
REPORT 

Haifa 1985 Conference on Matrix Theory 

Abraham Berman 
Department of Mathematics 
Technion -Israel Institute of Technology 
Haifa 32000, Zsrael 

Yair Censor 
Department of Mathematics and Computer Science 
University of Haifa 
Mount Carmel, Haifa 31999, Israel 

and 

Hans Schneider 
Department of Mathematics 
The University of Wisconsin 
Madison, Wisconsin 53706 
and 
Technion -Israel Institute of Technology 
Haifa 32000, Israel 

Submitted by Hans Schneider 

INTRODUCTION 

The Haifa 1985 Conference is the second in a series (hopefully of length 
greater than 2) of conferences on matrix theory. It was held from 29-31 
December, 1985 under the auspices of the Israel Mathematical Union, and 
hosted by the Department of Mathematics at the Technion and the Depart- 
ment of Mathematics and Computer Science at the University of Haifa. 
Participants from Israeli universities, research institutes, and high-tech in- 
dustries gathered to listen to twenty-seven speakers, including three guests 
from the U.S.A. and West Germany. The informal exchange of information 
and ideas culminated in an open problem session. 

The social program included receptions at the University of Haifa and at 
the Technion, and a guided tour of the Reuben and Edith Hecht Museum at 
the University of Haifa. 

This report contains synopses of talks presented at the meeting, which 
were made available to us. They are arranged in alphabetical order. In 
coauthored synopses, the speakers’ names are starred. 
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The program was as follows: 

29 December 
Technion, The Silver Institute of Biomedical Engineering Auditorium 

lO:oo-11:OO 

Dimension of faces generated by certain positive linear operators, by R. 
Loewy, Technion. 

Sign patterns of matrices and their inverses, by M. Berger, Weizmann 
Institute. 

Chairman: A. Berman, Technion. 

11:30-12:30 

Submultiphcativity and mixed submultiplicativity of matrix norms and 
operator norms, by M. Goldberg, Technion. 

The resolvent condition and uniform power boundedness, by E. Tadmor, 
TeI-Aviv University. 

Chairman: H. Wolkowicz, University of Delaware. 

14:00-15:00 

An efficient preconditioning algorithm and its analysis, by I. Efrat, IBM 
Scientific Center, Haifa. 

Parallel algorithms for triangular systems, by A. Lin, Technion. 

Chairman: I. Gohberg, Tel-Aviv University. 

15:30-16:30 

Minimality and irreducibility of time-invariant boundary-value systems, 
by L. Lerer, Technion. 

Maximumentropy extensions of matrices and related problems, by I. 
Gohberg, Tel-Aviv University. 

Chairman: I. Cederbaum, Technion. 

16:30-17:00 

Open-problems session 
Chairman: D. Hershkowitz, Technion. 

30 December 
University of Haifa, Main Building, Room 608 

9X%10:30 

Class functions of finite groups, nonnegative matrices, and generalized 
circulants, by D. Chillag, Technion. 
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On linearly constrained entropy maximization, by Y. Censor, University 
of Haifa. 

Some theorems in matrix theory using optimization, by H. Wolkowicz, 
University of Delaware. 

Chairman: J. Sonn, Technion. 

ll:oO-12:30 

Holdability, irreducibility, and M-matrices, by A. Berman, Technion. 
On the uniqueness of the Lyapunov scaling factors, by D. Shasha, 

Technion. 
On positive reciprocal matrices, by V. Mehrmann, University of Biele- 

feld. 

Chairman: H. Schneider, University of Wisconsin and Technion. 

14:00-15:30 

On biholomorphic automorphisms of the unit ball of unitary matrix 
spaces, by J. Arazy, University of Haifa. 

Perturbed and mixed Toeplitz matrices as generalization of the resultant 
matrix, by B. Kon, Technion. 

Bezoutian for several matrix polynomials and polynomial Lyapunov-type 
equations, by M. Tismenetsky, IBM Scientific Center, Haifa. 

Chairman: G. Moran, University of Haifa. 

16:00-17:OO 

Powers of a nonnegative definite matrix related to interpolation by radial 
functions, by N. Dyn, Tel-Aviv University. 

Using Gauss-Jordan elimination to compute the index, null space, and 
Drazin inverse, by U. Rothblum, Technion. 

Chairman: A. Pinkus, Technion. 

3 1 December 
Technion, The Silver Institute of Biomedical Engineering Auditorium 

930610:30 

Higher dimensional Euclidean and hyperbolic matrix spaces, by B. 
Schwarz, Technion. 

From the complex numbers to complex matrices along the projective 
line, by A. Zaks, Technion. 

Chairman: D. London, Technion. 

ll:oo-12:oo 

Maximumdistance problem and band sequences, by A. Ben-Artzi, Tel- 
Aviv University. 
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Block-Hankel-matrix inversion and the partial-realization problem, by 
P. A. Fuhrmann, Ben-Gurion University at the Negev. 

Chairman: V. Mehrmann, University of Bielefeld. 

13:30-14:30 

Eigenstructures and signal processing, by A. Bruckstein, Technion. 
The structure of root clustering criteria, by S. Gutman, Technion. 

Chairman: P. A. Fuhrmann, Ben-Gurion University at the Negev. 

15:00-16:06 

Matrices with sign symmetric diagonal shifts, by D. Hershkowitz, Tech- 
nion. 

Equality classes of matrices: The extremal case of an inequality due to 
Ostrowski, by H. Schneider, University of Wisconsin and Technion. 

Chairman: Y. Censor, University of Haifa. 

Synopses of the talks are presented below. 

COMPUTING THE INDEX AND DRAZIN INVERSE 
USING THE SHUFFLE ALGORITHM 

by KURT M. ANSTREICHER’ and URIEL G. ROTHBLUM’* 

The well-known Gauss-Jordan elimination procedure computes the inverse 
of a nonsingular matrix A by executing elementary row operations on the pair 
(A, I) to transform it into (I, A-‘). Moreover, Gauss-Jordan elimination can 
be used to determine whether or not a matrix A is nonsingular, in the case 
where this fact is not known a priori. We adapt the Gauss-Jordan elimination 
procedure via “shuffles” to obtain an algorithm which computes the index of 
a given matrix A and determines bases of the null spaces of the powers of A. 
In the worst case the algorithm requires less than 2n3 arithmetic operations, 
compared to the well-known bound of n3 operations for the work needed to 
invert a nonsingular matrix using Gauss-Jordan elimination. Moreover, the 
procedure suggests adaptation of efficient techniques for computing inverses 

‘School of Organization and Management, Yale University, Box lA, New Haven, CT 06520. 
“Faculty of Industrial Engineering and Management, Technion-Israel Institute of Technol- 

ogy, Technion City, Haifa 32oo0, Israel. Research of this author was supported by Grant No. 

ECS-83.10213 from the National Science Foundation. 
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(cf. [13]). Finally, the Drazin inverse of the underlying matrix A has a simple 
representation in terms of the output of the algorithm and the matrix A itself. 

An algorithm incorporating shuffle operations was first devised by 
Luenberger [9], who applied it to the study of singular difference equations. 
Anstreicher [I] analyzed Luenberger’s algorithm as applied to the solution of 
singular systems of linear differential equations with constant coefficients. 
Previous methods for solving the latter used Drazin inverses (e.g., [3] and 
[12]), suggesting a connection between the shuffle algorithm and the Drazin 
inverse. These methods are closely related to the study of matrix pencils (see 
[ 1 l] and references therein). 

To introduce our new algorithm we consider an example (cf. [2, p. 1321). 
Let 

Elementary row operations transform (A, I) into 

‘1 0 1 0 ; -; -; 0 

0110 0 0 -1 0 
OOOl-; 5 ;o 

0000 + ; 2 
:S 1 

It is clear that A is not invertible, as a linear combination of its rows 
vanishes. The “shuffle step” will next exchange row(s) of zeros with the 
corresponding row(s) of the right-hand matrix. This yields 

I 

1 0 + 1 0 -5 -: 0’ 

0110 0 0 -1 0 
0 -$ 0 0 1 2 3 ; 0’ 
1 I 
:3 2 10 -, :3 0 00 

One then resumes elementary row operations, which result in 

(1 1 0 0 2 -2 -5 0 

0110 0 0 -1 0 
0001~; ; ;o 

0 0 0 0 -+ -j -2 0 

\ 
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A second shuffle is next performed, yielding 

/ 1 0 1 0 ; -5 -; 01 

0 110 0 0 -1 0 
0 0 01-t f j 0’ 

-1 _r _s 
3 3 3 0 0 0 00 

Elementary row operations are now finally used to convert the left-hand 
matrix to the identity, yielding 

’ 1 0 0 0 & g -F -+$O 

0 1 0 0 ; -z -f 0 

0 0 10-z 5 f ; 0’ 

0 0 01 1 -5 f ; 0 

at which point the algorithm terminates. 
Our main results are as follows. First, the algorithm always terminates in a 

finite number of shuffling steps, and this number equals the index of the 
underlying matrix A, say v. In the above example, the number of shuffling 
steps is two, so v = 2. Second, the rows shuffled in the first through kth 
shuffle steps, k = 1,2,. . . , form a basis of the (row ) null space { x : xTAk = O}. 
In the above example, {( $, $, 5, l)} is a basis of {x: xTA = 0}, and {(i, 4, :, l), 
( - f, - $, - &O)} is a basis of { x : xTA2 = 0). Finally, we show that AD, the 
Drazin inverse of A, can be obtained from the matrix A on the right-hand 
side of the terminating matrix by computing A”+ ‘A”. In the above example 

\2 

1 
16 - 20 2 4 65 

A”=9-” _t -5” -‘; 0” :, _‘: _; ;: 

-3 6 -1 -2 -3 3 

We next describe our algorithm in detail. Consider a given n X n real 
matrix A. In the course of the algorithm a sequence of pairs of matrices 
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( tik), Bck)), is generated, where (A co), B(“)) = (A, I). Given ( Ack), BCk’) we 
execute row operations on A ck) to convert it into a matrix whose nonzero 
rows are linearly independent; moreover, if tik) is found to be nonsingular 
the algorithm terminates. Simultaneously, we execute the same row oper- 
ations on BCk’. Let X(k) and % ck) be the result of executing the above row 
operations on ACk’ and Btk’, respectively. If pk) has zero rows, we exchange 
these rows with the corresponding rows of BCk’ and proceed to iteration 
k + 1. We show that if v is the index of A, then the algorithm will always 
terminate on exactly the vth iteration. Moreover, the rows shuffled on 
iterations0 ,..., k-1,for k=I ,..., v, are a basis of the left null space of Ak. 
In addition, we show that if on iteration v, A(“) is transformed into the 
identity matrix, $“) = I, and x is defined to be the resulting matrix B(‘), 
then the Drazin inverse of A is equal to dy+ ‘A”. 

A representation of the Drazin inverse of matrices for which zero is a 
simple eigenvalue is given in [8, Lemma 5.11. The representation in this case 
(for which the index is known to be one) reduces to the execution of our 
shuffle algorithm. A special case of the above representation for matrices 
having the form Z-P, where P is an irreducible stochastic matrix, is given in 
[4, Theorem 81. 

A survey of methods for computing the index and Drazin inverse of a 
matrix can be found in [2]. In particular, efficient methods for computing the 
Drazin inverse are given in [S] and [6, 71. 

Further details and proofs concerning the new shuffle algorithm can be 
found in a forthcoming paper of the authors that will appear in this journal. 

The authors wish to thank Eric V. Denardo for illuminating comments 
concerning the operation of the algorithm, and constructive criticism of the 

paper. 
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ON BIHOLOMORPHIC AUTOMORPHISMS OF 
THE UNIT BALL OF UNITARY MATRIX SPACES 

by JONATHAN ARAZY3 

Let S denote the space of all complex matrices Q = (ai, j)rj=l with only 
finitely many nonzero entries. A norm LY on S is unitarily invariant if 

a( uuw) = a(u) 

for all a E S and all unitary matrices u, w with the property that ui, j = wi, j 

= ai, j if max{ i, j} is large enough. For normalization one requires also that 
a(a) = 1 for every rank-one partial isometry a in S. 

The unitary matrix space S, associated with (Y is the completion of S 
under (Y (these spaces are called also “unitary ideals” or “symmetric normed 
ideals”; see [l]). We denote by B, the open unit ball of S,. It is known that 
the most general unitarily invariant norm LY on S is given by 

da) = L+“(Q)), 

where s,(a) = ~,,((u*u)‘/~), n = l,Z,..., are the singular numbers of a, and 

.‘Departlnent of Mathematics, University of Haifa, Haifa 31999, Israel. 
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/3 is a symmetric norm on sequences. For 1~ p < 00 we put 

and 

OI,( a ) = s i( a ) = the operator norm of a. 

We let S, = Sap. Thus S, is the trace class, S, is the space of Hilbert-Schmidt 
operators, and S, is the space of compact operators on 1,. 

It is well known that B, and B, are bounded symmetric domains, that is 
the corresponding groups of biholomorphic automorphisms act transitively 
(in fact, by Mobius transformations; see [2] and [5]). If these two cases are 
ruled out, the situation changes drastically. 

THEOREM 1. Let a be a unitarily invariant norm, different from a2 and 

(Y It. Then every biholomorphic automorphism of B, extends to a linear 

isometry of S,. 

With the aid of [3] we conclude 

COROLLARY. Let a be us in Theorem 1, and let F be u biholomorphic 

automorphism of B,. Then there exist unitary matrices u, w so that either 

F(u) = uuw, aESa, 

F(u) = uaTw, UESa, 

where a?‘ is the transpose of a. 

A holomorphic vector field X: B, -+ S, is called complete if there exists a 
solution $J = +.x : R x B, -+ B, to the initial-value problem 

$(t,a) = X(+(t,a>>, 

for every a E BU. 
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THEOREM 2. Let a be a unitarily invariant norm, differentfiom a2 and 

a =. Then every complete holomorphic vector field X: B, + S, extends to a 

bounded, linear, skewHennitian operator on S,. 

Here “skew-Hermitian” means that the numerical range is purely imagin- 
ary. Again, using [3] we get 

COROLLARY. Let a and X: B, + S, be as in Theorem 2. Then there exist 

bounded Hermitian matrices b, c so that 

X(a) = i(ba + ac), aES,. 

The proofs of Theorems 1 and 2 use the “contraction principle” of [4]. 
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THE MAXIMUM DISTANCE PROBLEM AND BAND SEQUENCES 

by A. BEN-ARTZL4* R. L. ELLIS,5 I. GOHBERG,4 and D. LAY” 

In this paper we solve the following problem. For 1~ j, k < n and 
]j - kl< m, let a jk be a given complex number with ak j = Z jk. We wish to 
find linearly independent vectors xi,. . . , x, such that (xk, xj) = ajk for 
]j - kl < m and such that the distance from xk to the linear span of 
x,, . . . , xk_ , is maximal for 2 < k < n. We construct and characterize all such 
sequences of vectors. Our solution leads naturally to the class of m-band 

‘S&o01 of Matllenutical Sciences, Raylnond and Beverly Sackler Faculty of Exact Sciences. 

Tel-Aviv IJniversity, Tel-Aviv, Israel. 

” Departnwnt of Mathematics, University of Maryland. College Park, MCI. 
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sequences of vectors in an inner-product space. We study these sequences 
and characterize their equivalence classes under unitary transformations. A 
precise formulation of the problem now follows. 

Maximum-Distance Problem 

For any vectors xi,..., x, in C” and for 2<k<n, let sp(xl,...,xk) 
denote the subspace spanned by xi,. . . , xk, and let dist( xk, sp(x,, . . . , xk- ,)) 
denotethedistancefrom~~tosp(r,,...,x~_,).GivenO~m<nandaset 
{ a jk : 1 j - k I< m } of complex numbers satisfying a k j = 6 jk, we shall say that 
a sequence of vectors { xk }i= i is admissible if it is linearly independent and 
if 

(Xk~xj)=ujk (lj - kl< m). (1.1) 

We define 

d, = supdist(x,,sp(r,,..., xkPl)) @<k<n), 

where the supremum is taken over all admissible sequences of vectors in C”. 
The maximum distance problem is to describe all admissible sequences 
{ xk}l_, such that 

Each such sequence is called a solution of the maximum-distance problem. 
This maximum-distance problem has close connections with maximum en- 
tropy in the mathematical theory of signal processing [2, 4, 51. 

Band Sequences 

The study of the maximumdistance problem leads naturally to the notion 
of a band sequence of vectors in C”. If we apply the Gram-Schmidt process 
to a sequence of vectors { yk } t= i, we obtain a sequence { wk } i = 1 of 
orthonormal vectors that is related to { yk} by a system of equations that may 
be written in the form 

alky,+ ..' + akkyk = wk (k=l,...,n). (1.2) 

DEFINITION. Let m and n be integers with 0 < m < n. We say that a 
linearly independent sequence { yk } I= 1 
m<k<n and l<j<k-m. 

is an m-band sequence if a jk = 0 for 



184 A. BERMAN, Y. CENSOR, AND H. SCHNEIDER 

We shall say that two linearly independent sequences { y, }i= I and 

{Zk]nk=l in CN are equivalent if there is an N x N unitary matrix U such 
that zk = Uy, for 1 Q k < n. 

We prove that the set of solutions to the maximum distance problem 
consists of one such equivalence class of m-band sequences. 

