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Abstract. The convex feasibility problem (CFP) is to find a feasible
point in the intersection of finitely many convex and closed sets. If the
intersection is empty then the CFP is inconsistent and a feasible point
does not exist. However, algorithmic research of inconsistent CFPs ex-
ists and is mainly focused on two directions. One is oriented toward
defining other solution concepts that will apply, such as proximity func-
tion minimization wherein a proximity function measures in some way
the total violation of all constraints. The second direction investigates
the behavior of algorithms that are designed to solve a consistent CFP
when applied to inconsistent problems. This direction is fueled by sit-
uations wherein one lacks a priori information about the consistency
or inconsistency of the CFP or does not wish to invest computational
resources to get hold of such knowledge prior to running his algorithm.
In this paper we bring under one roof and telegraphically review some
recent works on inconsistent CFPs.

1. Introduction

Inconsistent feasibility problems. Feasibility problems require to
find a point in a given set C, any point, not a particular point such as,
for example, one that optimizes some given function over C, which would
constitute a problem of constrained optimization. Often times the set C
is given as an intersection C := ∩mi=1Ci of a finite family of sets {Ci}mi=1.
The convex feasibility problem (CFP) is to find a feasible point x∗ ∈ C =
∩mi=1Ci when all sets Ci are convex and commonly also assumed to be closed.
This prototypical problem underlies the modeling of real-world problems in
the set theoretic estimation approach of Combettes [36] such as convex set
theoretic image recovery [38] and many other fields, see, e.g., the pointers
and references in Bauschke and Borwein [8, Section 1] and in Cegielski’s book
[19, Section 1.3]. In this approach, constraints of the real-world problem are
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represented by the demand that a solution should belong to sets Ci, called
constraint sets.

If C 6= ∅ does not hold then the CFP is inconsistent and a feasible point
does not exist. However, algorithmic research of inconsistent CFPs exists
and is mainly focused on two directions. One is oriented toward defining
solution concepts other than x∗ ∈ C = ∩mi=1Ci that will apply, such as
proximity function minimization wherein a proximity function measures in
some way the total violation of all constraints. The second direction inves-
tigates the behavior of algorithms that are designed to solve a consistent
CFP when applied to inconsistent problems. The latter direction is fueled
by situations wherein one lacks a priori information about the consistency
or inconsistency of the CFP or does not wish to invest computational re-
sources to get hold of such knowledge prior to running his algorithm. The
next paragraphs on projection methods are quoted from the introduction of
Censor and Cegielski [24].

Projection methods. Projections onto sets are used in a wide variety of
methods in optimization theory but not every method that uses projections
really belongs to the class of projection methods as we mean it here. Here
projection methods are iterative algorithms that use projections onto sets
while relying on the general principle that when a family of (usually closed
and convex) sets is present then projections (or approximate projections)
onto the given individual sets are easier to perform than projections onto
other sets (intersections, image sets under some transformation, etc.) that
are derived from the given family of individual sets.

A projection algorithm reaches its goal, related to the whole family of sets,
by performing projections onto the individual sets. Projection algorithms
employ projections (or approximate projections) onto convex sets in various
ways. They may use different kinds of projections and, sometimes, even
use different projections within the same algorithm. They serve to solve
a variety of problems which are either of the feasibility or the optimization
types. They have different algorithmic structures, of which some are particu-
larly suitable for parallel computing, and they demonstrate nice convergence
properties and/or good initial behavior patterns in some significant fields of
applications.

Apart from theoretical interest, the main advantage of projection meth-
ods, which makes them successful in real-world applications, is computa-
tional. They commonly have the ability to handle huge-size problems of di-
mensions beyond which other, more sophisticated currently available, meth-
ods start to stutter or cease to be efficient. This is so because the building
bricks of a projection algorithm are the projections onto the given individual
sets (assumed and actually easy to perform) and the algorithmic structures
are either sequential or simultaneous or in-between, such as in the block-
iterative projection (BIP) methods or in the more recent string-averaging
projection (SAP) methods. An advantage of projection methods is that
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they work with initial data and do not require transformation of, or other
operations on, the sets describing the problem.

