. Dual Strict Feas.
25fv47 2.00e-01 2.01e-17
afiro 9.00e+00 1.19e-01
blend 7.30e-02 3.49e-03
israel 3.71e+00 1.38e-03
lotfi 1.00e+00 1.89e-10

Table 5.5: Primal and Dual strict feasibility of NETLIB problems.

Time (s) Rel. Resids.
Problem: SSEPF-RNNM Linprog DS Linprog IPM MOSEK DS MOSEK IPM SNIPAL SSEPF-RNNM Linprog DS Linprog IPM MOSEK DS MOSEK IPM SNIPAL
25fv47 Inf 2.01e-01 1.01e-01 3.76e-01 1.54e-01 1.20e+01 Inf 2.30e-15 2.25e-15 5.51e-16 1.09e-14 7.36e-05
afiro 2.62e-02 7.71e-03 2.91e-03 9.16e-02 9.01e-02 9.81e-02 1.97e-16 3.67e-16 8.62e-14 7.49e-17 1.43e-13 9.39e-11
blend 1.42e+02 8.48e-03 3.81e-03 9.12e-02 9.03e-02 1.58e+00 5.37e-15 4.78e-14 1.31e-13 1.33e-15 1.63e-15 1.30e-03
israel Inf 1.07e-02 2.79e-02 9.33e-02 9.82e-02 3.27e+00 Inf 7.15e-16 8.44e-14 6.57e-16 8.93e-12 5.21e-05
lotfi Inf 9.63e-03 7.86e-03 9.41e-02 9.43e-02 2.00e+00 Inf 4.61e-14 3.38e-14 1.17e-16 9.05e-13 4.35e-05

Table 5.6: LP application results on the NETLIB problems.

Figure 5.3: Performance Profiles for LP application with respect to the Netlib problems.

Our algorithm has difficulties with highly degenerate problems where the optimal solution is not
unique. Moreover, the optimal solution of minimum norm that our algorithm finds can fail strict
complementarity with many xi+ zi = 0. The loss of strict complementarity results in a generalized
Jacobian with low rank as few columns of A are chosen in (2.16). Additionally, the sensitivity
analysis of Theorem 4.4 has difficulty increasing R. Finally, the failure of strict complementarity
indicates that the gradient at optimality is not in the relative interior of the normal cone, Lemma 2.7,
Item (b), indicating failure of differentiability of the projection.

6 Conclusion

In this paper we considered the theory and applications of the “best approximation problem” of
finding the projection of a point onto a polyhedral set. We studied an elegant optimality condi-
tion, derived using the Moreau decomposition, that allowed for a, possibly both nonsmooth and

28

singular, Newton type method. However, this needed a perturbation of a max-rank choice of a gen-
eralized Jacobian, i.e., application of nonsmooth analysis and regularization. The regularization
guaranteed a descent direction but the method was not necessarily monotonically decreasing. We
presented extensive comparisons with the HLWBalgorithm approach, e.g., [4], and found that, in
our experiments, our method outperformed HLWB in both speed and accuracy.

We discussed several applications including solving large, sparse, linear programs. The pre-
liminary tests we performed were very efficient and outperformed the other codes we used for
comparison both in speed and accuracy. Our algorithmic approach can be considered as a step-
ping stone external path following method since we follow an external path with parameter R in
the objective function; but we only consider a discrete number of points on the path found using
sensitivity analysis. We discovered that very few stepping stones are needed, often just one suffices.

Acknowledgements. We thank the referees for carefully reading the paper and for their
helpful comments.

A Pseudocodes for Generalized Simplex

The pseudocodes described in Algorithms A.1 to A.3 solve (2.1) using the exact and inexact nons-
mooth Newton methods RNNM, respectively.

Algorithm A.1 BAPof v for constraints Ax = b, x ≥ 0; exact Newton direction

Require: v ∈ Rn, y0 ∈ Rm, (A ∈ Rm×n, rank(A) = m), b ∈ Rm, ε > 0, maxiter ∈ N.
1: Output. Primal-dual opt.: xk+1, (yk+1, zk+1)
2: Initialization. k ← 0, x0 ← (v +AT y0)+, z0 ← (x0 − (v +AT y0))+,

F0 = Ax0 − b, stopcrit ← ∥F0∥ /(1 + ∥b∥)
3: while ((stopcrit > ε)& (k ≤ maxiter)) do
4: Vk =