Different characterizations of m-band sequences are given. Finally a 
maximum-volume problem is considered and shown to be equivalent to the 
maximumdistance problem. 
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SIGN PATTERNS OF MATRICES AND THEIR INVERSES 

by MARC A. BERGER” and ALEXANDER FELZENBAUM’ 

Given an n X n ( f l>matrix S = (sij), any n X n red matrix TV! = ( mij) 
for which sgn(m, j) = sij (Vi, j) is said to be a realization of S. Two (f 1) 
matrices S and T are said to be paired if they have realizations which are 
inverse to one another. Define a graph 99” whose matrices are all the n X n 

( + 1)-matrices, and whose edges connect all paired matrices. Following the 
“Open Questions” of Johnson, Leighton, and Robinson [l], we study this 
graph 9,,. 

’ Departlnent of Pure Mathematics, The Weizmann Institute of Science, Rehovot, Israel. 
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In addition to a complete characterization of gs, our results include: 

(i) S(gn) > 2 [n/21 (for n >, 3). 
(ii) For any permutation a on { 1,. . . , n }, S and F,(S) are paired, where 

F,(S) = {2Z- b’(dl “S} [S(dl t 

and S(r) = (sij), where 

i 

sij’ j = r(j)> 
4ij = 

0, j+dj) ’ 

Our analyses lead to good bounds on the radius, diameter, and connectiv- 
ity of gn. We also obtain results concerning the pairing of (0, + l>matrices. 

REFERENCES 

1 C. R. Johnson, T. L. Leighton, and H. A. Robinson, Sign patterns of inverse-posi- 
tive matrices, Linear Algebra A&. 24:75-83 (1979). 

HOLDABILITY, IRREDUCIBILITY, AND M-MATRICES 

by ABRAHAM BERMAN7* and RONALD J. STERN’ 

Let AER”,“, BER”,~, and let U denote the class of piecewise continu- 
ous R”‘-valued functions. Consider the control system 

i(t) = Ax(t)+ Bu(t) t>O 04 

where u E U. A nonempty set S c R” is holduble [with respect to (L)] if for 
any initial state x0 ES there exists a control function u E L’ such that 
X(t,X”, u) E s v’t > 0. 

In this paper we study problems which have to do with holdability of the 
nonnegative orthant R: and related problems in matrix theory. 

‘Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32oo0, Israel. 

Research supported by the Fund for Promotion of Research at the Technion. 

‘Department of Mathematics, Concordia University, Montreal, Quebec, H4B lR6, Canada. 
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A state x0 E R” is controllable to a target set S if there exist t >, 0 and 
u E U such that r( t, x0, u) E S. The set X, s(S) of all points which are 
controllable to S is 

X*,,(S) = x*(s)+ Y&B> 

where 

X,(S) = U eCtA(S) 
t>o 

and 

Y *,B = range[B; AB; A’B;...; AnP’B]. 

PROBLEM 1. Characterize the set X,, B(R: ) when R”, is holdable. 

In other words, it is desired to find the set of initial states from which one 
can “hit and hold” the target R;. 

Consider the uncontrolled system 

i(t) = Ax(t), t 2 0. (L”) 

The nonnegative orthant is positively invariant [with respect to (La)] if 

etA( R; ) G R; vt>o. 

This is equivalent to A being essentially nonnegative, i.e., A + aZ > 0 for 
some (Y. The nonnegative orthant is strictly positively invariant if etA(R: 
\ (0)) c int R: V t > 0. This is equivalent to A being essentially nonnegative 

and irreducible. The following theorem is well known. 

THEOREM 1 [4, 91. If R: is positively invariant then 

A,:= max{Re(A); X E a(A)} 

is an eigenvalue of A and has an associated nonnegative eigenvector. Zf R: is 
strictly positively invariant, then h, is a simple eigenvalue of A which has 
an associated positive eigenvector, vA. Furthermore, A has only one unit 
nonnegative eigenvector. 

When RI is positively invariant, X,( R: ) is a polyhedral cone [ 11. 

Formulas for X,( R: ) are given in [l] and [6] under spectral assumptions on 
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A, and in [S] when Ax < 0 for some r > 0. The problem of determining the 
reachability set X,(R:) from its closure is analyzed in [7]. When R: is 
strictly positively invariant, X,( R: ) is given by 

X,(R;)= {O}Uint{span(v,)+range(A-X,,Z)}. (*> 

Returning to Problem 1, we first observe that holdability of the nonuega- 
tive orthant is equivalent to the existence of F E R”‘,” such that R’: is 
positively invariant with respect to the controlled differential system 

Q(t)=(A+BF)x(t), t >, 0. 

Consider now the control system 

?(t) = (A + BF)x(t)+ Bu(t), t 20. 6) 

It is easy to see that an initial state is controllable to a given target under 
system (L) if and only if it is controllable to the target under (L) and that 
Y /I. 13 = Y,, + nF,R. Thus when R: is holdable and A + BF is essentially 
nonnegative, 

X,&C ) = X,+dR: 1-t T.,,, 

and the results in [l], [6] and [7] could potentially be employed in order to 
find the reachability set X A + sF( R: ). The situation is simpler when A + BF 
is also irreducible and (*) can be employed. 

Thus the analysis of Problem 1 gives rise to 

PROBLEM 2. Find, if possible, a linear feedback law u(t) = Fx( t) such 
that 

and 

PROBLEM 3. Find, if possible, a linear feedback law u( t ) = Fx( t ) such 
that 
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which are equivalent to 

PROBLEM 2,. Find, if possible, a matrix F such that A + BF is essen- 
tially nonnegative 

and 

PROBLEM 3,. Find, if possible, a matrix F such that A + BF is essen- 
tially nonnegative and irreducible. 

Consider the following family of n linear programming problems: 

(‘i) 
maximize E 

subject to A,,(il )+ B(il )u - Ee > 0, 

&> 0. 

Here the unknowns are the scalar E and the m-vector u. A *, denotes the i th 
column of A, X( i( ) denotes the matrix obtained from X by deleting its i th 
row, and e is a column full of ones of height n - I. 

THEOREM 2. Zf [q, ui] is feasible in (Pi), i = 1,. . . , n, then A + BF is 
essentially nonnegative for F = [ ul;. . . ; u,,]. Zf (Pi) is infeasible for some i, 
then there exists rw F such that A + BF is essentially nonnegative. 

Let (Y be a subset of { 1,. . . , n }\{ i }, and let e, be an n-vector of O’s and 
l’s whose kth entry is 1 if and only if k E a. Consider the linear program 

('i,a) maximize E 

subjectto A,,(il )+B(il )u--q(il )>O. 

E> 0. 

A set (Y is maximul with respect to i if it is a maximal set for which (Pi,,) has 
a positive value. Suppose all the programs (Pi) are feasible, i = 1,. . . , n, and 
let (Y~~,...,(Y~~, be the maximal sets with respect to i, i = 1,. . . , n. For 
l< si < t;, i = l,..., n, define a graph G,,,,..,,O as a directed graph having 
vertices l,..., n and an arc from i to j if and only if j E aiS,. 
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THEOREM 3. Suppose all (Pi) are feasible, i = 1,. . , n. lf a graph 

GY,,. , S,, is strongly connected and (Ed, ui). ei > 0, is a feasible solution of 
(Pi, a,, ), then A + BF is (essentially nonnegative and) irreducible, where 

F = [L,;...; u,]. Zf none of the graphs GSI ,,,,, S,, 1~ si < ti, i = 1,. . , n, is 

strongly connected, then no such F exists. 

Consider now the “stabilizability-holdability” problem 

PROBLEM 4. Find, if possible, a linear feedback law u( t ) = Fx( t ) such 
that for any x0 > 0 the application of this law results in x( t, x0, u) > 0 Vt > 0 
and x(t, x0, u) -+ 0 as t -+ 00. 

Recall that M is a nonsingular M-matrix [2,5,8] if - M is essentially 
nonnegative and all eigenvalues of M have a positive real part. Thus Problem 
4 is equivalent to 

PROBLEM 4,. Find, if possible, a matrix F such that 

- (A + RF) is a nonsingular M-matrix. (**) 

Let X[a] denote the principal submatrix of X built on indices in (Y. 

THEOREM 4. A matrix F satisfies ( **) if and only if 

(A+BF)ijaO if l<i#j<n 

and 

( -l)kdet((A+BF)[{l,...,k}])>O for k=l,...,n. 

In the case of scalar input (i.e., m = 1) the last set of inequalities become 

(- lYbN1 , . . . . k}])+f,,d,,i- ... +fikdkk>O for k=l,...,n, 

where d ij denotes the determinant obtained from A[ { 1,. . . , k }] by replacing 

its jth column by the column B. 

Details, examples, and proofs are given in [3]. 
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ON EIGENSTRUCTURE AND SIGNAL PROCESSING 

by A. M. BRUCKSTEIN” 

Many important problems in signal processing may be formulated as 
follows. Observations, in the form of M-vectors I~, are made in order to 
obtain information on a set of parameters {a,, if,, . . . , 19~). The parameters 
9, influence the observations through “signature vectors” ~(9,) of length M, 
in the following way: 

=A(@)Sk+sk, (1) 

where the vectors Sk and -_Nk are randomly (and independently) chosen and 
have covariance matrices SCDxl>) and u21CMx,,,) respectively. By assumption, 
the II signature vectors come from a known “signature manifold” (a(8)) 
parameterized by 9, and we observe a set { T~}~+~,,, ,6 of randomly 
weighted and noisy linear combinations of D particular signatures. Our aim 

“Faculty of Electrical Engineering, Teclmioll-I.I.T., Haifa, Israel 
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is to estimate the number D, the parameter values { a,, a,, . . , an}, the noise 
variance 

&2:. 

and the covariance matrix S, from the observations 
From (1) it follows that the covariance of the observations has 

the form 

R = ET,I[ = A( O)SAT( 0) + ~‘1. (2) 

If D < M, and (a(9)) has the property that A(O) has full rank for any 
choice of {a,, 9, ,..., 9,}, an eigenstructure analysis of R provides a com- 
plete solution of the problem, via the so-called multiple-signal characteriza- 
tion (MUSIC) algorithm, due to Ralph Schmidt [I]. The algorithm exploits the 
fact that the minimal eigenvalue of R is u2, its multiplicity is M - D, and the 
M - D-dimensional subspace spanned by the eigenvectors corresponding to 
the minimal eigenvalue is orthogonal to the D-dimensional subspace spanned 
by the columns of A(O). Examples of signal-processing problems that fit the 
above framework are multitarget tracking with sensor arrays, the extraction 
of sinusoids from noise, spectral estimation, radar echo location and several 
other signal resolution problems; see e.g. [l]-[3]. 
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ON LINEARLY CONSTRAINED ENTROPY MAXIMIZATION 

by YAIR CENSOR” 

1. introduction 
Linearly constrained entropy maximization is used in a variety of research 

fields. We mention three applications in matrix theory and describe some 
recent algorithmic developments. 
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2. Entropy Maximization and Matrix Theory 
Given UER:, PER”’ and an m X n real matrix A where all columns, 

a’ElR”, i=1,2 ,..., m, of AT are nonzero, consider the entropy maximiza- 
tion problem 

Max[ -~i~jlog[~)] subjectto Ax=h, ~20. (I) 

The need to solve this problem arises in various fields of applications, 
including transportation planning, statistics, geometric programming, image 
reconstruction from projections, image restoration, pattern recognition, and 

spectral analysis; see [5, 6, 10, 11, 121 for references. 
In matrix theory and linear algebra, entropy maximization is encountered 

in several cases, including the following: 

(i) Permanents. Mint’s conjecture stating that if A is an n X n (O,l)- 
matrix with row sums r,, . . . , r,,, then per (A) =S n:= i( r~!)“‘~ (see [ 14, Chapter 
6.21) was first proved by Bregman [2], by employing duality relations 
between (1) and its dual problem. 

(ii) il4atrix balancing. This is a procedure in which a diagonal matrix D 
is determined such that if D-‘AD= [cl,...,~“] = [rl,...,rnlT then ]]ri]] = 
]]c’]] for i = 1,2,..., n, in an appropriate norm. This routine is recommended 
to precede the computation of eigenvalues of A; see [15]. It can be shown 
(see, e.g., [lo, 121) that the balancing problem is equivalent to entropy 
maximization. 

(iii) Matrix scaling. Here diagonal matrices D, and D, are sought such 
that the scaled matrix D,AD2 has prescribed row and column sums; see [13]. 
This problem has applications in transportation planning, economics and 
statistics (see [12]) and is again equivalent to entropy maximization. 

3. Algorithms for Entropy Maximization 
Bregman’s method [l], as studied and extended in [4] and [9], is a 

primal-dual convex programming algorithm of the row-action type [3]. It 
applies to a class of objective functions, called Bregmun functions in [4], to 
which the negative of the x log x entropy function of (1) belongs. Bregman’s 
method applies to linear equalityconstrained problems as well as to linear 
inequality constraints. The main contribution in [4] is a storage-efficient 
extension of the method to linear interval constraints. In [9], relaxation 
parameters were introduced into the method in a geometrically insightful 
way. 
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The relaxed Bregman method for entropy maximization over linear in- 

equulity constraints is 

ALGORITHM 1 (see [8, 91). 

Initialization: zn E R y is arbitrary, and x” E R n is such that xy = 
exp[( - A%O),- l] for j=l,...,n. 

Iterative step: x:+’ = xf exp(c,ayk’), j = 1,. , n, where ck = 
min( zFtk,, pk) and zk+l = zk - ckeick). Here e j(k) is the i( k)th standard basis 
vector in R”‘, and Pk is the solution of 

5 u;‘k’x~exp(flku~k’)=akbi(k)+(l-ak)(ui(k),xk), 
j=l 

(2) 

where ( . , . ) denotes the inner product and (Yk are underrelaxation parame- 
ters which are bounded away from zero, i.e., 0 < E < (Yk < 1. The control 
sequence { i(k)} is assumed to be almost cyclic. 

The algorithm performs successive “entropy projections” onto the bound- 
ing hyperplanes of Ax < b or onto certain hyperplanes parallel to them. It 
requires in each iterative step an inner-loop calculation to approximate Pk 
from Equation (2). When applying Algorithm 1 to (l), i.e., only equality 
constraints, the dual variables zk are eliminated and ck = pk, for all k, in the 
iterative step. 

Another algorithm for solving (1) is MART (multiplicative algebraic recon- 
struction technique); see [3, 121 for references. Its iterative step is 

XT+’ = xi exp M,u;!~) ( ), j=l ,...,n, (3) 

where 

(4) 

O<&<hk<I and {i(k)} d most cyclic. Conceptually, it has the advantage 
that M, is given by a closed-form formula and no inner-loop iterations are 
needed as in Algorithm 1. If the constraint matrix A is a (O,l>matrix, then 
MART coincides with Bregman’s method. In [12], Lamond and Stewart 
identified various independently discovered entropy maximization algorithms 
as special cases of Bregman’s method, but were unable to do so for MART in 
the non-(0, 1) case. 
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The relationship between MART and Bregman’s algorithm is studied in [8], 
where it is shown that MART can be considered as a particular underrelaxation 
strategy in Bregman’s algorithm. This discovery settles Lamond and Stewart’s 
question and prompted the construction of a new hybrid algorithm which 
essentially replaces, in Algorithm 1, Pk by M, of (4). The resulting new 
algorithm for entropy maximization over linear inequazities was proposed in 
[S] and proved in [8]. Recently we have extended the scope of Bregman’s 
algorithm by showing [7] that it is applicable also to a function which is not a 
Bregman function in the sense of [4], namely the logx entropy known as 
Burg’s entropy. 

The author’s work on entropy maximization described here was supported 

by NSF Grant ECS-8117908 and NIH Grant HL-28438 during several visits 

to the Medical Image Processing Group, Department of Radiology, Hospital 

of the University of Pennsylvania, Philadelphia, Pa. 19104 USA. 
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CLASS FUNCTIONS OF FINITE GROUPS, 
NONNEGATIVE MATRICES, AND GENERALIZED CIRCULANTS 

by DAVID CHILLAG” 

Introduction 

Using the regular representation of the algebra cf(G) of the complex class 
functions of a finite group G, we assign to each class function 8 a matrix 
M( 0). The correspondence 8 -+ M( 0) enables us to deduce results (old and 
new) on group characters from known theorems on nonnegative matrices. 
From matrix-theory point of view, the set M(G) = { M( 0) ) 8 E cf(G)) enjoys 
many properties of circulant matrices. Different choices of G yield different 
sets of matrices, including the circulants, block circulants with circulant 
blocks of all levels, and many more. 

Not&ion 

Our group-theoretical notation and notions are taken mainly from the first 
four chapters of [9], and those on matrices from [8] and Chapter 2 of [2]. 
Here is some additional notation. 

Let G be a finite group, and C,, C,, . . . , C, all the conjugacy classes of G 
with C,= (1). Let a=(X1,X2 ,..., X k) be any enumeration of the set Irr( G) 
of all irreducible complex characters of G. If 8 is a class function of G, the 
matrix M”(B) is defined to be the k x k matrix M”(8) = ( myj( e)), where 
mTJ(8) = [8X,, Xi], 1~ i, j < k; here [ , ] means inner product. The set 
M(G,a)= {Ma(e)IeEcf(G)} will be called a family of G-circulants; its 
elements are G-circulants. It is clear that if M(G, cy) and M(G, a’) are two 

” Department of Mathematics, Technion-Israel Institute of Teclu~ology, Haifa 32000, 
1%X4. 
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families of G-circulants, then M(G, a’) = { P’MP ] A4 E M(G, a)} for some 
permutation matrix P. 