Purpose of the paper. We present an effort to bring under one roof and
telegraphically review some recent works on inconsistent CFPs. This should
be helpful to researchers, veterans or newcomers, by directing them to some
of the existing resources. The vast amount of research papers in the field
of projection methods makes it sometimes difficult to master even within
a specific sub-area. On the other hand, projection methods send branches
both into fields of applications wherein real-world problems are solved and
into theoretical areas in mathematics such as, but not only, fixed point
theory and variational inequalities. Researchers in each of these, seemingly
perpendicular, directions might benefit from this review.

A word about notations. We entertained the thought to unify all
notations but quickly understood that the game is not worth the candle1.
With notations left as they appear in the original publications it will make
it easier for a reader when choosing to consult the original papers.

An apology. Oversight and lack of knowledge are human traits which
we are not innocent of. Therefore, we apologize for omissions and other
negligence and lacunas in this paper. We kindly ask our readers to commu-
nicate to us any additional items and informations that fit the structure and
spirit of the paper and we will gladly consider those for inclusion in future
revisions, extensions and updates of the paper that we will post on arXiv.

Organization of the paper. Section 2 contains our review divided into
17 subsections. Each subsection is focused on, and is centered around, one
or two historical or recent works. We use these “lead” references to organize
the subsections chronologically from older to recent works. An author index
at the end of the paper will help locate the results reviewed here.

2. Algorithms and Convergence results of Projection Methods
for Inconsistent Feasibility Problems

2.1. 1959: Composition of projections onto two disjoint convex
sets. Cheney and Goldstein [35] showed that if K1 and K2 are two closed
and convex subsets of a Hilbert space, and Pi are the corresponding orthog-
onal projections onto Ki, where i = 1, 2, then every fixed point of the com-
position Q := P1P2 is a point of K1 closest to K2. Moreover, they showed
that if one of the sets is compact or if one of the sets is finite-dimensional
and the distance is attained then a fixed point of Q will be obtained by iter-
ations of Q. In particular, if both sets are polytopes in a finite-dimensional
Euclidean space, the distance between two sets is attained, and consequently
a fixed point of Q will be obtained by iterations of Q. Their results are in
the following three theorems.

1Meaning that what we would get from this undertaking is not worth the effort we
would have to put into it.
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Theorem 2.1. [35, Theorem 2] Let K1 and K2 be two closed convex sets
in Hilbert space. Let Pi denote the proximity map for Ki. Any fixed point
of P1P2 is a point of K1 nearest K2, and conversely.

Theorem 2.2. [35, Theorem 4] Let K1 and K2 be two closed convex sets
in Hilbert space and Q the composition P1P2 of their proximity maps. Con-
vergence of Qnx to a fixed point of Q is assured when either (a) one set is
compact, or (b) one set is finite-dimensional and the distance between the
sets is attained.

Theorem 2.3. [35, Theorem 5] In a finite-dimensional Euclidean space, the
distance between two polytopes is attained, a polytope being the intersection
of a finite family of half-spaces.

In this connection, see also Theorems 4.1 and 4.2 in the paper by Kopecká
and Reich [53].

2.2. 1967: Cyclic convergence of sequential projections onto m sets
with empty intersection. Gubin, Polyak and Raik [49] consider m closed
convex subsets, C1, C2, · · · , Cm, of a normed space E, and studied the be-
havior of the sequence generated according the rule

(2.1) xn+1 = Pi(n)x
n, where i (n) := n (modm) + 1

with x0 arbitrary. They showed that if one of the sets is bounded, the
subsequences

(2.2)
{
xmn+1

}
n∈N ,

{
xmn+2

}
n∈N , · · · ,

{
xmn+m

}
n∈N

converge weakly to cluster points x1, x2, · · · , xm, respectively, that consti-
tute a cycle, i.e.,

(2.3) x2 = P2x1, x3 = P3x2, · · · , xm = Pmxm−1, x1 = P1xm.

They proved the following (slightly paraphrased here) version of [49, The-
orem 2].