∑
i∈I+ AiA

T
i +

∑
i∈Ī0

1
∥Ai∥2AiA

T
i

5: λ = min(1e−3, stopcrit)
6: V̄ = (Vk + λIm)
7: solve pos. def. system V̄ d = −Fk for Newton direction d
8: updates
9: yk+1 ← yk + d

10: xk+1 ← (v +AT yk+1)+
11: zk+1 ← (xk+1 − (v +AT yk))+
12: Fk+1 ← Axk+1 − b (residual)
13: stopcrit ← ∥Fk+1∥ /(1 + ∥b∥)
14: k ← k + 1
15: end while

29

Algorithm A.2 BAPof v for constraints Ax = b, x ≥ 0, inexact Newton direction

Require: v ∈ Rn, y0 ∈ Rm, (A ∈ Rm×n, rank(A) = m), b ∈ Rm, ε > 0, maxiter ∈ N.
1: Output. Primal-dual: xk+1, (yk+1, zk+1)
2: Initialization. k ← 0, x0 ← (v +AT y0)+, z0 ← (x0 − (v +AT y0))+,

δ ∈ (0, 1], ν ∈ [1 + δ
2 , 2], and a sequence θ such that θk ≥ 0 and supk∈N θk < 1

F0 = Ax0 − b, stopcrit ← ∥F0∥ /(1 + ∥b∥)
3: while ((stopcrit > ε)& (k ≤ maxiter)) do
4: Vk =

∑
i∈I+ AiA

T
i +

∑
i∈Ī0

1
∥Ai∥2AiA

T
i

5: λ = (stopcrit)δ

6: V̄ = (Vk + λIm)
7: solve V̄ d = −Fk for Newton direction d such that residual ∥rk∥ ≤ θk ∥Fk∥ν
8: updates
9: yk+1 ← yk + d

10: xk+1 ← (v +AT yk+1)+
11: zk+1 ← (xk+1 − (v +AT yk))+
12: Fk+1 ← Axk+1 − b (residual)
13: stopcrit ← ∥Fk+1∥ /(1 + ∥b∥)
14: k ← k + 1
15: end while

Algorithm A.3 Extended HLWBalgorithm

Require: v ∈ Rn, (A ∈ Rm×n, rank(A) = m), b ∈ Rm, ε > 0, maxiter ∈ N.
1: Output. xk+1

2: Initialization. k ← 0, msweeps← 0 x0 ← max(v, 0), x̂0 ← x0, i0 = 1
stopcrit ← ∥Ax̂0 − b∥ /(1 + ∥b∥) (= ∥F0∥ /(1 + ∥b∥))

3: while ((stopcrit > ε)& (k ≤ maxiter)) do
4: if 1 ≤ ik ≤ m then

5: x̂k = xk +
bik−aTik

xk

∥aik∥
2 aik

6: else
7: x̂k = max(0, xk)
8: end if
9: updates

10: σk = 1
k+1

11: xk+1 ← σkv + (1− σk)x̂k
12: stopcrit ← ∥Ax̂k − b∥ /(1 + ∥b∥)
13: if k(mod m+ 1) = 0 then
14: msweeps = msweeps+ 1
15: end if
16: ik = k(mod m) + 1
17: end while

30

B Additional Performance Profiles

B.1 Nondegenerate

(a) tol = 10−2

(b) tol = 10−4

(c) tol = 10−14

Figure B.1: Performance Profiles for varying m for nondegenerate vertex solutions.

31

(a) tol = 10−2

(b) tol = 10−4

(c) tol = 10−14

Figure B.2: Performance Profiles for varying n for nondegenerate vertex solutions.

32

(a) tol = 10−2

(b) tol = 10−4

(c) tol = 10−14

Figure B.3: Performance Profiles for varying density for nondegenerate vertex solutions.

33

B.2 Degenerate

Table B.1: Varying problem sizes m and comparing computation time with relative residual for
degenerate vertex solutions.