Finally, let X( G, a) = (xi(Cj)), 1 < i, j ,< k, be the character-table matrix 
of G. 

Examples of G-circulants 
In [3], [4], [IO] finite groups have been used to generalize circulants. In 

most of these places G is assumed to be abelian, in which case G 2 Irr(G) 
and some of the generalized circulants are similar to ours. For nonabelian 
groups [3, lo] the set of matrices is different from ours. Here are some 
examples: 

(1) If G is a cyclic group of order n, then for some LY, M( G, a) is the set 
of n x n circulants and X(G, cu) =&F,* (see p. 32 of [8] for notation). 

(2) If G = Cn, x Cn, x *. . x C,,, is a general abelian group where C,,, is a 
cyclic group of order ni, then for some (pi, (~a,.. ., (Y,,, (Y we get that M(G, a) 
is a level-r block circulant of type (n,,n,,...,n,) and X(G,a)=(n,n,... 

n,) l/“F’:aF*:@ . . . @FnT (see p. 188 of [8] for definitions); here @ means 
the Krdlnecker product. 

(3) Example (2) is a special case of the general direct product G = G, X 
G,x ... x G,. Here for some (Y the family M(G, a) is a family of block 
Gr-circulants in which the blocks are block Ga-circulants in which the blocks 
are block G,-circulants, etc. See [6] for the precise statement and further 
examples. Here also X(G, a) = X(G,, c~r)@X(Ga, a,)@X(G,, cu,) for some 
ai, aa>. . . > a,. This example enables us to construct new examples from old 
ones by forming block matrices of all levels. See [6] for details. 

Properties of G-circulants 
These are summed up in the next theorem. In view of the above 

examples, all the following results from [8] are special cases of this theorem: 
Theorem 3.1.1 and its corollary; all the results of pp. 68, 72 and 73; Theorems 
3.2.4, 3.3.1, 3.4.20, 3.4.21, 5.8.1, 5.8.2, 5.8.3, 5.8.4, 5.8.5, and others. For 
details and proofs see [6]. 

THEOREM 1. Let G, k, C,, xi, a, and X = X(G, a) be as defined above. 
Then: 

(a) The family M( G, a) of Gcirculants is a commutative algebra over the 
complex number field, and the mapping 9 + M*(8) is an algebra isomor- 
phism from cf(G) onto M(G, a). 

(b) M(G, a) is a set of commutative normal matrices which are simulta- 
neously diagonalized by X. In fact X- 'M*(B)X = diag(B( C,), 
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ec,,>. *. > O(C,)) for each 8 E cf(G). Also XDX* = I, where LI = 

(l/lGl)dWICII, ICzl,..., IC& 
(c) The set { Ma( d i q l} is a basis of M(G, a). Furthermore, if 

M = x2= I~i M”( xi) is an arbitrary element of M(G, a), then the eigenvalues 
of M ure C~=,aixi(Cj), j = 1,2 ,..., k. In particular the eigenvalues of 

M “( y, ; ) are the entries of the ith row of X. 

(d) Zf A is any k x k complex matrix, then the following stutements are 

equivalent: (i) A E M(G, a); (ii) A commutes with M”(x,) for all 1 < i < k; 

(iii) A = X .diag( rr, r2,. . . , rk).X-’ for some complex numbers rl, r2,. . . , TV. 

Charucters and Nonnegative Matrices 

If 13 is a character of G, then M”(B) has further properties. 

THEOREM 2. Using the notation of Theorem 1, let 8 be a charucter of G. 

Then : 

(a) M”( 0) is a nonnegative-integer matrix. Its leading ( Perron-Frobenius) 
eigenvalue is O(1) with a corresponding eigenvector (x r(l), 

X2(1)‘. . . T Xk(l)Y. 
(b) M”(O) is irreducible if and only if 8 is faithful. 

(c) M”( 0) is primitive if and only if Z( 0) = 1, in which case y( Mn( 8)) 

= ccn(8) (see [2] and [l] for definitions). 

(d) Let a1, a2 ,..., cx, be all the distinct values of 0. Then the characttis- 

tic polynomial nf=,[x - O(C,)] and the minimal polynomial nf=,(x - ai) 

of M”(B) have integer coefficients. 

The proof can be found in [5, 71. Each of these properties can be applied 
to obtain results on characters (old and new) from those on matrices. See [l], 
[5], and [7] for such applications. 
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ON THE SPECTRUM OF THE MATRIX [xi - x jla 

by NIRA DYN, 12* TIMOTHY GOODMAN,‘” and 

CHARLES A. MICCHELLI l4 

In this work we investigate the spectrum of matrices of the form 

AT, = {/xi - XjJa}y,j=l> with (Y > 0 and distinct x,, . . . , x, E R. These matrices 
occur in the solution of the interpolation problem by functions from 
span{(x-xi/“, i=l,..., n }, for data points at x1,. . , x,. For cx an odd 
integer, the above interpolating space is contained in the space of splines of 
degree (Y with simple knots x1,. . . , x,. Similar matrices occur in the problem 

of multivariate interpolation by the radial functions { I[ x - xi II& i = 1,. . . , n } 
at the data points x1,. . . , X” E R” [2, 31. Our analysis applies to the univariate 

situation only, and guarantees the nonsingularity of these matrices for any 

choice of distinct points x,, . . . , x,. The case 0 < LY < 2 is treated in [3] in the 

context of points in R”. It is shown that A”, has n - 1 negative eigenvalues 
and one positive eigenvalue. In [l] it is shown that for a = 3 and distinct 

Xl,...’ x, E R, A”, has n - 2 positive eigenvalues and 2 negative eigenvalues. 
Here we extend these results to 

THEOREM 1. Let x1,. . . , x, E R be distinct, and 21- 2 < a < 21, 1> 1. 
Then the matrix B,” = ( - I)‘{ Ixi - xjl”)y, j=1 with n 2 2Z- 1 has n - I posi- 
tive eigenvalues and 1 negative eigenvalues. 

THEOREM 2. Let xl,. . . , x,, E R be distinct, and let a > n > 0. Then the 
matrix A”, = {(xi - xjl”}y, j=1 has n/2 positive eigenvalues and n/2 negu- 
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tive eigenvalues if n is even, while if n is odd, ( - l)[“/‘lA:, hus [n/2] + 1 
positive eigenvalues and [n/2] negutive eigenvalues. 

THEOREM 3. For a > 0 an even integer, a = 2p, and n > a distinct 

x Ir.. . , x ,I E R, the matrix ( - l)‘B,” has p + 1 positive eigenvalues, p negu- 

tive eigenvalues, and n - 2p - 1 pro eigenvalues. 

These results are based on a basic property of the matrices A?,, a > 0, 
which is proved in [3] in the context of points x1,. . . , x” in R’. Here we cite 
the relevant result for R: 

THEOREM 4 [3]. For 21 - 2 < a < 21, l> 1, and distinct x1,.. ., x,, E R, 

n > 1, the matrix A”, sutisfies 

( - l)‘yTA”,y > 0 

for all yT=(y,,..., y,) with the property 

y#O, i y&=0, k==O,l)...) l-l. 
i=l 

This result guarantees that A,* has at least n - 1 positive eigenvalues. The 
proof that the remaining 1 eigenvalues are all negative requires information 
on the number of zeros of functions spanned by { Ix - xila, i = 1,. . . , n } for 
3 < n < a + 1. The result is an extension of a result of Sylvester concerning 
zeros of polynomials [4, p. 4081. 

THEOREM 5. Let f(x) = C:=Ici]x - x,(~, where n is odd, 3 < n < a + 1, 
and where x 1,. . . , x, are distinct points in R, and cl,. . . , c,, E R, Q’=IcI’ > 0. 

Then the number of distinct zeros off does not exceed n - 1. 

Theorem 5 together with Theorem 2 yields the positivity of all the minors 
of odd order p, 3 < p < a + 1, of the matrix { \yi - xjJ”}:‘, j=i, from which the 
following oscillation properties of the eigenvectors of At, are concluded: 

THEOREMS. Let X,,...,h,, ]X,]a]hz]>, ... >]A,,], hetheeigenvalues 

of A:, > with corresponding eigenvectors ul,. . ,u”, und let m be an odd 
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integer, m < min{ n, a + l}. Then 

Moreover, for any p even and 9 odd, p, 9 G m, 

whenever a2 + . . . + a:, f 0, /3,” + . . . + p: # 0. In particular u1 > 0, 
2i-1~S~(UPZitr)_(S+(uzi+‘)~2i, Z=O,l, i=l,...,[m/2]. Here S-(x) 
and S + (x) denote the muximul numbers of sign changes in the components of 
the vector x when zero components are ignored, and when zero components 
are given arbitrary signs, respectively. 

The proofs of these results will be published in the Proceedings of the 
Netherlands Academy of Sciences Series A. 
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POSITIVE RECIPROCAL MATRICES 

by L. ELSNER” and V. MEHRMANN15* 

1. Introduction 
An n X n matrix A = [a ij] is called positive reciprocal if a i j > 0 and 

aij = l/aji for all i, j = l,..., n. 
Positive reciprocal matrices play an important role in many applications. 

Recently, in a method called the analytic hierarchy process, they have 

‘iFakultZt fir Mathematik, Universitlt Bielefeld, Postfach 8640, 4800 Bielefeld 1, Federal 

Republic of Germany. 
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become the major mathematical tools for solving decision problems in eco- 
nomics and politics (Saaty [5]). C onsider the following example: A consumer 
is asked to give a priority list for n products. By comparing product X, with 
xi pairwise he gives numbers a i j, meaning that he likes product xi a I j times 
as much as product x j. Clearly the matrix [aij] will be positive reciprocal, 
but unfortunately this method usually leads to inconsistent answers, i.e., if the 
consumer prefers x j over xi by a factor a ji and ri over xk by a factor uik, 
then in general the factor a jk for comparing r j and xk is not equal to a jiu,k. 
Thus, for practical methods, the matrix A is usually approximated by a 
matrix B = [bij] which is consistent, i.e. satisfies bj, = bjibik for all i, j, k E 

{I,..., n }. An analysis of the different possibilities for approximating A is 
given in [5] and [3]. Clearly, every consistent matrix can be written as 
B= [hii] with bij= [wi/wj] for some vector to= [wl,...,wn]r. Typical 
choices for W are the left or right Perron eigenvectors of A or the vectors of 
geometric row means or geometric column means of A. 

In [3] Fichtner asked under which conditions on the matrix A the right 
(left) Perron vector is equal to the vector of geometric row (column) means, 
respectively. In this paper we shall consider this question and also analyze the 
relationship of the class of positive reciprocal matrices to other important 
subclasses of the positive (nonnegative) matrices. 

2. Notation and Preliminaries 
We start with some necessary definitions: 

DEFINITION 1. An n X n matrix A = [a i j] is called positive reciprocal if 
u,~>O and aij=l/aji for all i, jE {l,...,n}. The class of nXn positive 
reciprocal matrices is denoted by PR (,,). 

An n x n matrix A is called consistent if DAD-’ = eeT for some 
nonsingular diagonal matrix D. [Here e = (1,. . , , l)T,] 

We have the following simple result (e.g. [5]). 

THEOREM 1. Let A E PR(,). Then p(A) > n and p(A) = n if and only 
if A is consistent, where p(A) denotes the spectral radius of A. 

DEFINITION 2. An n X n matrix A = [a i j] is called an inverse M-matrix 
if aij>,Oforall i,jE{l,...,n}, B=[bij]=Ap’exists, and b,j<Oforall 
i, j E {l,..., n}i + j. 

An n X n matrix A is called totally nonnegative (totally positive) if every 
minor of A is nonnegative (positive). 
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DEFINITION 3. A matrix of the form 

co Cl c2 . . . c 
“I 1 

c_1 C” Cl . . . C,-2 
. . 

. . 
. . 

C I 
Clmn ' . . . C-1 CO 

is called a Toeplitz matrix. A Toeplitz matrix with c j = c,,_ j for all j E 
{I,..., n - 1) is called a circulant matrix. 

3. Main Results 
We have the following results on the relationship of PR(,) to other 

subclasses of nonnegative matrices: 

PROPOSITION 3.1. Let A E PR(,,), n > 1. Then A is not an inverse 
M-matrix. 

PROPOSITION 3.2. Let A E PR (,,), n > 1. Then A is not a totally positive 

nlatrix. 

PROPOSITION 3.3. Let A E PR(,). Then A is a totally nonnegative 

matrix if und only if A is consistent. 

Now we consider the following problem posed by Fichtner [3]: Char- 
acterize all matrices in PR(,) with the property that the right (left) Perron 
vector is the vector of geometric row (column) means respectively. In other 
words, let u = (ur ,..., ~,)r, u = (vi ,..., ~,)r be such that 

(3.4) ‘i={z, uiE/G, i=l,...,n; 

then 

(3.5) Au = p(A)u and vzA = TV”‘. 

We denote the subclass of PR (,,) of matrices satisfying (3.4) (3.5) by PR’(,,). 
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LEMMA 3.6. Let A E PR’(,,. Then PDADplPT E PR’;,,, for ~11 D = 

diag(d ,,..., d,,) with di>O ford iE {l,..., n} and FIy=,di=l, and all 
permutution matrices P. 

In view of Lemma 3.6 it suffices to characterize all those A E PROS) 

having row products (column products) equal to 1 and all row sums and 

column sums equal. 

THEOREM 3.7. 

(a) Let A E PR(,,) be a circulant matrix. Let D = diag(d,, . . . , cl,,) with 
d, > 0, i = 1,. . , n, und nr=,d i = 1, and let P be a permutation matrix. Then 

PDAD ‘PT E PR’ (n). 
(b) Let n < 5. Then A E PR;,,, f i and only if there exist a diagonal 

mcctrix D us in (a) and a pennutution matrix P such that PDAD- ‘Pr is a 

circulant mntrix. 

Counting the number of free parameters and the number of equations 
that characterize matrices in PR’(,,,, one sees that one cannot expect that for 
large n the circulant matrices are the only matrices in PR’(,,) up to diagonal 

and permutational similarity. However, if we restrict ourselves to Toeplitz 
matrices, the parameter count is the same for both sets. 

CONJECTURE 3.8. Let A E PR cn) be a Toeplitz matrix. Then the follow- 
ing are equivalent: 

(i) A E PR’(,,). 
(ii) There exist a permutation P and a diagonal matrix D with d i > 0 for 

i = 1,. . . , n and n:=,d, = 1 such that PDAD- ‘PT is a circulant matrix. 
(iii) A is a circulant matrix. 
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PARTIAL REALIZATIONS, GENERALIZED BEZOUTIANS, 
AND BLOCK-HANKELMATRIX INVERSION 

by PAUL A. FUHRMANN” 

This note summarizes results on block-Hankel-matrix inversion. The de- 
tailed results will appear separately. It extends work of the author in the 
scalar case [7, 81. 

We consider the problem of inverting the block Hankel matrix 

H= 

G” .*. i&P1 

We assume that this matrix is nonsingular. In particular this implies the Gj 
are square, say p x p, matrices. The inversion problem is related to the 
partial-realization problem studied in system theory. In this connection refer 
to Kalman [lo], Gragg and Lindquist [9]. We seek rational extensions 

G Cy(+;+ . . . +=+$+ . . . 
z211-1 

of minimal McMillan degree whose first 2n - 1 coefficients coincide with 

G Gan-1. I”“, Such an extension is uniquely determined by the choice of 
X = G,,. 

By the nonsingularity of H there exist coprime matrix-fraction representa- 
tions of the forms 

G,(z) = f’x(z)Q,(d -‘=&b) -‘%<z> 

such that both Qx and Qx are manic. 

THEOREM 1. Under the previous assumptions there exist uniquely de- 
termined polynomial matrices A, B, A, and B such that Q, ‘xand AQG ’ are 
strictly proper and 

~l”Departmeut of Mathematics, Ben-Orion University of the Negev, Beer Sheva, Israel 
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In particular we have the two interesting relations pxQx = QxP, and 
AQ, = QxA. In terms of polynomial models [3-61, we have two maps 

z: x,, +XGYandZ:X- +X v\ V\ 

defined by 

- 
Zf= y&f for fin X,,, 

and 

zg = 710,Ag for g in XQ,. 

By the Bezout equations derivable from the matrix identity, the maps Z and 
Z are inverses of each other. Moreover they are very closely related to the 
inversion problem. 

The polynomial matrices in the matrix identity can be used, following -- 
Anderson and Jury [2], to define the generalized Bezoutian I( A, Q,Y, Q,v, A) 
= (‘ii) by 

+)Q+)- Qxbb+) =ccB,,,i~Iwj_l 
Z-W 'Ia 

The generalized Bezoutian, in conjunction with polynomial model theory, can 
be used to get the following extension of a result of Lander [ 111. 

THEOREM 2. Under the assumptions of invertibility of H, then H-’ can 

be obtained from a minimal rational extension of the sequence G,, . . . , G2,, 1 -- 
by HP’ = UA, Q.y, Qx, A), where A, B, A, and B are the polynomial 

matrices determined by the matrix equality. 