Theorem 2.4. Let all Ci, i = 1, 2, · · · ,m, be closed, convex and nonempty
subsets of E and at least one of them (for explicitness, C1) be bounded. Then
it is possible to find points xi ∈ Ci, i = 1, 2, · · · ,m, such that Pi+1 (xi) =
xi+1, i = 1, 2, · · · ,m − 1, P1 (xm) = x1, while in the method (2.1) we have
xkm+i+1− xkm+i → xi+1− xi, and xkm+i weakly converges to xi as k →∞.
If, in addition, any of the following conditions is satisfied,
(a) all Ci with the possible exception of one (Ci), are uniformly convex with
the common function δ (τ) ;
(b) E is finite-dimensional;
(c) all Ci are (closed) half-spaces;
then the convergence will be strong. If all Ci, apart from possibly one, are
also strongly convex, and ∩mi=1Ci is empty, the sequence xkm+i converges to
xi at the rate of a geometrical progression.
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2.3. 1983: The limits of the cyclic subsequences approach a single
point as relaxation goes to zero. Censor, Eggermont and Gordon [26]
investigate the behavior of Kaczmarz’s method with relaxation for inconsis-
tent systems. They show that when the relaxation parameter goes to zero,
the limits of the cyclic subsequences (See Theorem 2.4 here) generated by
the method approach a weighted least squares solution of the system. This
point minimizes the sum of the squares of the Euclidean distances to the
hyperplanes of the system. If the starting point is chosen properly, then the
limits approach the minimum norm weighted least squares solution. The
proof is given for a block-Kaczmarz method.

Consider the linear system of equations Ax = b, where A ∈ Rm×n, b ∈
Rm, ai is the i’th row of the matrix A, and bi is the i’th component the
column vector b. Kaczmarz’s algorithm [52] employs the iterative process

(2.4) xk+1 = xk +
bi −

〈
ai,x

k
〉

‖ai‖2
ai,

where x0 ∈ Rn is arbitrary, for solving the system Ax = b. Eggermont,
Herman, and Lent [46] rewrote the above m and n as m = LM, n = N,with
any natural numbers L,M,N , partitioned A and b as

(2.5) A =


A1

A2
...

AM

 , b =


b1
b2
...
bM

 ,

with Ai ∈ RL×N and bi ∈ RL, and proposed the following block-Kaczmarz
method for solving a linear system of the above form.
(2.6)

x0 ∈ RN is arbitrary, xk+1 = xk + λATi

(
bi −Aixk

)
, i = k (modM) + 1,

with relaxation λ ∈ (0, 2) .
The effect of strong underrelaxation on the limits of the cyclic subse-

quences generated by the block-Kaczmarz algorithm (2.6), investigated in
[26] is included in the following theorem.

Theorem 2.5. [26, Theorem 1] For all λ small enough,

(2.7) x∗ (λ) = lim
k→∞

xkM

exists, and

(2.8) lim
λ→0

x∗ (λ) = A†b+
(
Id−A†A

)
x0.

(Where A† is the Moore-Penrsose inverse of the matrix A.)

This applies to every subsequence
{
xkM+`

}
k≥0 , ` ∈ {0, 1, 2, · · · ,M − 1}.

In Censor, Eggermont and Gordon [26, Page 91], it is shown that algorithm
(2.4) is a special case of algorithm (2.6), with L = 1, and that the equality
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(2.8) means that limλ→0 x
∗ (λ) is a least squares solution of the system

Ax = b. A relevant remark concerning the behavior of the Cimmino method
in the inconsistent case appears in the Remark on pages 286–287 of the 1983
paper by Reich [59].

2.4. 1993 and 1994: Alternating projection algorithms for two
sets. Bauschke and Borwein [6] investigated the convergence of the von
Neumann’s alternating projection method for two arbitrary closed convex
nonempty subsets A, B of a Hilbert space H. Finding a point in A∩B, or if
A ∩B is empty a good substitute for it, is a basic problem in various areas
of mathematics.

Defining the distance between two nonempty subsetsM, N by d (M,N) :=
inf {‖m− n‖ | m ∈M, n ∈ N}, denoting E := {a ∈ A | d (a,B) = d (A,B)}
and F := {b ∈ B | d (b, A) = d (B,A)}, one notes that if A ∩ B 6= ∅ then
E = F = A∩B. The projection of any point x onto a closed convex nonempty
subset C is denoted by PCx. The von Neumann algorithm for finding a point
in A ∩B is as follows: Given a starting point x ∈ X ⊆ H, define, for every
integer n ≥ 1, the terms of the sequences (an) , (bn) by

(2.9) b0 := x, an := PAbn−1, bn := PBan.

von Neumann proved that both sequences converge to PA∩B (x) in norm
when A, B are closed subspaces.