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB lsqlin QPPAL Exact Inexact HLWB lsqlin QPPAL
500 3000 8.1e-01 4.23e-02 1.51e-01 1.54e+02 3.77e+00 1.14e+00 1.96e-16 8.26e-16 2.25e-04 7.26e-17 1.72e-17
1000 3000 8.1e-01 4.40e-01 9.97e-01 3.71e+02 5.37e+00 2.15e+00 2.70e-16 1.95e-15 2.14e-04 3.87e-17 2.70e-17
1500 3000 8.1e-01 1.17e+00 3.23e+00 6.09e+02 7.02e+00 4.69e+00 3.41e-17 6.73e-16 2.27e-04 3.95e-17 1.16e-17
2000 3000 8.1e-01 2.49e+00 7.51e+00 8.67e+02 1.02e+01 7.81e+00 6.11e-17 3.11e-17 2.24e-04 3.14e-17 -2.74e-17

Table B.2: Varying problem sizes n and comparing computation time with relative residual for
degenerate vertex solutions.

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB lsqlin QPPAL Exact Inexact HLWB lsqlin QPPAL
200 3000 8.1e-01 3.12e-03 3.69e-02 4.45e+01 3.50e+00 8.66e-01 8.64e-18 7.39e-17 2.56e-04 6.52e-16 5.89e-17
200 3500 8.1e-01 3.08e-03 4.05e-02 5.17e+01 4.93e+00 1.00e+00 9.07e-18 1.26e-17 2.78e-04 1.23e-15 2.15e-17
200 4000 8.1e-01 3.24e-03 3.70e-02 5.82e+01 7.31e+00 1.09e+00 1.46e-16 8.91e-16 2.80e-04 3.21e-16 -9.18e-18
200 4500 8.1e-01 3.99e-03 4.17e-02 6.58e+01 1.01e+01 1.18e+00 1.80e-15 2.05e-16 3.13e-04 4.61e-17 1.71e-16

Table B.3: Varying problem density and comparing computation time with relative residual for
degenerate vertex solutions.

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB lsqlin QPPAL Exact Inexact HLWB lsqlin QPPAL
300 1000 25 5.69e-02 2.66e-01 4.55e+01 3.30e-01 1.20e+00 2.83e-17 1.14e-17 1.50e-04 8.61e-17 5.99e-17
300 1000 50 5.43e-02 2.28e-01 5.39e+01 3.08e-01 1.82e+00 1.23e-16 1.97e-17 1.44e-04 8.08e-16 1.42e-17
300 1000 75 7.75e-02 2.86e-01 5.36e+01 3.16e-01 1.49e+01 4.83e-16 1.72e-17 1.62e-04 3.49e-16 -3.43e-16
300 1000 100 7.27e-02 2.47e-01 4.65e+01 3.00e-01 2.54e+02 5.66e-16 2.15e-17 1.63e-04 1.91e-15 1.04e-14

34

(a) tol = 10−2

(b) tol = 10−4

(c) tol = 10−14

Figure B.4: Performance Profiles for varying m for degenerate vertex solutions.

35

(a) tol = 10−2

(b) tol = 10−4

(c) tol = 10−14

Figure B.5: Performance Profiles for varying n for degenerate vertex solutions.

36

(a) tol = 10−2

(b) tol = 10−4

(c) tol = 10−14

Figure B.6: Performance Profiles for varying density for degenerate vertex solutions.

37

C Applications of the BAPand the HLWBalgorithm

The BAPand the HLWBalgorithm play important roles in mathematical and technological prob-
lems. We give two examples.

1. Finding best approximation pairs for two intersections of closed convex sets
The problem of finding a best approximation pair of two sets, which in turn generalizes the
well-known convex feasibility problem [5], has a long history that dates back to work by
Cheney and Goldstein in 1959 [16]. This problem was recently revisited in [1] where an
alternating HLWB(A-HLWB) algorithm was proposed and studied that can be used when
the two sets are finite intersections of half-spaces. Motivated by that [7] presented alternative
algorithms that utilize projection and proximity operators. Their modeling framework is
able to accommodate even convex sets and their numerical experiments indicate that these
methods are competitive and in some cases superior to the A-HLWB algorithm. The practical
importance of the problem of finding a best approximation pair of two sets stems from its
relevance to real-world situations wherein the feasibility-seeking modeling is used and there
are two disjoint constraints sets. One set represents “hard” constraints, i.e., constraints the
must be met, while the other set represents “soft” constraints which should be observed as
much as possible, see, e.g., [20]. Under such circumstances, the desire to find a point in the
hard constraints set that will be closest to the set of soft constraints leads to the problem of
finding a best approximation pair of the two sets.