We can parametrize the set of all minimal rational extensions. This is a 
special case of a more general formula of Antoulas [l]. 

THEOREM 3. Given the nonsingular Hankel matrix H. Let G = PQ ’ = 
gp’P und G,= P,Q,’ =Qi’Px be th e minimal rational extensions of 

G 1,. . . , G,, _ 1, corresponding to the choices G,, = 0 and G,, = X respec- 
tively, and all matrix fractions taken coprime with manic denominators. Let 
A, B, A, and 2 be determined as before. Then all minimal rational 

extensions are parametrized by 

G,=(P+BX)(Q-xX)-‘=(Q-XA)-‘(P+XB). 
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MINIMALITY AND IRREDUCIBILITY OF 
TIME-INVARIANT LINEAR BOUNDARY-VALUE SYSTEMS 

by I. GOHBERG,” M. A. KAASHOEK,‘” and L. LERER’“* 

This presentation concerns the canonical structure of linear time-invariant 

systems with well-posed boundary conditions (briefly: boundary-value sys- 

tems). In state-space representation such a system has the form 

( 

x(t)=Ax(t)+Bu(t), a<t<h, 

e: y(t) = Q(t), u<t<b, 

A+(a) + N,r( b) = 0, 

“Sclmol of Mathematical Science, Tel-Aviv IJniversity, Tel-Aviv, Israel. 

‘XDspartment of Mathematics, Vrife IJniversiteit, The Netherlands. 

‘L’Department of Mathematics, Technim-I.I.T., Haifa 32000, Israel. 



HAIFA 1985 CONFERENCE ON MATRIX THEORY 207 

where A:X-*X, B:Z-+X and C:X + Y are linear operators acting be- 
tween finitedimensional inner-product spaces. The boundary conditions of 8, 
defined by the linear operators Ni and Nz acting on the state space X, are 
assumed to be well posed, i.e., det( NienA + N,e”*) # 0. In this case 0 has a 
well-defined input-output map, namely the integral operator 

T,:L,([a,hl,Z)-,L,([a,bl,Y), 

y(t)=(T,,u)(t)=J(‘k&,s)u(s)ds, a<t<h, 
0 

of which the kernel k, is given by 

k,(t, s> = 
i 

Ce(r+n)A(Z - P)em”m ““‘B, a < S < t < b, 

_ c~(~~“)AP~~(“~“)AB, a<t<s<h. 

Here P = e”A{(Nie”A + N2ebA)-lNZe”“}e~“” is the so-called (see [2]) 
canonical boundary-value operator of 6. In what follows we denote the 
system Z3 by the quintet (A, B, C; Ni, N,). 

We consider three important classes of systems. The first one consists of 
controlkahle and observable systems. It is known (see [ 121, [13]) that the 
notions of controllability and observability do not depend on the boundary 
conditions. Thus, as in the causal case (i.e., when Ni = I, Na = 0, and hence 
P = 0), a system 8 = (A, B, C; N,, N,) is controllable if and only if Im[ Z3 AB 
...Attm’B] =X (with n = dim X ) and B is observable if and only if 

n;= ,Ker CAjP1 = (0). 
In order to define the second class we need the operation of reduction. 

Assume that the state space X of 0 = (A, B, C; N,, N,) decomposes into a 
direct sum X = X, + X, + X, such that the corresponding partitionings of 
the operators A, B, C, N,, and N2 are as follows: 

* * * 

NV = 0 NY(O) * , 

i 1 

v = 1,2. 

0 0 * 

Here the entries * are unspecified and E is some invertible operator on X. 
The system 6, = (A,, B,, C,; Nr , (“) N,‘O)) is called a reduction of 8. Reduction 
leaves invariant many important characteristics of a system, e.g., the input- 
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‘. output map. We say that a reduction 13, is proner if dim X, < dim X. The 
system 8 is called irreducible if 0 does not admit a proper reduction. Our 
second class of systems consists of all irreducible ones. 

The third class we shall consider is the class of minimal systems. The 
system 8 is called minimal if among all systems with the same input-output 
map as B the dimension of the state space of 8 is as small as possible. 

The classical results of systems theory state that for causal systems the 
three classes introduced above coincide (see, e.g., [lo, 15, 161 and the books 
[l, 9, 11, 141). Thus for a causal system 8 the following three statements are 
equivalent: (i) 0 is minimal; (ii) 8 is irreducible; (iii) B is controllable and 
observable. For systems with arbitrary well-posed boundary conditions the 
situation is completely different and each of the three classes is different from 
the others. We present the following two theorems. (In both theorems the 
symbol VZ, stands for the linear hull of the spaces 2, with (Y running 
through some index set.) 

THEOREM 1. Let B = (A, B, C; N,, N,) be a time-invariant boundary- 
value system. Let X be the state space of 8, and P its canonical boundary- 
value operator. Then 8 is irreducible if and only if 

n{KerCA*IP”2P...A(12r~~POl~rl(a(l,...,(Y2r) EG(X)} =(O), 

V{ImAalPa2-..Aa2~-~Paz,Bl(cul,...,1Yg,)E~(X)} =X. 

Here Q(X) stands for the set of all tuples (al,. .I, aZr) of nonnegative 
integers for which 2~ < dim X and I$I~~ 1a j < dim X. 

THEOREM 2. Let 6 = (A, B, C; N,, N,) be a time-invariant boundary- 
value system. Let X be the state space of 8, and P its canonical boundary- 
value operator. Then 8 is minimal if and only if 

h “fir KerCA’P”Aj = (0), i ‘vl Im A’P”AjB = X, 
w=o i,j=O v=O i,j=O 

n-l n-1 

n Ker CA’ c V Im A’B (n=dimX). 
i=O i=O 

From Theorems 1 and 2 it follows that the class of controllable and observa- 
ble systems is contained in the class of minimal systems and that the class of 
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minimal systems is contained in the class of irreducible systems. Simple 
examples show that in both cases the inclusion is proper. I/ 

In the causal case, because minimality is the same as irreducibility, there 
is a constructive way to reduce a given causal system 8 = (A, B, C; I,b) to a 
minimal causal system with the same input-output map as 8; For systems 
with arbitrary boundary conditions, we give an analogous procedure to 
reduce a given system to an irreducible one with the same input-output map. 
However, in general, the resulting system will not be minimal. So, we suggest 
a much more complicated procedure to get a minimal system without 
changing the input-output map. To get a controllable and observable system 
without changing the input-output map is not always possible. 

Next we discuss similarity of boundary-value systems! Let 8 = 
(A, B, C; N,, N,) and # = (A, B, e; @i, fia) be two such systems.‘.Let X and 
J? be the corresponding state spaces. The systems 8 and # are said to be 
similar if 

A’= SAS-', B = BF’, e=sc, fii=EiVis-’ (i=1,2) 

with some invertible operators S, E: X + rT. Clearly, two similar systems 
have the same inputoutput map. For minimal causal systems the converse 
statement holds true. For systems with arbitrary well-posed boundary condi- 
tions the situation is more complex, as the following theorems show. In what 
follows q denotes the maximum of the state-space dimensions of B and 6. 

THEOREM 3. Assume 0 and 8 are both controllable and observable. 
Then 8 and 6 are similar if and only if 8 and 8 have the same input-output 
map, or equivalently, 

(v=O,l; i,j=O ,..., q-1). 

THEOREM 4. Assume B and 6 are both minimal. Then 8 and e are 
similar if and only if 

for v, a, p = 0,l and i, j, r, s = 0,. . . , 4. 
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THEOREM 5. Assume 8 and 8” are both irreducible. Then 0 and fi are 
similar if and only if 

for all tuples (a: ,, . . . , azq ) of nonnegative integers with E$ai < 29 - 1. 

The set of problems discussed in this presentation have been studied 
before (see [3%6]) in the larger framework of time-varying linear systems with 
well-posed boundary conditions. When specialized to time-invariant systems, 
the results of [3-61 differ essentially from those presented in this work, 
because here minimality and irreducibility are considered in the smaller class 
of time-invariant systems. Note that the minimality theorem for stationary 
boundary-value systems in [13] can be easily derived as a corollary of 
Theorem 2. 

The proofs of Theorems l-5 as well as specifications for stationary and 
displacement systems and some results on stability of minimal systems can be 
found in [7]. Minimality and irreducibility of boundary-value systems are also 
discussed in [8] in a general framework of minimal realizations for matrix 
functions in several variables. 
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MULTIPLICATIVITY AND MIXED MULTIPLICATIVITY 

FOR OPERATOR NORMS AND MATRIX NORMS 

by MOSHE GOLDBERG20 

Let V be a normed, finite- or infinite-dimensional vector space over the 
complex field C, and let .4?(V) be the algebra of bounded linear operators on 
V. A real-valued function 

N: 9?(V) + R 

is called a norm on S?(V) if for all A, B E G?(V) and (Y E C, 

N(A) >o, A f 0, 

N(cxA) = Iaj.N(A), 

N(A + B) <N(A)+ N(B). 

If in addition N is multiplicative, i.e., 

N(AB) < N(A)N( B) VA,BE.%J(V), 
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we say that N is an operator rwrm on g(V). If S?(V) is an algebra of (finite) 
matrices and N is multiplicative, then N is called a matrix norm. 

The first multiplicative example that comes to mind is of course, the 
ordinary operator norm 

IlAll = sup{ [Ax]: x E V, IX] = l}, 0) 

where 1. ( is the vector norm on V. 
If V is a (finite- or infinitedimensional) Hilbert space, then perhaps the 

best known example of a nonmultiplicative norm on B’(V) is the numerical 
radius (e.g., [9, 2, 81) 

~(4 = SUP( $4 x,x)l:xEV, ]x(=(x,X)“2=1), (2) 

where (. , . ) is the inner product on V. 
Another example of considerable interest is the 1, norm, 16 p < cc, of an 

n x n matrix A = (aij) E Cnxn: 

Ostrowski [ll] has shown that this norm is multiplicative (i.e., a matrix norm) 
if and only if 1~ p < 2. 

Given a norm N on Q(V) and a fixed constant p > 0, then obviously 
N, = PN is a norm too. Clearly, N, may or may not be multiplicative. If it is, 
then we call p a multiplicativity factor for N. That is, 1-1 is a multiplicativity 
factor for N if and only if 

N(AB) <pN(A)N(B) VA,S.B(V). 

Having this definition one can easily prove: 

THEOREM 1 [5, Theorem 2.11. Let N be a rwrm on B’(V). Then 

(i) N has multiplicativity factors if and only if 

/L,,~,~=su~{N(AB):N(A)=N(B)=~,A,B~.@(V)} (00. (4 

(ii) If pmi,, < GO, then p is a multiplicativity factor for N if and only if 

P 2 Prnin’ 
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In the finitedimensional case, compactness immediately implies that 
P,,,~,, < co; hence N always has multiplicativity factors. In the infinitedimen- 
sional case, however, N may fail to have multiplicativity factors, as indicated 
in Example 2.4 of [5]. 

While Theorem 1 seems to settle the question of characterizing multi- 
plicativity factors, the quantity p,,,,,, in (4) is often difficult to compute. A 
more practical approach towards verifying whether a constant P,,,~,] > 0 is the 
best (least) multiplicativity factor for a given norm N is implied by the 
following obvious observation: 

A constant ~,,,,,, > 0 is the best (least ) multiplicativity factor for N if 

N(AB) G I*minN(A)N(B) VA, B E S@(V), 

with equality for some A = A,, B = B,. 

With this observation in mind, it was shown by Holbrook [lo, Section 21 
(and independently in [4, Theorem lo]) that if V is a Hilbert space of 
dimension at least 2, and if r is the numerical radius in (2), then pr is an 
operator norm on S?(V) if and only if /J > 4; i.e., the best multiplicativity 
factor for r is pInin = 4. 

Similarly, Goldberg and Straus [6, Corollary 1.11 have shown that the best 
multiplicativity factor for the 1, norm on C,,, defined in (3) is 

i 

1, l<p<% 
P min = n’ -9./p 

, 2<p<CQ. 

Often, when plnin remains unknown, one may obtain multiplicativity 
factors via the following somewhat stronger version of a result by Gastinel: 

THEOREM 2 [l; 4, Theorem 51. Let N and M be a norm and an operator 
norm on .53(V), respectively; and let TJ > E > 0 be constants such that 

~M(A)~N(A)oPWA) VA E LB(V). 

Then any p with p > q/.$ 2 is a multiplicativity factor for N. 

This result was utilized by Goldberg and Straus [4, 5, 71 to obtain 
multiplicativity factors for certain generalizations of the numerical radius, 
called C-numerical radii. 
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The above concepts of multiplicativity and multiplicativity factors can be 
extended as follows: 

DEFINITION 1. Let U, V, and W be normed vector spaces over C; and 
let 58, = a(U, W), SSYa = .S?(V, W), and .G?s = .@(U,V) be the spaces of 
bounded linear operators from U into W, V into W, and U into V, respec- 
tively. If N,, N,, and Ns are norms on Z8i, g2, and gS, respectively, and 
p > 0 is a constant such that 

then we say that p is a multiplicativity factor for NI with respect to N2 and 

N,. 

In analogy with Theorem 1 we have now: 

THEOREM 3 (Compare [3, Theorem 1.21). Let N,, N,, and I$ be norms 
as in Definition 1. Then: 

(i) N, has multiplicativity factors with respect to N, and N3 if and only 

if 

(ii) Zf ZL,,,,~,, -C 03, then ZJ is a multiplicativity factor for NI with respect to 

N2 and N3 if and only if ~12 pLi,,. 

We observe, of course, that a constant p,,,,,, > 0 is the best (least) 

multiplicativity factor for NI with respect to N, and NJ if 

with equality for some A = A,, B = B,. 
For example, if V is a Hilbert space, and if ]I. I] and r are the operator 

norm and numerical radius in (1) and (2), then one can show that 

r(M) G 2r(A)llBIl, VA, BE.%‘(V), 

with equality for 

Thus, P min = 2 is the best multiplicativity factor for r with respect to r and 

II- II. 
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This example employs only a single vector space and two norms. In order 
to demonstrate the idea of mixed multiplicativity to its full extent, consider, 
for 1~ p < co, the 1, norm of an m X n matrix A = (aij) E C,,,,: 

Then, for any (independent) p, 9, r with 1~ p, 9, r < co, Goldberg [3, Theo- 
rem 2.11 has shown that the best multiplicativity factor for the I, norm on 
C ,,, Xn with respect to the 1, norm on C,,, xk and the I, norm on Ckxn is 

Pmin= ‘~,(~)~p,(~)~,‘,(~), 

where 9’ (the conjugate of 9) satisfies l/9 + l/q’= 1, and 

Evidently, for p = 1, r = 9’, and m = n = 1, this result reduces to H6lder’s 
inequality. 
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MATRICES WITH SIGN-SYMMETRIC 
DIAGONAL SHIFIS OR SCALAR SHIFTS 

by DANIEL HERSHKOWITZ,2’,22*, VOLKER MEHRMANN,= AND 
HANS SCHNEIDER21*22 

A square complex matrix is said to be sign-symmetric [weakly sign-sym- 
metric] if it has nonnegative products of symmetrically located minors 
[almost principal minors]. 

Weakly sign-symmetric matrices were studied first by Gantmacher and 
Krein [5, p. 1111 and by Kotelianskii [IO]. That is why these matrices are also 
called GKK matrices, e.g. by Fan [4]. One reason for the interest in these 
classes of matrices is that they contain the important classes of the Hermitian 
matrices, the totally nonnegative matrices, and the M-matrices. Another 
reason is the strong linkage between weak sign symmetry and the 
Fischer-Hadamard determinantal inequalities. This connection is studied in 
Gantmacher and Krein [5], Koteljanskii [9], Carlson [l], Green [6], and 
Hershkowitz and Berman [7]. 

A sufficient condition for positivity of the principal minors of a weakly 
sign-symmetric matrix in terms of leading principal minors is given by 
Koteljanskii [lo]. 

Relations between weakly sign-symmetric matrices and w-matrices are 
discussed in Engel and Schneider [3] and in Hershkowitz and Berman [8]. 

Sign symmetry and weak sign symmetry are also related to stability. It 
was proved by Carlson [2] that sign-symmetric matrices whose principal 
minors are positive are stable, i.e., their spectra lie in the open right half 
plane. The same result is conjectured to hold for weakly sign-symmetric 
matrices too. 

In this paper we generalize the concepts of sign symmetry and weak sign 
symmetry. We define k-sign-symmetric matrices, where k is a nonnegative 
integer. In view of our definition an n x n sign-symmetric matrix is a 
k-sign-symmetric matrix whenever k >, (12 - 1)/2. The l-sign-symmetric 
matrices are those weakly sign-symmetric matrices whose principal minors 
are real. Since reality of principal minors is assumed in all the results on 
weakly sign-symmetric matrices quoted above, one may as well consider those 
as assertions on l-sign-symmetric matrices. 

After giving graph-theoretic preliminaries, we characterize the matrices 
all of whose diagonal shifts are k-sign-symmetric, that is, matrices A such that 
A + D is k-sign-symmetric for every real diagonal matrix D. Given a positive 
k, we show that an irreducible matrix satisfies this condition if and only if it is 
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diagonally similar to a Hermitian matrix. Thus, a matrix satisfies the above 
shift condition for some positive k if and only if it satisfies the condition for 
every positive k. 