Assuming [6, Page 201] that A, B are closed affine subspaces, say A =
a+K, B = b+L for vectors a, b ∈ X and closed subspaces K, L. The angle
between K and L is denoted by γ (K,L) Bauschke and Borwein proved the
following.

Theorem 2.6. [6, Theorem 4.11] If K+L is closed, then the von Neumann
sequences converge linearly with rate cos γ (K,L) independent of the starting
point. In particular, this happens whenever one of the following conditions
holds: (i) K or L has finite dimension, (ii) K or L has finite codimension.

In [7] Bauschke and Borwein analyzed Dykstra’s algorithm for two arbi-
trary closed convex sets in a Hilbert space X. They greatly expanded on the
Cheney and Goldstein papers (infinite dimensions, characterizations, etc.)
See Subsections 2.1 here and the recent work of Kopecká and Reich [54] in
Subsection 2.14 here.

2.5. 1994: Least-squares solutions of inconsistent signal feasibility
problems in a product space. Combettes’s [37] presents parallel pro-
jection methods to find least-squares solutions to inconsistent convex set
theoretic signal synthesis problems. The problem of finding a signal that
minimizes a weighted average of the squares of the distances to constraint
sets is reformulated in a product space, where it is equivalent to that of
finding a point that lies in a particular subspace and at minimum distance
from the Cartesian product of the original sets. A solution is obtained in
the product space via methods of alternating projections which naturally
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lead to methods of parallel projections in the original space. The conver-
gence properties of the proposed methods are analyzed and signal synthesis
applications are demonstrated.

The, possibly inconsistent, feasibility problem: Find a∗ ∈ ∩mi=1Si, where
the Sis are closed and convex subsets of a Hilbert space Ξ, is replaced by
the unconstrained weighted least-squares minimization problem

(2.10) min { Φ (a) | a ∈ Ξ},

where Φ (a) := 1
2

∑m
i=1wid (a, Si)

2 , d (a, Si) := inf {d (a, b) | b ∈ Si} , and
(wi)1≤i≤m are strictly convex weights, i.e.,

∑m
i=1wi = 1 and ∀i ∈ {1, · · · ,m}

ωi > 0. In other words, the goal is to solve

(2.11) Find a∗ ∈ G := {a ∈ Ξ | Φ (a) ≤ Φ (b) for all b ∈ Ξ} .
In the Cartesian product space Ξm, with the scalar product 〈〈a,b〉〉 :=∑m

i=1wi
〈
a(i), b(i)

〉
for all a :=

(
a(1), a(2), · · · , a(m)

)
∈ Ξm and b :=(b(1), b(2),

· · · , b(m)) ∈ Ξm the problem (2.11) is reformulated as
(2.12)
Find a∗ ∈ G := {a ∈ D |d (a,S) = d (D,S)} = {a ∈ D |PD (PS (a)) = a} ,

where D = {(a, a, · · · , a) ∈ Ξm | a ∈ Ξ}, S =S1 × S2 · · · × Sm, and PD, PS

are the orthogonal projections onto the sets D and S, respectively. All
quantities related to the product space are written in boldface symbols.
Solving this problem using two methods for finding a fixed point of the
composition PD ◦ PS and translating back the results to the original space
Ξ, the following two convergence results are obtained.

Theorem 2.7. [37, Theorem 4] Suppose that one of the Sis is bounded.
Then, for any a0 ∈ Ξ, every sequence of iterates (an)n≥0 defined by

(2.13) an+1 = an + λn

(
m∑
i=1

wiPi (an)− an

)
,

where (λn)n≥0 ⊆ [ε, 2− ε] with 0 < ε < 1, converges weakly to a point in G.

Assuming that (αn)n≥0 fulfills

(2.14)

lim
n→+∞

αn = 1,
∑
n≥0

(1− αn) = +∞ and lim
n→+∞

(αn+1 − αn) (1− αn+1)
−2 = 0

the next theorem holds.

Theorem 2.8. [37, Theorem 5] Suppose that one of the Sis is bounded.
Then, for any a0 ∈ Ξ, every sequence of iterates (an)n≥0 defined by

(2.15) an+1 = (1− αn) a0 + αn

(
λ

m∑
i=1

wiPi (an)− (1− λ) an

)
,

where (αn)n≥0 is as in (2.14) and 0 < λ ≤ 2, converges strongly to the
projection of a0 onto G.