2. Least intensity modulated treatment plan in radiotherapy In the fully-discretized
modelling of the intensity-modulated radiation therapy (IMRT) treatment planning problem
the irradiated body is discretized into voxels and the external radiation field is discretized into
beamlets. This is represented by a system of linear inequalities as in (3.2) with nonnegativity
constraints. The unknown vector x represents radiation intensities and if it is a solution
of the linear feasibility problem then it fulfills all the planning prescriptions dictated by
the oncologist. In such a feasibility-seeking approach several solutions are acceptable but
a solution that is closest to the origin will use the least possible intensities that still fulfill
the constraints. Delivering an acceptable treatment plan with less radiation intensities is
preferable and so one replaces the feasibility-seeking problem by a BAPof approximating the
origin by a point from the feasible sets, i.e., by seeking the projection of the origin onto the
feasible set. Such an approach was used, e.g., in [55] where a simultaneous version of Hildreth’s
sequential algorithm for norm minimization over linear inequalities, [31, 36], [15, Algorithm
6.5.2] was combined with a norm-minimizing image reconstruction algorithm of Herman and
Lent [30], called ART4 (Algebraic Reconstruction Technique 4), which handles in a special
effective manner interval inequalities.

Data Availability and Conflict of Interest Statement

The codes for generating both the data and the output is available at
the paper link at URL www.math.uwaterloo.ca/˜hwolkowi/henry/reports/ABSTRACTS.html or
by request from one of the authors.

The authors declare no competing interests.

38

https://www.math.uwaterloo.ca/%7Ehwolkowi/henry/reports/ABSTRACTS.html

References

[1] R. Aharoni, Y. Censor, and Z. Jiang. Finding a best approximation pair of points for two
polyhedra. Comput. Optim. Appl., 71(2):509–523, 2018. 38

[2] S. Al-Homidan and H. Wolkowicz. Approximate and exact completion problems for Euclidean
distance matrices using semidefinite programming. Linear Algebra Appl., 406:109–141, 2005.
4

[3] L.E. Andersson and T. Elfving. Best constrained approximation in Hilbert space and inter-
polation by cubic splines subject to obstacles. SIAM J. Sci. Comput., 16(5):1209–1232, 1995.
4

[4] H.H. Bauschke. The approximation of fixed points of compositions of nonexpansive mappings
in Hilbert space. Journal of Mathematical Analysis and Applications, 202:150–159, 1996. 3,
13, 21, 29

[5] H.H. Bauschke and J.M. Borwein. On projection algorithms for solving convex feasibility
problems. SIAM Rev., 38(3):367–426, 1996. 38

[6] H.H. Bauschke and P.L. Combettes. Convex analysis and monotone operator theory in Hilbert
spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham,
second edition, 2017. With a foreword by Hédy Attouch. 3, 13, 21

[7] H.H. Bauschke, S. Singh, and X. Wang. Finding best approximation pairs for two intersections
of closed convex sets. Comput. Optim. Appl., 81(1):289–308, 2022. 38

[8] V. Beiranvand, W. Hare, and Y. Lucet. Best practices for comparing optimization algorithms.
Optim. Eng., 18(4):815–848, 2017. 22, 23

[9] J.M. Borwein and A.S. Lewis. Partially finite convex programming, part I, duality theory.
Math. Program., 57:15–48, 1992. 4

[10] J.M. Borwein and A.S. Lewis. Partially finite convex programming, part II, explicit lattice
models. Math. Program., 57:49–84, 1992. 4

[11] J.M. Borwein and H. Wolkowicz. A simple constraint qualification in infinite-dimensional
programming. Math. Programming, 35(1):83–96, 1986. 4

[12] J.P. Boyle and R.L. Dykstra. A method for finding projections onto the intersection of convex
sets in Hilbert spaces. In Advances in order restricted statistical inference (Iowa City, Iowa,
1985), volume 37 of Lect. Notes Stat., pages 28–47. Springer, Berlin, 1986. 13

[13] Y. Censor. Computational acceleration of projection algorithms for the linear best approxi-
mation problem. Linear Algebra Appl., 416(1):111–123, 2006. 3, 13

[14] Y. Censor and A. Nisenbaum. String-averaging methods for best approximation to common
fixed point sets of operators: the finite and infinite cases. Fixed Point Theory Algorithms Sci.
Eng., pages Paper No. 9, 21, 2021. 13

39

[15] Y. Censor and S.A. Zenios. Parallel optimization. Numerical Mathematics and Scientific
Computation. Oxford University Press, New York, 1997. Theory, algorithms, and applications,
With a foreword by George B. Dantzig. 38