For k > 2, we prove a similar result for a matrix A all of whose scalar 
shifts A + tZ, where t is real, are k-sign-symmetric. If k = 1, then we need an 
additional graph-theoretic hypothesis, namely, the reversibility of the chord- 
less directed circuits of even length in the directed graph of A. 

The extensions of our results to reducible matrices follow from a theorem 
that a matrix A is k-sign-symmetric if and only if every diagonal block in the 
Frobenius normal form of A is k-sign-symmetric. 
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EQUALITY CLASSES OF MATRICES 

by DANIEL HERSHKOWITZ% and HANS SCHNEIDER24* 

Let A be a complex n X n matrix, and define the absolute-value matrix 
B = (Al of A by bij = (aijl, i, j = l,..., n. Let p(A) be the spectral radius 
of A. 

“‘Mathematics Department, University of Wisconsin-Madison, Madison, WI 53706, and 
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Let @ be the set of all noncomplex matrices A such that p( 1 A]) < 1. In 
[6] Ostrowski proved the now very well-known result that, for A E %/, 

(1.1) 

where the inequality is entrywise. 
In [5] Neumaier showed that for A E d, the set of n X n irreducible 

matrices A E @‘, 

(1.2) 

if and only if 

All circuit products of A are positive. (I.31 

It is well known [1,2] that for irreducible A, (1.3) is equivalent to 

A is diagonally similar to ]A], i.e., there exists a diagonal matrix 
X such that A = X]A(X-‘. (I.41 

Neumaier shows that the condition 

I(z-A~~)J~~=(Z-IA~-~)~~ forsomei,j l<i,jdn, (1.5) 

which is apparently weaker than (1.2), is in fact equivalent to (1.2)-(1.4) for 
A E 2. (We have stated special cases of the results of Ostrowski and 
Neumaier, from which however the general theorems may easily be derived.) 

In this paper we generalize Neumaier’s results in various directions. We 
consider the equality (1.2) for general A E %‘, omitting the requirement of 
irreducibility. We use the concept of a 2-twisted chain of the graph G(A) of 
A, which was defined in [4]. Intuitively, a chain in a directed graph is 
obtained by putting a pointer at a vertex and moving it in the direction or 
against the direction of a connected sequence of arcs to another vertex. Each 
change in direction is a twist. A 2-twisted chain (e.g., cycle) is a chain with at 
most two twists. Thus a circuit (directed cycle) is a special case of a 2-twisted 
cycle. We show that for A E @ the condition (1.2) is equivalent to 

All cycle products of A corresponding to 2-twisted cycles are 
positive. (1.6) 

(and other conditions). This generalizes (1.3). 
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If C is an s x s matrix and A is an n X n matrix, where s < n, we 
generalized both the Kronecker and Hadamard products in [3] by defining 
the n x n matrix C x x A. Thus, if A is partitioned into s2 matrices A,,, 
i, j = 1 ,.*., s, then C x x A is the matrix whose blocks are cijAi j, i, j = 
1 , . . . , s. Here we show that if A E & is in Frobenius normal form, then A 
satisfies (1.2) if and only if 

A is diagonally similar to C X X ) A], where C is an upper 
triangular s x s matrix (s < n) such that (cij] is 1 or 0, and cii (1.7) 
is 1 or0, i, j=l,..., s, and zC satisfies (1.2) for 0 < z < 1. 

This generalizes (1.4). 
We also generalize (1.5) by defining the concept of a G(A)-access cover. 

A subset l? of (n)x(n), where (n)= {l,...,n}, is a G(A)-access cover if 
foreach(i,j)E(n)X(n)th ere is an (h, k ) E I? such that h has access to i 
in G(A) and j has access to k in G(A). We observe that {(i, j)} is a 
G( A)-access cover for all (i, j) E (n) X (n) if and only if A is irreducible [or 
equivalently, G(A) is strongly connected]. Thus, if I is a G(A)-access cover 
and A E a/, then (1.2) is equivalent to 

((Z-A)~‘lij=(Z-IAl)i;’ for (i,j)Er. 

It is easily seen that (1.2) is equivalent to 

for A E a’, where N is the set of natural numbers. Since, for all subsets S of 
N, 

1 I c A” G c IAl”, (1.9) 
Y E s s E s 

it is natural to define Equ(&, l?,S) to be the set of all A E L-& such that 

for (i, j) E I, (1.10) 

where&G%, I~(n)x(n),andScN. 
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The equivalences stated above, and others, are stated in terms of 
Equ( a’, r, N). It is clear that Equ( &‘, r, S) 2 Equ(&, J?, N) for S c N. We 
therefore call a subset of S of N (&, lksufficient if 

Equ(.&‘, r, S) = Equ(&‘, r, N). 

We give conditions equivalent to (d, (n) X (n)>sufficiency and (a, (n) 
x (n))-sufficiency. One of our results shows that if S is a subset of N, then S 

is (,$,(n)X(n)>suff icient if and only if (n) & CD(S), where CD(S) is 
defined thus: Let D(S) consist of all differences s - t, where s > t and 
s, t E S, and let CD(S) be the set of all greatest common divisors of subsets of 
D(S). As an application of this theorem let n = 10. If S = {3,9,10,13, IS} 
then CD(S) = (10) U {15} and hence S is (j, (10) X (lo))-sufficient. In 
other words, if A is an irreducible 10X 10 matrix, then the equality 

IA3 + A9 + Alo + Al3 +‘A181 = IAl3 + IAl + IAl” + [All3 + jA(‘8 

implies that for every set S of positive integers and arbitrary positive 
coefficients LY,, s E S, we have 

(assuming that the above series converge or that S is finite). In particular if 
p( 1 AI) < 1 then 

The general problem of characterizing (&, Q-sufficient sets and minimal 
(LZ’, r)-sufficient sets for J%’ c % and r c (n> x (n) is open. 
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PERTURBED AND MIXED TOEPLITZ MATRICES 
AS GENERALIZATION OF THE RESULTANT MATRIX 

by B. A. KON’” 

Let h j ( j = 1,2,. . . , Y) denote the distinct common zeros of the polynomi- 
als a(z) = l~=+zizi and b(z) = CTsObizi with complex coefficients, and let 
pi be the common multiplicity of Xj. Denote iV(a, b) = CY=,pj. 

It is well known (see [l] and references therein) that the vectors 

v,,~=((;)A+;:;-’ (k=O,l,..., pi-l, i=1,2 ,..., v) 

form a basis of the kernel of the resultant (Sylvester) matrix 

‘a0 

R(a,b)= b, 

\ 

. . . 

. . . 

The main aim of this note is to extend this result to some classes of 
analytic functions. As pointed out by Gohberg and Lerer ([2],[3]; see also 
[4], [5]), a generalization of the resultant matrix in the case of analytic 
functions leads to a convolution-type operator. The properties of this re- 
sultant are shown to be strongly dependent on the form of the domain. 

I. Functions Holonwrphic in a Unit Disk 

Let a(z) and b(z) be analytic functions in the unit disk 0,’ = {z E 

C : IzI < 1)) and let them admit the following representations as absolutely 

“‘Department of Mathematics, Technion-Israel Institute of Technology, Haifa, Israel 
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convergent series on 0,‘: a(z) =~~=“=oaiz’, b(z)=CpZObizi. Let N(b) be 
the number of all zeros of b(z) in 0,‘) and let h j (j = 1,2,. . . , v) denote all 
the distinct common zeros of a(z) and b(z) in 0,’ with the common 
multiplicity pj, and N(a, b) = E:=ipj. Introduce in the space 1’ the operator 
K,,(a, b) by the matrix 

b, b, b, ..- 

b, b, b, -.- 

THEOREM 1. Assume b(z) # 0, IzJ = 1. For every n > N(b) the vectors 

constitute a basis of KerK,(u, b). In purticulur, dimKerK,(u, b) = N(u, b). 

Note that this theorem in a more general setting is established in [5]. 
We also remark that some difficulty in constructing the operator K,(a, b) 

in Theorem 1 is caused by the need to know the number N(b) of distinct 
zeros of b( 5). This is removed in the following proposition. 

Construct the operator R(u, b) in 1’ by the following “mixed” matrix: 

R(u,b) = 

-a, a, u2 u3 *. 

b, b, b, b, . . 
a, a, u2 . . 

b, b, b, . . 
a, a, . . 

b0 b, . . 
. . . . . . . . . . . . . . . . . 

THEOREM 2 [6]. Assume u(z) f 0, b(z) # 0 on 1.~1 = 1. Then 
dimKerR(u, b)= N(u, b), and the vectors in (1) form a basis of the 

nuZlspuce of R(u, b). 
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ZZ. Functions Analytic in an Annulus 
We now assume that a(z) and b(z) are analytic functions in the annulus 

D + = { z E C : R - ’ < 1 z ( < R, R > 1) and admit the following representation 
in the absolutely convergent series on D’: a(z) = CT= ooa Jo j, b(z)= 

Cy= ~ ,bj.z j. Denote 

and introduce on Z2(R) the operator R,,, Ja, b) by the matrix 

02 aI Qn “-1 am2 ‘.. 

a2 aI ~0 *-I 0-2 ‘.’ 

b, 0, b,, b-, b_, ... 

= 

b; b; b; b-, b-, 
aa+ aail 0, aam1 

aa+ aa+1 0, 
,,,,,_...__.............._........................ 

THEOREM 3 [6]. Let a(z) and b(z) be as before, and a(z) # 0 for 

z E aDi. Then for all a > m and m > N(a) - N( a, b) the dimension of the 
subspace KerR,,,,(a, b) is equal to the number of common zeros (counting 

multiplicities of a(z) and b(z)) in D+. 

Recalling the remark following Theorem 1, define a “mixed” resultant 
operator in Z2(R) for n functions ai(.z)=Cp__ai,kzk (i=1,2,...,n) that 
are analytic in D+. Denote Ak=[a,,k,a2,k ,..., a,,k]T (k=0,+1,+2 ,... ). 
The relation 

R(a,,a,,..., a,) = IIAj-kllTk= -cc 

defines an operator on Z2(R). 

THEOREM 4 [6]. Assume a,(z)#O, z E aD+ (i=1,2,...,n). Then the 
vectors 

‘pi,j= (( i:k)hiri+‘+l’]rX__ (j=1,2,...,V, i=O,l,...,Pj-I), 



224 A. BERMAN, Y. CENSOR, AND H. SCHNEIDER 

where Xj (j = 1,2,..., v) are all common zeros ofa,(z),a2(z),...,a.(z) in 
D+ with common multiplicity pi, form a basis of KerR(a,, a2,. . . , a,). 
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BEZOUTIAN FOR SEVERAL MATRIX POLYNOMIALS 
AND POLYNOMIAL LYAPUNOV-TYPE EQUATIONS 

by L. LERER2” and M. TISMENETSKY2’* 

In this work we introduce a new concept of a Bezoutian associated with a 
family of matrix polynomials and, as an application, extend the classical 
Lyapunov method for determining the inertia of a matrix to matrix polynomi- 
als. 

Let L,(h) and M,(X) (r=1,2,...,s) be regular [i.e. L(X)+01 nXn 

matrix polynomials (we follow the book [5] in presenting the theory of matrix 

polynomials) such that riE 1 M,( A&( X) = 0. The generalized Bezoutian is 
defined as an pn X vn block matrix 

B =B(M, ,..., M,; L, ,..., I+):= [I-,~]“-’ ,I\ 
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the entries Iii of which are found from the expansion 

225 

(A -p) -I 2 M,(x)L,(~) = pe~~lx’pjrij. 
r=l i,j=O 

Here ~=max,S,G,degM,(h), v=max,.,.,degL,(X). In the scalar 
case n = 1 the classical Bezout matrix of two polynomials p(h) and q(X) is 
obtained by setting s = 2, M,(X) = L,(X) = p(X), and L,(X) = - M,(X) = 
q(X). In the matrix case with s = 2 the matrix in (1) coincides with the 
Bezoutian introduced in [l] if M,(X) is replaced by - M,(X). 

It turns out that the concept of a generalized Bezoutian plays a funda- 
mental role in relating matrix equations and equations in matrix polynomials. 

Consider the following equation in n x n matrix polynomials: 

M(X)Y(X)+ Z(X)L(X) = R(X), (El) 

where M(X) = X"Z +Ey:,' Ahj and L(X) = XVI +Pj:h Ail, are manic poly- 
nomials and deg R < v + p - 1. The set of all solutions pairs (Y(X), Z(h)) 
such that deg Y < y, deg Z < 6 will be denoted by Yy,, 6 (E,). Without loss of 
generality we may assume that R(X) is represented in the form 

R(A)= - c M,(+,(X), (2) 
r=3 

wheredegM,<p, degL,gv-1 (r=3,...,s). 
The representation (2) allows us to associate to each solution (Y(X), Z(h)) 

E %-I,,-1 (E,) the pnXvn Bezout matrix B,.z:=B(M,Z,M,,..., 
M,; Y, L, L,, . . . , L,) generated by the equation (E,). 

Now consider the matrix equation 

e,x-XC,=R, 

where C,* and c, stand for the first and the second companion 
L( X ) and M(X), respectively, and 

R = 2 M,(~,,Z"')L,(X"',C,). 
r=3 

(Ed 

matrices of 

(3) 
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HereX@‘=[Z 0 ..a 01, Z(“)=[Z 0 a.. O]r andforA(h)=x;=,Aju.we > I 
set 

4X A( &, Z’“‘) := 2 &#‘)a j. 
j=O j=O 

By .F(E,) we denote the set of all solutions of the equation (E,). 

THEOREM 1. Preserving the above assumptions, the equation (E,) is 
solvable of and only if the equution (E,) is solvable. Moreover, the mapping 
fi defined on YV_ ,,,_,(E,) by p(Y(X), Z(X)) = B,,, is injective and maps 

(E,) onto f(Ea). The inverse mapping p-l: 9(E,) + YV;-i p_l(E1) 
ztil$-f:lbws. Zf S = [Sjk]T,;$-’ E y(E,), then p-‘(S) = (Y,(A): Z,(h)), 
where 

u-l 

Ys(V = c AkS,-l,k - 
k=O r=3 

(4) 

z&q = - 1 hjSj,,_l. 
j=O 

Note that the equation (E,) depends on the choice of the decomposition 
of R(X) in (E,) and that the one-to-one correspondence in the theorem 
relates to that choice. 

Using theorem 1, we describe the set YV,,(E,) also in the case deg R(h) 
< v + p and obtain these results in a more general setting of arbitrary matrix 
polynomials L(X) and M(X). Also we show that (Ea) can be replaced by 
matrix equations of more general type of which the coefficients are de- 
termined by the spectral data of L(X) and M(h). 

Returning to manic polynomials L(h) and M(X), we remark that S. 
Barnett [2] was probably the first who observed in the case deg R(X) Q v + 
p - 2 the connection between the equations (E,) and (E,), and, by a 
different method, established the formulas (4) for this case, i.e. with mrp = 0, 
r=3 , . . . , s. However, the fact that the connection between (E,) and (E,) is 
established by the mapping p, as well as its properties, is new even in this 
case. 

Proceeding to applications, recall that the inertia of a matrix A E C nxn is 
defined as a triple of integers In A = (r(A), v(A), 6(A)), where T(A), v(A), 
and 6(A) denote the numbers of eigenvalues counted with their multiplicties 
with positive, negative, and zero real parts, respectively. If In A = (0, n,O), 
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then the matrix A is called stable. Lyaponov’s theorem [8] (see also [6], for 
instance) states that an n x n complex matrix A is stable if and only if there 
exists a negative definite matrix H such that for some positive definite W (for 
brevity, W > 0), 

The Lyaponov 
independently, by 

AH+HA*=W, WSO. (5) 

theorem was generalized by M. G. Krein (see [4]) and, 
A. Ostrowski and H. Schneider [Q], and 0. Taussky [lo], 

who show that if a Hermitian matrix H satisfies (5) then 

r(A) = n(H), v(A) = v(H), 6(A)=6(H)=O. (6) 

Conversely, if S(A) = 0, then there exists a Hermitian matrix H such that (5) 
and (6) hold. 

More general inertia theorems expressing the inertia of A in terms of that 
of H, H=H*, satisfying the Lyaponov equation AH + HA* = W with a 
nonnegative definite W, are established in [3], [ll], and [12]. 

In this work the classical inertia results are extended to matrix polynomi- 
als. 

Define the inertia of a regular matrix polynomial L(h) by the triple 
y(L)=(y+(L),y_(L),y,(L), where y,(L),y,(L) denote the numbers of 
eigenvalues of L(X), counted with their multiplicities, lying in the open right 
(left) half plane and on the imaginary axis (including infinity), respectively. It 
turns out that for matrix polynomials the equation in (5) should be replaced 

by 

L( - X)z$A) + L,( - x)L*(x) = t M,( - X)MP(X), (7) 
r=l 

where degL(X)=Z, degL,(X)<l-1, and degM,(X)<Z-1 (l=~r<s). 
Here A*(X) = Xi=, hjar for A(X) = Ct=, Xja j. Observe that (7) becomes (5) 
when L(X) = A - XI, L,(X) = H, and M, = Wt. 