8 Y. CENSOR AND M. ZAKNOON

2.6. 1995 and 2003: The method of cyclic projections for closed
convex sets in Hilbert space. Bauschke, Borwein and Lewis [10] con-
sider closed convex nonempty sets C1, C2, · · · , CN in a real Hilbert space
H, with corresponding projections P1, P2, · · · , PN and systematically study
composition of projections in the inconsistent case. For an arbitrary starting
point x0 ∈ H the method of cyclic projections generates N sequences (xni )n
by

(2.16)
x11 := P1x

0, x12 := P2x
1
1, · · · , x1N := PNx

1
N−1,

x21 := P1x
1
N , x

2
2 := P2x

2
1, · · · , x2N := PNx

2
N−1,

x31 := P1x
2
N , · · · · · · .

They collected these sequences cyclically in one sequence (x0, x11, x
1
2, · · · ,

x1N , x
2
1, x

2
2, · · · ) to which they referred as the orbit generated by x0 or the

orbit with starting point x0. They further defined the composite projections
operators
(2.17)
Q1 := P1PNPN−1 · · ·P2, Q2 := P2P1PN · · ·P3, · · · , QN := PNPN−1 · · ·P1

which allows to write more concisely

(2.18) xni := Qn−1i x1i , for all n ≥ 1 and for every i;

after setting P0 := PN , PN+1 := P1, x
n
0 := xn−1N , and xnN+1 := xn+1

1 , they
reached

(2.19) xni+1 = Pi+1x
n
i , for all n ≥ 1 and every i.

When appropriate, they similarly identify i = 0 with i = N and i = N + 1
with i = 1.

They gave a dichotomy result on orbits which roughly says that if each Qi
is fixed point free then, the orbit has no bounded subsequence; otherwise,
each subsequence (xni ) converges weakly to some fixed point of Qi. Two
central questions were posed:

(1) When does each Qi have a fixed point?
(2) If each Qi has a fixed point, when do the subsequences (xni ) converge

in norm (or even linearly)?

Concerning Question 1, They provide sufficient conditions for the exis-
tence of fixed points or approximate fixed points (that is infx∈H ‖x−Qix‖ =
0, for each i). It follows that while fixed points of Qi need not exist for non-
intersecting closed affine subspaces, approximate fixed points must.

In respect to Question 2, a variety of conditions guaranteeing norm con-
vergence (in the presence of fixed points for each Qi) is offered: one of the
sets Ci has to be (boundedly) compact or all sets are or convex polyhedra,
or affine subspaces. In the affine subspace case each sequence (xni ) con-
verges to the fixed point of Qi nearest to x0. Moreover the convergence is
linear, whenever the angle of the N -tuple of the associated closed subspaces
is positive.
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In subsequent work, Bauschke [5] showed that the composition of finitely
many projections PN , PN−1, · · · , P1 is asymptotically regular, i.e.,
(2.20)

(PN , PN−1, · · · , P1)
k x− (PN , PN−1, · · · , P1)

k+1 x→ 0, for every x ∈ X.
thus proving the so-called “zero displacement conjecture” of Bauschke, Bor-
wein and Lewis [10].

2.7. 1999: Hard-constrained inconsistent signal feasibility prob-
lems. Combettes and Bondon [39] consider the problem of synthesizing
feasible signals in a Hilbert space H, with inconsistent convex constraints
that are divided into two parts, the hard constraints and the soft constraints.
They look for a point in H which satisfies the hard constraints imperatively
and minimizes the violation of the soft constraints.

Denote by Γ the class of all lower semicontinuous proper convex functions
from H into ]−∞,+∞]. Given g ∈ Γ and α ∈ R, the closed and convex set
lev≤αg := {x ∈ H | g (x) ≤ α} is the lower level set of g at height α, and the
nonempty convex set domg := {x ∈ H | g (x) < +∞} is its domain. The
goal of a convex set theoretic signal synthesis (design or estimation) problem
in H is to produce a signal x∗ that satisfies convex constraints, say,

(2.21) find x∗ ∈ S = ∩i∈ISi, where (∀i ∈ I) Si = lev≤0gi,

where I is a finite index set, and (gi)i∈I ⊂ Γ.