[16] W. Cheney and A.A. Goldstein. Proximity maps for convex sets. Proc. Amer. Math. Soc.,
10:448–450, 1959. 38

[17] C.K. Chui, F. Deutsch, and J.D. Ward. Constrained best approximation in Hilbert space.
Constr. Approx., 6(1):35–64, 1990. 4

[18] C.K. Chui, F. Deutsch, and J.D. Ward. Constrained best approximation in Hilbert space. II.
J. Approx. Theory, 71(2):213–238, 1992. 4

[19] F.H. Clarke. Optimization and Nonsmooth Analysis. Canadian Math. Soc. Series of Mono-
graphs and Advanced Texts. John Wiley & Sons, 1983. 8

[20] P.L. Combettes and P. Bondon. Hard-constrained inconsistent signal feasibility problems.
IEEE Transactions on Signal Processing, 47:2460–2468, 1999. 38

[21] J.E. Dennis Jr. and H. Wolkowicz. Sizing and least-change secant methods. SIAM J. Numer.
Anal., 30(5):1291–1314, 1993. 10

[22] F. Deutsch. Best approximation in inner product spaces, volume 7 of CMS Books in Mathe-
matics/Ouvrages de Mathématiques de la SMC. Springer-Verlag, New York, 2001. 3, 13

[23] E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles.
Math. Program., 91(2, Ser. A):201–213, 2002. 22

[24] F. Facchinei and J.-S. Pang. Finite-dimensional variational inequalities and complementarity
problems, volume 1. Springer, 2003. 4, 7, 12

[25] H. Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften,
Band 153. Springer-Verlag New York Inc., New York, 1969. 8

[26] Michael P. Friedlander and Paul Tseng. Exact regularization of convex programs. SIAM
Journal on Optimization, 18(4):1326–1350, 2007. 14

[27] P. E. Gill, W. Murray, and M.H. Wright. Practical Optimization. Academic Press, Toronto,
1981. 8

[28] M. Goh and F. Meng. On the semismoothness of projection mappings and maximum eigenvalue
functions. J. Global Optim., 35(4):653–673, 2006. 5

[29] Y. Haugazeau. Sur les Inéquations Variationnelles et la Minimisation de Fonctionnelles Con-
vexes. PhD thesis, University de Paris, 1968. 13

[30] G.T. Herman and A. Lent. A family of iterative quadratic optimization algorithms for pairs
of inequalties, with application in diagnostic radiology. Math. Programming Stud., (9):15–29,
1978. Mathematical programming in use. 38

[31] C. Hildreth. A quadratic programming procedure. Naval Res. Logist. Quart., 4:79–85, 1957.
13, 38

40

[32] J.-B. Hiriart-Urruty. Unsolved Problems: At What Points is the Projection Mapping Differ-
entiable? Amer. Math. Monthly, 89(7):456–458, 1982. 4, 5

[33] H. Hu, H. Im, X. Li, and H. Wolkowicz. A semismooth Newton-type method for the nearest
doubly stochastic matrix problem. Math. Oper. Res., May, 2023. arxiv.org/abs/2107.09631,
35 pages. 4, 10

[34] H. Im, W.L. Jung, W.M. Moursi, D. Torregrosa-Belen, and H. Wolkowicz. Preconditioning,
numerical computations and the Omega-condition number. Technical report, University of
Waterloo, Waterloo, Canada, 2023 in progress. 31 pages. 10

[35] H. Im and H. Wolkowicz. Revisiting degeneracy, strict feasibility, stability, in linear program-
ming. European J. Oper. Res., 2023. 35 pages, 10.48550/ARXIV.2203.02795. 27

[36] A. Lent and Y. Censor. Extensions of Hildreth’s row-action method for quadratic programming.
SIAM J. Control Optim., 18(4):444–454, 1980. 13, 38

[37] C. Li and X.Q. Jin. Nonlinearly constrained best approximation in Hilbert spaces: the strong
chip and the basic constraint qualification. SIAM J. Optim., 13(1):228–239, 2002. 4

[38] X. Li, D. Sun, and K.-C. Toh. An asymptotically superlinearly convergent semismooth Newton
augmented Lagrangian method for linear programming. SIAM J. Optim., 30(3):2410–2440,
2020. 25

[39] L. Liang, X. Li, D. Sun, and K.-C. Toh. QPPAL: a two-phase proximal augmented Lagrangian
method for high-dimensional convex quadratic programming problems. ACM Trans. Math.
Software, 48(3):Art. 33, 27, 2022. 21