When concerned with determining the inertia with respect to the real 
axis, the equation 

should be taken instead of (7). 
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Denote by I% the matrix B D, where D = diag[Z, - I,. . . , ( - l)‘-‘I ] and 
B denotes the Bezoutian associated with (7). Note that b is Hermitian. Let 
M,(X) = xi:‘, Xjmj, and 

1 

1 rii$l, > 0, (8) 
r=l 

where fir = [m,, iml, *. . i’-‘m,_,,,]. 
Using Theorem 1, we establish the following generalization of the Krein- 

Ostrowski-Schneider-Taussky theorem. 

THEOREM 2. Let L(X) be an n X n manic matrix polynomial. Zf there 
exists a matrix polynomial L,(X) of degree < I- 1 such that (7) holds for 
some M,(h) satisfying (B), then 

Y+(L) =m7 Y_(L) = @), yo( L) = 6@) = 0. (9) 

Conversely, if yo( L) = 0, then there is a matrix polynomial L,(h) of 
degree < 1 - 1 such that (7)-(g) are valid. 

Note that the assertion of Theorem 2 can be extended to an arbitrary 
regular matrix polynomial. Also, generalizations of other inertia theorems are 
obtained. The condition (8) is removed in this case. 
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ON A PARALLEL ALGORITHM FOR 

INHERENT SERIAL TECHNIQUES 

by AVI LINz8 

The present manuscript describes a new parallel algorithm to solve 
general linear recurrence systems with the dimension of N. Nowadays it is 
well recognized that one of the main bottlenecks in the realization of a 
parallel algorithm is the communication-time complexity. The important 
feature of the present algorithm is that it minimizes the broadcasting time 
(which can be shown to depend linearly on N ). 

In a little more detail this algorithm can be summarized as follows: Given 
the linear system of equations 

Ay=b (1) 

for the vector y, where A is an (m + n)~ n matrix with a, j=O for 
j > m + i, it is desired to solve for the last n components of y in terms of its 
first m components. Thus, A can be described as 

(2) 

where D,,, n is a general m X n matrix. We define also 

the augmented (m + 1) X n matrix B as 

B=[b 1 D], (3a) 

” Gxnputer Science Department, Technion-Israel Institute of Technology, Haifa, Israel, 
:3%ux~. 



230 A. BERMAN, Y. CENSOR, AND H. SCHNEIDER 

the n-element vector x with the components 

the formal vector d as 

(3b) 

dT= (1, - yr, - y2,...r -Y,,). (3c) 

Thus the solution to Equation (1) can be carried out as follows: assume that 
x = Cd, where C in an (m + 1) X n matrix, then find a C such that 

Lx=Bd. (3d) 

This problem, which is denoted by L DIAG(~, n; *), and can be also pre- 
sented as follows: transform the m&x [B,+ 1, n IL,] into the matrix 

W ,,* + r, n 1 I .], by applying row operations only, while using only ( *) processors, 
and where I,, is the n X n identity matrix. The main issue of the present 
paper is the following: given a P-processor machine, it is desired to solve the 
problem L DIAG(M, N; P) for large N by using all the available P processors, 
trying to minimize both their idling time and their communication time while 
keeping a good efficiency coefficient for any number P of processors. The 
following new algorithm is suggested: 

Step 0: Splitting. Divide the matrix [B IL] into P (not necessarily equal) 
horizontal pieces (strips). The rth strip has the width (number of rows or 
equations) of n,, and its first row contains m, + 1 nonzero elements, where 

r-1 

mr= 1 nj+M, r=1,2 P. >..‘> (4) 
j=l 

Step 1: Local elimination. Assign to every strip r one (say the 7th) 
processor element, and solve with this processor the problem L DIAG( IZ~, m,; 1). 
This step will be terminated by all the processors at the same-time. This time 
is denoted by K. 

Step 2: Global elimination. For r = 1,2,. . . , P - 1 take the x results 
from the rth strip and substitute them into the remaining N - n,+r equa- 
tions. The time needed for this step to be terminated is denoted by R. 

The main problem here is to find such a partitioning ni, 1~ i < P, that 
the condition expressed in Step 1 will be fulfilled. Such a strategy is given by 
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the following lemma: 

LEMMA 1. If the time needed for all the processors to finish their tasks 
of locul elimination is the same, then the following relations hold between 
the widths n, of the various strips and K: 

ni[M+l+~:.,j(~+ni)12n, l<i<P, (5a) 

5 nj=N CW 
j=l 

where p is the ratio between the time for subtraction and the time for 
addition plus a multiplication. 

This lemma presents a system of P f 1 equations for P + 1 unknowns 
which are all the n,‘s and the time K. For comparison purposes, the 
“undimensional” time h = K/[(M + 1)N2] will be used for the time of the 
first phase of the algorithm, and similarly u = R/(MN2) for the time of 
the second phase. An important feature of this splitting strategy is that for 
M > 0 and j3 > 0 the solution for the system of equations given in Lemma 1 
yields 

12, > n2 > n3 > . . . > nP. 

Lemma 1 serves for finding the optimal strip division before the algorithm 
is executed. Its equations (5) lead to the following lemma: 

LEMMA 2. For M/N * 1 and P/N a 1, the local-elimination step of 
the present algorithm can be optimally applied if nj, 2 < j < P, are equal to 
one another and to /N(M; the optimal distribution in the other cases 
(M/N-land/orP/N-1) is when all the equations are spread evenly over 
the P processors. 

Using these results, the speedup of this algorithm for P < N I+ M is 
roughly 

1 
S(M,N;P)= 

[ 

P-l P-2 P-l 

l-/m l- P @iTip ii 1 
when all the processors are used during the global elimination phase of the 
algorithm. Checking numerically the variation of the efficiency r~ with the 

(6) 
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relative number of processors 5 = (P - 1)//m, one finds that n 
attains its maximum value of 1 in all cases for N = P2/(A4 + l), and it attains 
a minimum value for all N’s in the range of 0.3 < E Q 0.5. Unfortunately, the 
results obtained from Lemma 1 are poor compared to those obtained from 
Lemma 2, leading to the conclusion that the assumption given in Lemma 2 
can be used only for P//m < 0.3. 

The following lemma deals with the last relevant relations among N, P, 
and M. 

LEMMA 3. For P - N, Step 1 of the present algorithm is optimally 
applied for 

ni = N/P, i=1,2 P. ,...> (7) 

For communication we assume the following simple model: when a 
processor element broadcasts u packets of information (say bytes or words), 
the broadcasting time T measured in units of t will be 

T=a+bu, (8) 

where a is the “waking” time for the communication controller of the PE. 
With this model it can be shown that the minimum communication time 
complexity is O(MN) and also the following result holds: 

LEMMA 4. The communication time that the present algorithm uses is 
optimal, and for the case where the equations are not redistributed in the 
global-elimination phase, the total time is 

T total=(P-l)ar+(M+l)N 2[;(l-$)+u(N,P)] (9) 

where r is the ratio between a unit of communication time and a unit of a 
computation time. 

The fact that the communication time in all other algorithms is larger 
than the communication time spent by the present algorithm by a factor of 
= N/2 makes this algorithm very attractive. 

We now consider stability. One of the popular measures for the stability 
of a parallel algorithm in comparison with the stability of the corresponding 
serial algorithm is the ratio p of the number of computational operations of 
the parallel algorithm to that of the sequential one. Considering operations of 
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the type ( + & * ), for the case where P -=K N or M -C N, it can be shown that 

p=l+(P-1) l- 
[ &&]1> 

while for the other cases 

1 
p=l+O p3 . 

i 1 

(104 

(lob) 

Thus the influence of the instability is bounded, and it attains its maximum 
value near the end of the region where Equation (10a) is applicable. Using 
some additional theorems, the following maximum value for p can be 
obtained: 

P+l 

p”2. 
(11) 

This result gives a realistic estimation for the stability of the present al- 
gorithm. 

The general approach of the present algorithm can be used also to find 
the inverse of a triangular matrix in a parallel manner by an almost straight- 
forward extension. Let us denote the problem of solving L DIAG(M, N; P) for 
Q RHS vectors by L DIAG(M, N, Q; P), with the understanding that 
L DIAG(M,N,~;P)=L fi~~(M,N;P).Herethenew(M+Q)xNmatrixR 
is-defined by taking the matrix B and appending to it, on its left, Q column 
vectors which are the Q RHS vectors b with opposite signs. Thus R has the 
following structure: 

R= [ -b, 1 -b,) ... ) -b,( B,,]. 

Let us first state the following equivalence lemma. 

(12) 

LEMMA 5. A parallel solution of the problem L DIAC( M, N, Q; P) can 
be obtained by solving a problem of the type L DIAG(-M + Q, N; P) with the 
present algorithm, where the matrix [B IL] in tze algorithm formulation has 
to be replaced by the matrix [R IL], 
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The general inverse of the matrix A of the type given by Equation (1) can 
now be defined by solving the problem L_DIAG(M, N, N; P), where the RHS 
is composed of N vectors bi, 1~ i < N, where b, is a 0 vector except that in 
its ith entry it has a 1. This means that the exact (“pure”) inverse of an 
Lmatrix is obtained for M = 0. According to Lemma 5 this can be done by 
solving the problem L_DIAG( M + N, N; P). The most interesting feature of 
the numerical results is that the value of Pn,/N approaches an asymptotic 
value for quite smaIl P. This fact is summarized in the following Lemma. 

LEMMA 6. The distribution of the equations for the optimal parallel 
solution of L_DIAG(N, N, N; P) with the present algorithm is such that as 
P/N increases the value of Pn, /N monotonically increases like 
l/(1 - 0.145PT) with 0 -C r +z 1. 

Numerical results show that the average value of I is 0.055.. . and 
increases very slowly with P. It now can be proven that the computational 
times spent in this case are A = 4(3 -&)/P’ and u = :(17 - 12fi) + 
(2 - &)/P. The speedup of the computational time only is = P/6(2 - a), 
and the efficiency is = 0.285. 

Another algorithm for the inverse, which is better than the previous one, 
is also presented: 

Step 0: Splitting. Divide the matrix R into P horizontal strips. The rth 
strip has width of nr, and its i th row contains m, + 2i - 1 nonzero elements, 
where m, is defined by Equation (4). 

St@ 1: Local elimination. Every strip is assigned to a processor which 
solves L DIAc(n,, m,, n,; l), taking into account the positions of the zero 
entries. This step will be designed so that all the processors will finish their 
work defined by this step at the same time. The time for termination of this 
step is denoted by K. 

Step 2: Global elimination. For r = 1,2,. . . , P - 1 take the results from 
the r th strip, and substitute them into the remaining N - m,, 1 equations, 
with caution about zero substitution or “zero” subtraction. The time for this 
algorithm to be terminated is denoted by R. 

The problem in implementing this algorithm is similar to the problem that 
was discussed for L DIAG(M, N; P): how to partition the matrix R in the 
splitting step so that ihe condition expressed in Step 1 will be fulfilled. Such a 
strategy is given by the following lemma: 

LEMMA 7. If the time needed for all the processors to finish their tasks 
in the local-elimination phase is the same, then the following relations 



HAIFA 1985 CONFERENCE ON MATRIX THEORY 235 

between the width of the ith strip, nj and K holds: 

i-l 

ni 3M+3+3 c nj+ni l<iiP, (I3a) 
j=l 

subject to 

P 

c nj = N. 
j=l 

This lemma presents a system of P + 1 equations for P + 1 unknowns 
which are all the nils and the time K. R can be also approximated as follows: 

VW 

LEMMAS. The time needed for the global substitution without dynamic 
redistribution of the rows among the processors is 

R = (M + l)N% + N3r, (Ida) 

where 

1 P-l i 

7F- 
N3 j=ln, c .[E nrnT+l 

*=l 
(14b) 

Like Lemma 1 for the previous algorithm, Lemma 7 in the present case 
dictates the splitting strategy of the system. This system is very similar to that 
presented by Lemma 1. However, it has quite different features, as shown by 
the following lemma: 

LEMMA 9. The set of reals [ n,/n,], where the set [nil is given by 
Equation (13a), does not depend on N or P for small values of /3 and M. 

Using this lemma, one can easily prove the following approximation: 

LEMMA 10. The splitting of the system in phase 0 of the algorithm is 
such that 

n, C 
_-- 
n1 

ir’ (15) 

where 5 < r < $ and the value of l? is close to 5. 
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Redefining A = K/N3, it can be shown that X = i(r~i/N)~, where the 
globalelimination phase and M - 1, r is the undimensional time, as can be 
verified from Equation (14a). All the quantities A,a, and T can be shown to 
decrease monotonically with increasing I’. It can also be proven that 

(l- q2 
‘= 2-3I’ 

P-l, 06) 

Similar results were obtained from numerical experiments. Using Equa- 
tions (16) it can be shown also that to first order, the efficiency is constant 
and equal to (1 - Q2/(2 - 3r) = 2. 

The total communication time T, that this algorithm uses is 

This amount of time is smaller than the I”/N3 = 1 in the other algorithms. 

DIMENSIONS OF FACES GENERATED 
BY CERTAIN POSITIVE LINEAR OPERATORS 

by RAPHAEL LOEWY2’ 

Let R” denote the vector space of all real n-tuples. A subset K of R” is 
said to be a convex cone if it is convex and cxx E K for all ry > 0, x E K. The 
cone K is pointed if K n( - K) = {0}, and proper if it is pointed and closed 
and spans R”. AU cones considered here are assumed to be proper. 

A cone K induces a partial order, namely, for r, y in R” define x < y if 
and only if y - x E K. A face F of K is a subcone of K such that 0 < y < x 
and x E F imply y E F. Any one-dimensional face of K is called an extreme 
ray. Note that K must have at least n extreme rays. If x E K, x f 0, and the 
ray through x is an extreme ray, we say x is an extremal of K. We let Ext K 
be the set of all extremals of K. It is well known that K is the convex hull of 
its extreme rays. 

A cone K in R” is said to be polyhedral if it has finitely many extreme 
rays, simplicial if it has exactly n extreme rays, and minimal if it has n + 1 

““Department of Mathematics, Technion-I.I.T., Haifa 32000, Israel 
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extreme rays. A cone K is said to be decomposable if there exist two nonzero 
faces F, and F, such that K = F, + F2 and span F, n span F, = { 0). Other- 
wise K is said to be indecomposable. 

Given two cones K, and K, in R” and R”, respectively, let n( K,, K,) = 
{ A E R”‘, ’ : AK,C K,}. If K,= K,= K, we write r(K) for r(K,, K,). 
Since V( K I, K,) is itself a proper cone, the following problem is of great 
interest: 

PROBLEM 1. Find the set Ext n( K 1, K,). 

Generally, this seems to be a very difficult problem. One exception is the 
determination of the rank-one extremals of v(K,, K,): see [5] and [7]. We 
describe now some results associated with Problem 1. We assume K, is not 
simplicial, for the case that K, is simplicial is obvious. 

Fiedler and Ptak [4] have characterized Ext ?T( K I, K 2) in case K 1 and K, 
are indecomposable minimal cones. Their interesting result is somewhat too 
complicated to be quoted in this short note. However, it follows from their 
analysis for this case that for some T > 0 the set of ranks of members of 
Ext r(K,, K,) is {1,3,4 ,..., r}. 

Adin [l] introduced the concept of Gale pairs to study the set 
Ext n( K,, K,) for K,, K, polyhedral. He describes a procedure to determine 
Ext n( K,, K,). In particular, he considers the case that K, is minimal and K, 
is an arbitrary polyhedral cone, and generalizes the result of Fiedler and PC&. 
Tam [lo] also obtained results concerning Ext V( K,, K2) in case K, is 
minimal, generalizing the results of [l] and [4]. 

Loewy and Schneider [7] characterized Ext n( K,), where K, = {x E 
R”: x, 2 (qr;x~)“2} and n > 3. They showed that the only extremals of 
a( K .) of rank greater than one are operators which map K, onto itself. 

The preceding results deal with some special cases of Problem 1. The 
following result gives sufficient conditions for A E a(K,, K,) to be an ex- 
tremal. 

THEOREM 1. Let K, and K, be cones in R” and R”‘, respectively, and 
A E R”‘, “. Suppose the following conditions hold: 

(i) K, is indecomposable. 
(ii) KerA = (0). 
(iii) A Ext K, c Ext K,. 

Then A E Ext V( K,, K,). 

This result was stated by Loewy and Schneider 173 for the case K = K 1 = 
K,, but the same proof goes through for arbitrary K, and K,. O’Brien [9] has 



238 A. BERMAN, Y. CENSOR, AND H. SCHNEIDER 

constructed an example of an indecomposable cone K and a nonsingular 
A E Ext P(K) that does not take Ext K into itself. 

In general, none of the hypotheses of Theorem 1 may be omitted. 
However, if A E ?r(K,, K,) and has rank r, it is of interest to obtain bounds 
on the dimension of +(A), the face generated by A. So suppose now K, and 
K, are cones in R” and R”, respectively, and A E R”,“. Suppose that 
A, K,, K, satisfy 

(iii)’ A Ext K, _C Ext K, U (0); 
(iv) K, and AK, are indecomposable cones; 
(v) rank A = r. 

We ask 

PROBLEM 2. When do we get the inequality 

Loewy [8] showed that (I) holds if K has n + 1 or n + 2 extreme rays. 
There exist examples where K, has n + 3 extreme rays and (I) fails to hold. If 
the cone generated by any n +2 of the extreme rays of K, is indecomposable 
and the same holds for the cone generated by any r + 2 of the extreme rays of 
AK,, then (I) holds. 

Proofs of unpublished results will appear elsewhere. 
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HIGHER-DIMENSIONAL EUCLIDEAN 

AND HYPERBOLIC MATRIX SPACES 

by BINYAMIN SCHWARZm* and ABRAHAM ZAKS3a 

1. Zntroduction 

Complex n x n matrices are denoted by capital Latin letters P = (pik);. 
Complex n x mn (n, m > 2) matrices are denoted by capital script letters 
and are often written in block form 9 = (I’, . . . P,,,), where each Pi is an 
n x n matrix. The set of all n X mn matrices B of rank p(9) = n is called 
C,( m, n), and only such full-rank matrices will be used. Two such matrices 9 
and 8 are (row- or left-) equivalent if there exists an invertible n X n matrix 
R such that @=(8, ... p”,)=(RP, ... RP,,)=RB, JRj+O. The 
corresponding equivalence classes are the points of P = P,,_ l(M,(C)), the 
mdimensional projective space over the complex n x n matrices. The point 
corresponding to the matrix 9’ is denoted by P, and we write P = f(g), 
B E f- ‘[PI and call f the standard map from C,(m, n) to P. The topology 
of P is the quotient topology relative to f and the usual topology of 
C,( m, n). Pis a connected and compact Hausdorff space whose topology has 

a countable base [3]. 

In [4] we considered several metrics for the projective matrix line 
P1( M,,(C)). To define these metrics also for the higher-dimensional space 
P = P,,,pl( M,( M,(C)), m > 2, we embed P into the line P’ of matrices of 
appropriate dimension P’ = P1( M,,,,_,(C)). We add primes to the letters 
used for matrices and points of this space. P’ is thus an (mn - n) x (mn - n) 

matrix; (mn - n) X2(mn - n) matrices are written in block form 9” = 
(Pi Pi). The set of all full-rank matrices of this size is called Ca(2, mn - n). 
C,( m, n) is mapped into (32, mn - n) in the following way. For every 
Y=(P, . . . P,,,) E Co(m, n) we define two (mn - n) X(mn - n) matrices 

P, ... P”,J ‘P,, 0 . . . 01 
. . . 

P; = 
0 0 

. > Pz’ = 
0 I ... 0 
. . . > . . 

0 . . . 0 (j 0 . . . ;, 

and set 9’ = (Pi P,I) = g(9). This map induces a map from P = 

‘J” Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, 
Israel. 
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P,,,-l(M,(C)) into P’=Pl(M,,_,(C)): 

Z’he map h fiorn P to h(P) c P’ is a homeomorphism [6]. 

2. The Euclidean Geomety 
The set Pf of finite points of P is defined by Pf = {P: 9 = (P, . . . 

Pm> E f-‘CPI, IpmI + 0). F or any finite point P we use, in this section, its 
uniquely given canonical matrix 9 = (P, . . . P, _ ,I ) E f- ’ [PI. The map of a 
canonical matrix is again canonical: 9’ = g(9) = (P’ I ‘), hence h( Pf) c 

(P’),-. The Euclidean distance of P=f(P, . . . P,,_r Z) and Q=f(Q1 . . . 
Q,,_l I) is defined by d(P,Q)= jICy:I1(Pi - Q,)(P, - Qi)*((l/‘, where 11 11 
denotes the spectral norm. 

THEOREM 1. Let P and Q be points of Pf c P = P, _ I( M,( C)), and let 
P’ = h(P) and Q’ = h(Q) be their images under the map h. Then P’ and Q’ 
belong to ( P’)f C P’ = P1( M,,_,(C)) and d(P,Q) = d(P’, Q’). The function 
d(P, Q) defines a metric fir Pf 

The finite part Pr of P,_ 1( M,(C)) with this metric may be called 
E = En’-‘(M,(C)), the (m - l)-dimensionul Euclidean space over the com- 
plex n X n matrices, and we use the notation P = (P,, . . . , P,, _ 1 j instead of 
P=f(P, . . . P”[_1 I ). Linear dependence and linear subspaces in 
P,,, _ 1( M,(C)) were considered in [5]. The hyperplane 7~ in E is given by 

P,A; + . ’ . + P,,_ ,A*,,_ 1 = A*, (1) 

whcre&a=(A, . . . A,,_,)isofrank n. As we may replace .&a and A by 
R JipO and RA, (R ( f 0, we may assume that 

A,AT + . . . + A,,_rA*,,_r = I. (2) 

THEOREM 2. Let the hyperplune r of E = E”‘-‘( M,,(C)) be given in its 
normal form, i.e. by Eqs. (1) and (2). Let Q=(Q1 ,..., Qn,_r) be an 
arbitrary point of E. Then d(Q, T) = llQIAT + . . . + Qm_rA:,_ r - A*\\. 

3. The Hyperbolic Geometry 
Let 0 = f(0 . . . 0 Z) be the origin of P = Pmz_ 1( M,(C)), and let 

A = {P: do, P) < 1) be the unit ball of P. We use now the subset I of 
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C”(% n): 

l 
m-l 

J= 9:9=(P, . . . Pm), P,P,*- c PiPi*= 
i=l I 

andhaveA={P:~‘E_,[P],9EJ}.ForanypairP,QofpointsinAlet 
9=(P, ... f’,)~f-~P’l, s=(Q1,...,Qm)~f-l[Q], 9,2~J, and de- 
fine H(9, 9) = P,,,Q, - Xy!pll P,Q,. W e set p (P,Q) = IIH(S, 2)H*(9,9) - 
111 ‘/’ and define the pseudochordal distance $(P, Q) = p(P, Q)/[I + 
$V> Q)1"2W. PI). 

THEOREM 3. Let P and Q be points of the unit ball A of P = 
Pm,_ I( M,(C)), and let P’ = h(P) and Q’ = h(Q) be their images under the 
map h. Then P’ and Q’ belong to the unit ball LI’ c P’ = Pl( M,,_ ,(C)), and 
#(P,Q) = $(P’,Q’). The function \cI(P,Q) defines a metric for A. 

The pseudochordal distance + leads to the non-Euclidean (hyperbolic) 
distance E,. 

THEOREM 4. The function 

E,(P, Q) = : log 
1+ G(PtQ> 

1 - d&Q) 
= arcsinh p(P, Q) 

defines an intrinsic metric for the unit ball A of P = P,,_,(M,(C)). 

In the real scalar case, i.e. for the ordinary real (m - l)-dimensional 
projective space P,,_ 1( R), this metric reduces to the metric of the hyper- 
boloid model [l]. 

A detailed version of these results will be given in [7]. 
This research was supported by the fund for the promotion of research at 

the Technion. 
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FROM COMPLEX NUMBERS TO 
COMPLEX MATRICES ALONG THE PROJECTIVE LINE 

by BINYAMIN SCHWARZ31 and ABRAHAM ZAKS3i* 

In the theory of functions one compares the Euclidean plane E and the 
Riemann sphere S by the stereographic projection. The Mobius transforma- 
tions w = (zc + d)-‘(za + b), ad - bc = 1, are used in the study of the unit 
disk D and the upper half plane H. These parts of the classical theory lead to 
the use of projective geometry. The projective line P consists of equivalence 
classes of nonzero pairs (z,, za) = (rzi, rz,), where z = zi/zz. It results that 
the Mobius transformation is a linear mpa on P (where w = wl/wz): 

wi = z,a + z,b, w2 = zlc + z,d. (1) 

The complex numbers correspond to the finite points (z, 1) of P. The 
“north pole” N = (LO) represents the point at infinity. 

By properly choosing r = eie we may pick a representative for (zi, za) so 
that z2 is real. We may further choose r so that zz is real and zizf + zazz 
= 1, where z* denotes the complex conjugate of z. If zi = x + iy and 
z2 = z, where x, y, z are real numbers, then these points lie on the unit 

sphere B in R3, x2+ y2+ z 2 = 1. On B, (z,, .z2) and (- zi, - zz) corre- 
spond to the same point on P, and the equator (z, 0) corresponds to the north 
pole. 

To obtain unique representatives, we now consider the points (z,*z,, zgzz) 
in R3 that lie on the Riemann sphere S of radius i, centered at (O,O, i). Thus 
S may serve to represent P. 

Antipodal points in S correspond to perpendicular points (zi, z2) and 

(“13924) in B. There results a 2 ~2 unitary matrix Z whose rows are these 
points (see Figure 1). 

To study the points (x, y) of the Euclidean plane E we identify them with 
the finite points of P, that is, (z, 1). In R3 these correspond to the points 
(x, y, 1). The projective equivalence induces the map 

(z,l) E E + (uz, u) E B + (u”z, u”) ES. (2) 

“’ Department of Mathematics, Technion, Haifa 32oo0, Israel. This research was supported 
by the fund for the promotion of research at the Technion. 
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FIG. 1. 

If Z and W are unitary matrices corresponding to two points 
antipodes), then the chordal distance is derived from R = ZW-‘: 

llRdl= llR,,Il =d,(z,w) =Ij(l+ zz*)-l”(w- z)(l+- w*w) 1’21/> (3) 

while the intrinsic distance is obtained using arcsin. The unitary matrices 
represent the distance-preserving motions of S. 

For the Euclidean plane E, the point at infinity is a fixed point. To a 
point z in E there corresponds a matrix Z whose rows are (1 0) and (z 1) (Z 
is a Euclidean motion). If w is another point in E, and W the corresponding 
matrix, then R = ZW-’ gives rise to the Euclidean distance llRzlll = 

d,(z, w ) = (1 .z - w II. The Euclidean matrices preserve the Euclidean dis- 
tance. 

The stereographic projection of E into S may be derived from the fact 
that for finite points (z,, za) E P we have (z,lzi, 1) E E and (zz,, zza) E B, 
where w* = (ziz~ + zzzz) * - ’ Note that usually the stereographic projection . 
maps S - {N} (or B - {N}) into E, = {(z,O)}, while here the map is into 
E = {(z, 1)) (see Figure 2). 

To investigate the unit disk D, we note that (z,, za) E D if zazz - ziz: 
> 0. We may normalize by choosing a representative for which .zazg - xiz: 
= 1. Hence, if za = z and zi = x + iy (with X, y, z real, z > l), then z2 - x2 
- y2 = 1. The upper sheet of this hyperboloid of two sheets represents D in 
R3. The points on x2 + y2 - z2 = 1, z > 0, represent the points outside of D. 

(and their 
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FIG. 2. 

If (z, 1) E D, then the inverse point is (1, z *). We may normalize them as 

(ql)=((l-~~*)-%,(~-zz*)-~‘~)=(z~,z~)ED, (4) 

(1, z*> = ((1- z*z) -1’2,(1- z*z) -“%*) = (Zi, z2). (5) 

Let J be the 2 X 2 matrix whose rows are (1 0) and (0 - l), and let Z be 
the matrix whose rows are (zi z2) and (zs zq). Then J = ZJZ*. We say that 
Z is J-unitary. If W is another pair of inverse points inside and outside D, 
then R = ZW- ’ gives rise to the non-Euclidean (hyperbolic) distance, 

I~A,,~I=llAlzll=d,(z,u;)=1((1-zl;*)-”2(z-u:)(l-~*w)-“211. (6) 

The intrinsic metric is achieved using arcsinh. The motions that preserve 
these distances are given by J-unitary matrices. 

The maps that carry the unit disk into itself are necessarily contractions. 
The relations of the Riemann sphere, the Euclidean plane, and the unit 

disk are described in Figure 3. 
The upper half plane H consists of the points (z, 1) for which - i( .a - .a *) 

> 0. The conjugate point in the lower half plane is (z*, 1). We choose a 
representative for the point on H that is (z,, z2) = r(z, l), so that - i(z,z,* 
- z2zr) = 1 (by choosing r so that rr* = [ - i(z - z*)]-‘). In a similar way 
we choose the representative for (z*, 1) = (z,, zq). We let Z denote the 
matrix whose rows are (zr z2) and (za zq). Let K denote the matrix whose 
rows are (0 - i) and(i 0). Then ZKZ* = J. 

We term Z a K-unitary matrix if ZKZ* = K. If W is a matrix representing 
another point in H and its conjugate, then R = ZW-’ gives rise to the 
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FIG. 3. 

Poincare metric (using arcsinh): 

llRz,ll = IlRull = &( s,u:)=~~(z-2*)-1’2(~-w)(w-w*)-1’2~~. (7) 

The metric-preserving motions are induced by K-unitary matrices. Since a 
unitary matrix U exists such that UJU * = K, then ZKZ * = J whenever UZ is 
a K-unitary matrix. 

The advantage of this approach using the projectiveline model lies in the 
fact that it is possible to extend the results from the complex numbers to the 
matrices with complex entries, with the obvious changes, e.g., z* denotes the 

FIG. 4. 
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FIG. 5. 

di - df = mn 

FIG. 6. 

conjugate transpose of z, and 11 11 is the spectral norm. Further generahza- 
tions may be derived to general rings of operators. Furthermore, by allowing 
a change in the ring of scalars, we are able to study similar properties of 
higher-dimensional spaces by embedding them in a suitable projective line. 

An interesting difference occurs in the study of the circles. In the matrix 
case it is necessary to consider both centers: in S the pair of antipodal points, 
in D the pair of inverse points, and in H the pair of conjugate points. We 
have to impose some equalities, in view of the fact that the circles have two 
centers and therefore two radii. These equalities hold naturally in the scalar 
case (see Figures 4, 5, 6). 
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ON THE UNIQUENESS OF THE LYAPUNOV SCALING FACTORS 

by DAFNA SHASHA3’* and ABRAHAM BERMAN3”= 

A matrix A E R”, ” is (positive) stable if all its eigenvalues lie in the open 
right half plane. By Lyapunov’s theorem [5] A is stable if and only if there 
exists a matrix H > 0 such that 

AH+HAT>O, (1) 

where X > 0 means that X is positive definite. A real matrix A is Lyupunov 

diagon.uZZy stable if the matrix H in (1) can be chosen to be diagonal, i.e., if 
there exists a positive diagonal matrix D such that 

AD+DA?‘>O. (2) 

A is Lyupurwv diagonally semistable if there exists a positive diagonal matrix 
D such that 

AD+DAT>O, (3) 

where X > 0 means that X is positive semidefinite. 
Lyapunov diagonal stability and semistability play an important role in 

some problems in ecology and economics; see e.g. [l] and the references 
there. 

The matrix D in (2) or (3) is called a Lyupunm scaling factor of A in [3], 
where the question of its uniqueness is studied. A related question is studied 
in [4]. 

““Departn~nt of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, 
IXkael. 
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Clearly, if D is a Lyapunov scaling factor of A, then so is kD for every 
positive scalar k. Thus by saying that A has a unique Lyapunov scaling 
factor we mean uniqueness up to multiplication by a scalar. It is also clear, 
by continuity considerations, that a Lyapunov diagonally stable matrix does 
not have a unique Lyapunov scaling factor. Motivated by this observation, 
Hershkowitz and Schneider [3] defined A to be Lyupunov diagonally near- 
stable if it is Lyapunov diagonally semistable but not Lyapunov diagonally 
stable, and suggested the following conjecture: 

CONJECTURE [3, Conjecture 6.321. If A E R”,” is a Lyapunov diugo- 
nally near-stable, irreducible P-matrix (i.e., a matrix all of whose principal 
minors are positive), then A has a unique Lyapurwv scaling factor. 

In this paper we settle the conjecture by giving a counterexample when 
n = 4 and proving it for n ,< 3. 

A COUNTEREXAMPLE. kt 

i 

10 2 4\ 
Ac216 4 

021 4’ 
4 4 4 20 

A is an irreducible P-matrix which is not stable and thus not Lyapunov 
diagonally stable. Let 

D=diag{l,l,l,d}. 

Then 

AD+DAT>,6 
3-G 3+fi 

for ---<dd- 
2 2 . 

THEOREM 1. Let AER”,” be a Lyapunov diagonally semistable matrix, 
and let D be a Lyapurwv scaling factor of A. Then: 

(i) A is Lyapunov diagonally near-stable if and only if there exists a 
rwnzero positive semidefinite matrix B such that 

(BA)ii=O, ,...,n. i=l 
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(ii) B, A, and D satisfy 

B(AD+DAT)=O, 

249 

so 

rank(B)+rank(AD+ DAr) <n. 

THEOREM 2. Let AE R”,” be a Lyapunov diagonally near-stable P- 

matrix, and let D be a Lyapunov scaling factor of A. Then 

1~ rank( AD + DA’) < n - 2. 

COROLLARY. Zf AE R3y3 is a Lyapunov diagonally near-stable P-matrix, 

and D > 0 is a Lyapunov scaling factor of A, then 

rank( AD + DAT) = 1 

THEOREM 3. A 3 X3 Lyapurwv diagonally near-stable P-matrix has a 

unique Lyapurwv scaling factor. 

Observe that irreducibility is not mentioned in Theorem 3. This is not 
surprising, since (e.g. [2]) every reducible 3 X 3 P-matrix is Lyapunov diago- 
nally stable. 