[40] G. López, V. Mart́ın-Márquez, and H.-K. Xu. Halpern’s iteration for nonexpansive mappings.
In Nonlinear analysis and optimization I. Nonlinear analysis, volume 513 of Contemp. Math.,
pages 211–231. Amer. Math. Soc., Providence, RI, 2010. 13

[41] O.L. Mangasarian. Iterative solution of linear programs. SIAM J. Numer. Anal., 18(4):606–
614, 1981. 14

[42] O.L. Mangasarian. Normal solutions of linear programs. Number 22, pages 206–216. 1984.
Mathematical programming at Oberwolfach, II (Oberwolfach, 1983). 14

[43] O.L. Mangasarian. A Newton method for linear programming. J. Optim. Theory Appl.,
121(1):1–18, 2004. 14

[44] C.A. Micchelli, P.W. Smith, J. Swetits, and J.D. Ward. Constrained lp approximation. Journal
of Constructive Approximation, 1:93–102, 1985. 4

[45] R. Mifflin. Semismooth and semi-convex functions in constrained optimization. SIAM J. Cont.
Optim., 15:959–972, 1977. 4

[46] V. Piccialli, A.M. Sudoso, and A. Wiegele. SOS-SDP: An exact solver for minimum sum-of-
squares clustering. INFORMS Journal on Computing, mar 2022. 20

41

[47] H. Qi and D. Sun. A quadratically convergent Newton method for computing the nearest
correlation matrix. SIAM J. Matrix Anal. Appl., 28(2):360–385, 2006. 4

[48] L. Qi and J. Sun. A nonsmooth version of Newton’s method. Mathematical programming,
58(1-3):353–367, 1993. 4

[49] H. Rademacher. Uber partielle und totale differenzierbarkeit i. Math. Ann., 89:340–359, 1919.
8

[50] E. Sarabi. A characterization of continuous differentiability of proximal mappings of com-
posite functions. url: https://www.math.uwaterloo.ca/~hwolkowi/F22MOMworkshop.d/

FslidesSarabi.pdf, 10 2022. 24th Midwest Optimization Meeting, MOM24. 5, 7

[51] M.A. Saunders and J.A. Tomlin. Solving regularized linear programs using barrier methods
and KKT systems. Report, Stanford University, Stanford, CA, 1996. 14

[52] I. Singer. Best approximation in normed linear spaces by elements of linear subspaces. Die
Grundlehren der mathematischenWissenschaften, Band 171. Publishing House of the Academy
of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin, 1970.
Translated from the Romanian by Radu Georgescu. 4

[53] P.W. Smith and H. Wolkowicz. A nonlinear equation for linear programming. Math. Program-
ming, 34(2):235–238, 1986. 4, 14

[54] X. Xiao, Y. Li, Z. Wen, and L. Zhang. A regularized semi-smooth Newton method with
projection steps for composite convex programs. J. Sci. Comput., 76(1):364–389, 2018. 4

[55] Y. Xiao, Y. Censor, D. Michalski, and J.M. Galvin. The least-intensity feasible solution for
aperture-based inverse planning in radiation therapy. Annals of Operations Research, 119:183–
203, 2003. 38

42

https://www.math.uwaterloo.ca/~hwolkowi/F22MOMworkshop.d/FslidesSarabi.pdf
https://www.math.uwaterloo.ca/~hwolkowi/F22MOMworkshop.d/FslidesSarabi.pdf

	Introduction
	blueMain Contributions
	Related Work

	Projection onto a Polyhedral Set
	Basic Theory and Algorithm
	Nonlinear Least Squares; Jacobians
	blueWell Conditioned Generalized Jacobian
	Vertices and Polar Cones

	Cyclic HLWBProjection for Best Approximation
	Applications
	Solving Linear Programs
	Warm Start; Stepping Stone External Path Following
	Upper and Lower Bounds for the LPProblem

	Projection and Free Variables
	Projection with Free Variables

	Triangle Inequalities

	Numerics
	Time Complexity
	Comparison of Algorithms
	Numerical Comparisons

	Solving Large Sparse Linear Programs

	Conclusion
	Pseudocodes for Generalized Simplex
	Additional Performance Profiles
	Nondegenerate
	Degenerate

	Applications of the BAPand the HLWBalgorithm
	Index
	Bibliography