Proofs and examples are given in [6]. 
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THE RESOLVENT CONDITION AND UNIFORM POWER- 
BOUNDEDNESS 

by EITAN TADMORX 

Let L be an operator with uniformly bounded powers: 

II-m G MP k=1,2,... . o-9 

Using the geometric expansion for the resolvent of such an operator, (zl - 
L)- ', it follows that 

p- L)-‘lJ M, - IZJ-1 
forall j.z]>l, CR) 

with constant M, = M,. 
In this talk we discuss the inverse implication of the above, namely, the 

power-boundedness of operators which satisfy the resolvent condition (R). 
We begin with the finite-dimensional case, considering families of 

matrices. Thus, suppose L is given as a direct sum of finite-dimensional 
operators, their dimension being uniformly bounded, say < N. Then (R) * 
(P) is in fact just one of the four implications contained in the Kreiss matrix 
theorem [6] which was subsequently treated by many authors, including 
[2-41, [7], [lo-121, [14]. A simple derivation of this, which led to a power 
estimate sharper than the previous ones, was given at [15], asserting 

(ILkll G const..N, k=12 , ,...> 

with the linear dependence on the dimension N being the best possible [8]. 
Turning to the infinite-dimensional case, we first -note-using 

ment due to Sz-Nagy [I3]-that compact operators satisfying 
necessarily similar to contractions: 

an argu- 
(R) are 

and hence are power-bounded with M, = IlTll. III'- '11. (The existence of such 
similarity in the finite-dimensional setup was proved in [6], [ll].) 

‘USchool of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sci- 

ences, Tel-Aviv University, Tel-Aviv 69978, Israel. 
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Noncompact counterexamples of Foguel [l] and Halmos [5] indicate that 
the powers of general operators satisfying (R) may grow. How fast is the 
power growth permitted by the resolvent condition? An easy application of 
the Cauchy integral formula yields a linear upper bound: 

In some cases this estimate can be improved on the basis of the following 

LEMMA [ 161. Suppose L satisfies the resolvent condition (R). Let d n 
denote the following minimux quantity: 

Then the following estimate holds: 

]]L”]] < const,.d,, log n, n = 2,3,... . 

The last result yields a logarithmic power growth provided the spectrum of L 
is not “too dense” in the neighborhood of the unit circle. One such case is the 
dissipative case, where instead of (R) we have the stronger dissipativity 
condition 

CD) 

S. Friedland (private communication) has given an alternative proof of the 
logarithmic growth in this case. The same estimate applies if there is a finite 
number of simple poles on the unit circle. Finally, we give a counterexample 
satisfying (R), [9], with an unbounded number of such poles and with a 
logarithmic power growth. 
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AN EFFICIENT PRECONDITIONING 
ALGORITHM AND ITS ANALYSIS 

by M. TISMENETSKY35 AND I. EFRAT35* 

Introduction 

The purpose of this work is to suggest and analyze a new preconditioning 
for solving sparse linear systems, which is readily vectorized and very 
efficient for matrices arising from a finite-difference discretization of partial 
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differential equations of elliptic type. The algorithm is in fact, a variant of the 
incomplete-block-factorization technique accelerated by biconjugate gradi- 
ents or other acceleration methods. It turns out that under practical condi- 
tions the algorithm does not break down and gives a significant improvement 
in the condition number and the resulting convergence rate. 

Consider the equation 

Ax=b, A E ,,&, .vx,v 
(I) 

with a sparse matrix A partitioned into block form. It is well known that 
iterative solution techniques are sensitive to the matrix spectral condition 
number K(A). To reduce the condition number, a premultiplication of (1) by 
a matrix A-‘, usually called “ preconditioning,” is often exploited. The 
matrix A, termed the “preconditioner,” is expected to be “close” to A, so 
that K( A”- ‘A) < K(A). A may not be available explicitly, however the 
number of arithmetic operations needed to perform the preconditioning must 
be of order h? Recent efficient preconditioning techniques (see, for instance, 
[l-5]) are responsible for dramatic improvements in the efficiency of itera- 
tive methods such as Conjugate or Biconjugate Gradients. 

In this work we develop a preconditioning algorithm for sparse block 
matrices. For brevity, however, only the block-tridiagonal case with banded 
blocks will be considered in this synopsis. More precisely, in (1) let A = 

[Aij]:“‘=r> where Aij~[W” are sparse and A,,=0 for Ii-j] > 1, i, j = 

1,2,..., m. Only such matrices are considered in the sequel. In presenting the 
algorithm based on an LU decomposition of A, we adopt the following 
notation. Given a vector c, diag[c] stands for the diagonal matrix formed from 
c. The notation rs(C) is used for the vector of row sums of C, while inv(C) 
denotes an approximate inverse of the matrix C. Also, C(p) stands for a 
p-band matrix obtained from C by replacing its entries outside the p-band by 
zeros. 

The Modified Block Incomplete Decomposition JMBID) Algorithm 

Set 6, = A,,. Compute for j = 2,3,. . . , m 

6. = U!P' 
I I’ 

(2) 
rj=rs(Ajj-Ai j_ifilT1iAj_i j-‘j). 

oj = oj + diag[rj] . 
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The preconditioner for (1) is then found as follows: Set y1 = b,. For j = 
1,2,..., m compute 

Set x,,, = iT,;ly,,,. Compute j = m - 1, m - 2,. . . , I 

Thus, the algorithm relies on three ideas: replacing Uj by its approximate 
inverse, “cutting” the diagonals outside the chosen p-band, and the row-sum 
compensation of the error incurred. In the simplest case, we use the ap- 
proximation 

inv(Uj) = (2Z - D,Y’Uj)Dr:‘, (3) 

where Dj denotes the diagonal part of Uj. In particular, this can be done 
when the matrix A satisfies the following conditions: 

(Hl) The off-diagonal elements of A are nonpositive. 
(H2) A is weakly diagonally dominant. 
(H3) Each row of A j j+r, 1 < j < m - 1, has at least one nonzero ele- 

ment. . 

Obviously, A satisfying (Hl)-(H3) is a nonsingular M-matrix. 

THEOREM 1. Let A obey (Hl)-(H3). Then the matrices fij 
strictly diagonally dominant M-matrices. 

in (2) are 

Notice that Theorem 1 for a similar algorithm applied to a symmetric 
matrix can be found in [2]. It asserts, in fact, that the algorithm does not 
break down and that the matrix in (3) gives a good approximation of the 
inverse when A satisfies the hypotheses (Hl)-(3). 

For the symmetric case, we have 

THEOREM 2. Let A obey (Hl)-(H2) and be symmetric. Then the actual 
matrix A produced by the MBZD algorithm is positive definite. Furthermore, 
the conditioned matrix k ‘A possesses only real positive eigenvalues greater 
than or equal to 1. 
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Proceeding to estimating the quantity 

(4) 

we first note that it can be viewed as the spectral condition number of A - ‘A 
in regard to the norm l(xIIA = xrAx. Confining our attention to the matrices 
of the form under consideration with Ai j = - iZ, )i - jl = 1, we distinguish 
two cases: 

I 1 -1 
4 

-’ 1 . . 
Ajj=T:= ... ..I = -1 j 1,2 ,..., m, 

4 

-1 
4 

1 

which produces the matrix A, corresponding to the Dirichlet problem on a 
rectangle, and the matrix A, associated with the Neumann problem and 
defined by 

A,, = A,,,, = R + ;I, Ajj=R+iZ, j=2,3 ,..., m-l, 

where 

R=T-diag[$,i ,..., +,;I. 

THEOREM. Let AT be produced by the MBZD algorithm with p = 3 and 
no step-by-step scaling applied to A,. Then 

K( A;‘A,) Q m. 

THEOREM 4. If AR is generated by the MBID algorithm with p = 3 and 
no step-by-step scaling is applied to A, +(a/m)S, S = diag[Z,O,. . . ,O], a > 0, 
then 

The latter results show that the condition number in (4) for both 
problems after preconditioning becomes 0(&r) instead of 0(hP2), where h 
stands for the mesh spacing. Moreover, the bIock method suggested turns out 
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to be superior to the pointwise incomplete decomposition for rectangular 
problems where m < n. In this case, we have the estimate O(m) for the 
condition number instead of O(n) obtained in [4]. 

Proofs and a detailed discussion of the results presented here can be 
found in [6]. 

REFERENCES 

0. Axelsson, A survey of preconditioned iterative methods for linear systems of 
algebraic equations, BIT 24: 166-187 (1985). 
P. Concus, G. H. Golub, and G. Meurant, Block preconditioning for the conjugate 
gradient methods, SlAMJ. Sci. Statist. Cornput., 6, No. 1 (1985). 
I. Efrat and M. Tismenetsky, Parallel iterative linear solvers for oil reservoir 
models, IBM J. Res. and Dewlop., (in press). 
I. Gustafsson, A class of first order factorization methods, BIT 18:142-156 (1978). 
0. G. Johnson, C. A. Miccelli, and G. Paul, Polynomial preconditioning for 
conjugate gradient calculations, SIAM J. Numer. Anal. 20:362-376 (1983). 
M. Tismenetsky and I. Efrat, An efficient preconditioning algorithm and its 
analysis, IBM Huifu SC. Tech. Report #172, November 1985. 

SOME THEOREMS IN MATRIX THEORY USING OPTIMIZATION 

by HENRY WOLKOWICZ36 

Many classical inequalities and theorems on matrices can be derived using 
optimization techniques. First, one formulates the inequality, or the matrix 
result, as the maximum (or minimum) of a function subject to appropriate 
constraints. The solution of the optimization problem then provides a proof of 
the desired result. For example, the Rayleigh principle can be proved by 
applying the classical Euler-Lagrange multiplier rule of calculus to the 
optimization problem 

maximize {(x, Ax) : ljrll= 1, x E R”}, 

where A is an n-by-n Hermitian matrix and ( , ) denotes inner product. One 
obtains the optimal value X,,, the largest eigenvalue of A, which is attained 
by the corresponding eigenvector x. Similarly, one can prove the arith- 
metic-geometric-mean inequality by applying the Karush-Kuhn-Tucker con- 
ditions (e.g. [27]) to the problem 

maximize (Y1.“(Y,: { oIi > 0, &xi = 1). 

““Departnxnt of Mathematical Sciences, University of Delaware, Newark, DE 19716 
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Other inequalities, such as Holder’s and the Kantorovitch inequality. can 
be proved in this way; see e.g. [22,33]. Matrix results such as the Perron- 
Frobenius theorem and the fact that the inverse of an M-matrix is nonnega- 
tive can also be proved using optimization; see e.g. [4,32]. In [lo], we 
characterize the Hermitian positive definite matrix which maximizes the 
determinant given that certain of the elements are prespecified. 

The above techniques can also be used to generate new inequalities and 
matrix results. For example, suppose that A is Hermitian with eigenvalues 

Let 

trA trA2 
m := ~ 

n ’ 
s2 := __ - *12. 

n 

By finding the explicit solution of the optimization problem 

minimize X, 

subject to 

(a> i Xi=trA, 
t=l 

(b) 

“I 

c A: < trA2, 
i=l 

Cc) A, - Ai < 0, i=l ,..., k - 1, 

(d) xi - A, < 0, i=k+l,...,n, 

one derives the lower bound 

with equality if and only if 

A,= ... =A,_, and A,= ... =A,. 

Once the inequality is known, new and simpler proofs can be found. This 
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approach is taken in [29], where upper and lower bounds are derived for 

i=k 

These bounds are in terms of the first two moments of the eigenvalues, i.e. in 
terms of trA and tr A’. These bounds are then extended to the case of 
complex eigenvalues, i.e., corresponding bounds are obtained for functions of 
the real part, imaginary part, and modulus of the eigenvalues. These bounds 
are then improved, by using measures of nonnormality, in [30]. 

The bounds for the real eigenvalues in [29] involve the first two moments 
trA and tr A'. They can be viewed as bounds for the elements of an ordered 
sample when the mean m and the variance s2 are known. In this guise, 
several of the bounds in [29] have reappeared periodically in the matrix-theory 
as well as in the statistical literature. In particular, the bound for the largest 
eigenvalue, 

A, Q m + s( fl - l)? 

has appeared several times. (See [25] for a survey. Several references are 
included below.) The Xi can also be viewed as the roots of a polynomial. The 
bounds are then given in terms of the first two symmetric functions or the 
first two coefficients of the (manic) polynomial. 

Deriving the bounds using Lagrange-multiplier techniques can be very 
hard and tedious. In [5,11,16,18,33] a perturbation technique is introduced. 
This perturbation technique can be used to improve many of the bounds by 
introducing additional constraints, such as the fact that the vector of eigen- 
values majorizes the diagonal of a Hermitian matrix; see e.g. [33]. One can 
also improve the bounds by adding more moments, e.g. trA3. 

REFERENCES 

1 Barry C. Arnold, Schwartz, regression, and extreme deviance, Amer. Statist. 
28:22-23 (1974). 

2 P. R. Beesack, On bounds for the range of ordered variates, Publ. Fat. Ekctro- 
technique Univ. Belgrade Ser. Math. et Phys. 428:93-96 (1973). 

3 P. R. Beesack, On bounds for the range of ordered variates II, Aequationes 
Math. 14:293-301 (1976). 



HAIFA 1985 CONFERENCE ON MATRIX THEORY 

4 

5 

6 

7 

8 

9 
10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

J. M. Borwein and H. Wolkowicz, Matrix theorems using optimization, in 
preparation. 
J. M. Borwein, G. P. H. Styan, and H. Wolkowicz, Some inequalities involving 
statistical expressions, SlAM Reu. 24:340-342 (1982). 
A. V. Boyd, Bounds for order statistics, Publ. Fat. Electrotechnique Univ. 

Belgrade, Ser. Math. et Phys. 365:31-32. 

H. D. Brunk, Note on two papers of K. R. Nair, J. Indian Sot. A@cuZturaZ 

Statist. 11:186-189 (1959). 
A. Clausing, Kantorvich-type inequalities, Amer. Math. Monthly 89:314-330 

(1982). 
Meyer Dwass, The extreme deviations inequality, Amer. Statist. 29:108 (1975). 
R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, Positive definite 
completions of partial Hermitian matrices, Linear AZgebra Appl. 58:109-124 
(1984). 
R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, Improving Hadamard’s 
inequality, Linear and Mu&linear Algebra 16:305-322 (1984). 
Douglas M. Hawkins, On the bounds of the range of order statistics, J. Amer. 
Statist. Assoc. 66:644-645 (1971). 
D. G. Kabe, On extensions of Samuelson’s inequality, Amer. Statist. 34:249 

(1980). 
C. L. Mallows and Donald Richter, Inequalities of Chebyshev type involving 
conditional expectations, Ann. Math. Statist. 40:1922-1932 (1969). 
A. W. Marshall and I. Olkin, Inequalities: Theory of Majorizution and its 

Applications, Academic, 1979. 
J. Merikoski, G. P. H. Styan, and H. Wolkowicz, Bounds for ratios of eigenvalues 
using traces, Linear Algebra AppZ 55: 105- 124 (1983). 
J. K. Merikoski and H. WoIkowicz, Improving eigenvalue bounds using extra 
bounds, Linear Algebra AppZ 68:93-113 (1985). 
K. R. Nair, Certain symmetrical properties of unbiased estimates of variance and 
covariance, J. Indian Sot. Agricultural Statist. 1:162-172 (1948). 
K. R. Nair, A tail-piece to Brunk’s paper, J. Indian Sot. Agricultural Statist. 

11:189-190 (1959). 
Jagdish Patel, C. H. Kapadia, and D. B. Owen, Handbook of Statistical Distribu- 
tions, Marcel Dekker, New York, 1976. 
E. S. Pearson and Chandra C. Sekar, The efficiency of statistical tools and a 
criterion for the rejection of outlying observations, Biometrika, 27:308-320 

(1936). 
B. H. Pourciau, Modem multiplier rules, Amer. Math. Monthly 87:443-452 

(1980). 
C. P. Quesenberry, The extreme deviations inequality, Amer. Statist. 28:112 
(1974). 
Paul A. Samuelson, HOW deviant can you be?, J. Amer. Statist. Assoc. 
63: 1522-1525 (1968). 
G. P. H. Styan and H. Wolkowicz, Samuelson’s inequality, in Encyclopedia of 

Statisfical Sciences, to appear. 



260 A. BERMAN, Y. CENSOR, AND H. SCHNEIDER 

26 

27 

28 

29 

30 

31 

32 

33 

W. R. Thompson, On a criterion for the rejection of observations and the 
distribution of the ratio of deviation to sample standard deviation, Ann. J4urh. 
Stutist. 6:214-219 (1935). 
H. W. Tucker, Nonlinear programming: A historical view, SIAM-AMS ?ruc. 
9:1-26 (1976). 
H. Wolkowicz and G. P. H. Styan, Extensions of Samuelson’s inequality, Amer. 
Stutist 33: 143- 144 (1979). 
H. Wolkowicz and G. P. H. Styan, Bounds for eigenvalues using traces, Linenr 
Algebra Appl. 29:471-506 (1980). 
H. Wolkowicz and G. P. H. Styan, More bounds for eigenvalues using traces, 
Linear Algebra A$. 31:1-18 (1980). 
H. Wolkowicz and 6. P. H. Styan, Reply, Letter Section, Amer. Statist. 34:250 

(1984). 
H. Wolkowicz, Some applications of optimization in matrix theory, Lineor 

Algebra Appl. 40:101-118 (1981). 
H. Wolkowicz, Generating eigenvalue bounds using optimization, Research Re- 
port, Univ. of Maryland, College Park, Md. 1982. 