Let IN ⊂ I denote the, possibly empty, hard constraints index set, I4 =
I r IN the nonempty soft constraints index set, SN = ∩i∈INSi the hard
feasibility set and, by convention, SN = H if IN = ∅. S4 = ∩i∈I4Si, D4 =

∩i∈I4domgi, and assume that SN ∩D4 6= ∅. F is the class of all increasing
convex functions from [0,+∞[ into [0,+∞[ that vanish (only) at 0; every
f ∈ F is extended to the argument +∞ by setting f (+∞) = +∞. For every
g ∈ Γ, g+ = max {0, g} . The amount of violation of the soft constraints
(gi (x) ≤ 0)i∈I4 is measured by an objective function Φ4 : H → [0,+∞] of
the general form

(2.22) Φ4 :=
∑
i∈I4

fi ◦ g+i , where (fi)i∈I4 ⊂ F .

The hard-constrained signal feasibility problem is to minimize the objec-
tive Φ4 of (2.22) over the hard feasibility set SN. Setting α∗ = infx∈SN Φ4(x),
the problem reads

(2.23) find x∗ ∈ G :=
{
x ∈ SN | Φ4 (x) = α∗

}
.

Combettes and Bondon [39] supply convergence theorems for the following
processes under various conditions (PN denotes the projector onto SN):

(2.24) (∀n ∈ N) xn+1 = PN
(
xn − γ∇Φ4 (xn)

)
;

(2.25) (∀n ∈ N) xn+1 = (1− λn)xn + λnP
N
(
xn − γ∇Φ4 (xn)

)
;
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and

(2.26) (∀n ∈ N) xn+1 = (1− λn) r + λnP
N
(
xn − γ∇Φ4 (xn)

)
,

for a fixed given r ∈ H.
Defining the proximity function Φ4 := 1

2

∑
i∈I4 wid (·, Si)2, with weights

(wi)i∈I4 ⊂ ]0, 1] ,
∑

i∈I4 wi = 1, and denoting by Pi the projector onto Si,
the authors prove that, under certain conditions, the iterative process
(2.27)

(∀n ∈ N) xn+1 = (1− λn)xn + λnP
N

(1− γ)xn + γ
∑
i∈I4

wiPi (xn)


generates sequences that converge, weakly or strongly, to a solution of the
hard-constrained signal feasibility problem, i.e., to a point in G of (2.23)
above. Also, they show that the iterative process

(2.28) (∀n ∈ N) xn+1 =
n

n+ 1
PN

(1− γ)xn + γ
∑
i∈I4

wiPi (xn)


generates sequences that converge strongly to PG (0) . In all these iterative
processes there appears PN, the projector onto SN, which can potentially
hinder practical applications if this projection is not simple to calculate.

2.8. 2001: De Pierro’s conjecture. Bauschke and Edwards [13] describe
De Pierro’s conjecture as follows. Suppose we are given finitely many
nonempty closed convex sets in a real Hilbert space and their associated
projections. For suitable arrangements of the sets, it is known that the
sequence obtained by iterating the composition of the underrelaxed projec-
tions is weakly convergent. The question arises how these weak limits vary
as the underrelaxation parameter tends to zero. In 2001, De Pierro conjec-
tured [43] that the weak limits approach the least squares solution nearest
to the starting point of the sequence. In fact, the result by Censor, Egger-
mont, and Gordon [26] described here in Subsection 2.3, implies De Pierro’s
conjecture for affine subspaces in Euclidean space.

De Pierro’s conjecture [43, Section 3, Conjecture II] is succinctly formu-
lated in Bauschke and Edwards [13, Conjecture 1.6] as follows. For a convex
feasibility problem with N sets (Ci)

N
i=1 in a Hilbert space X, define, fort

every λ ∈]0, 1], the composition of underrelaxed projections

(2.29) Qλ := ((1−λ)Id+λPCN ) · · · ((1−λ)Id+λPC2)((1−λ)Id+λPC1),

where Id is the identity and PCi is the projection onto Ci. The corresponding
sets of fixed points are defined by

(2.30) Fλ := FixQλ := {x ∈ X | x = Qλ(x)}

and the aim is to understand the behavior of the sequence (Qnλ(x))n∈N in
terms of λ ∈]0, 1], for an arbitrary x ∈ X.
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Conjecture 2.9. (De Pierro) [13, Conjecture 1.6]. Suppose that Fλ 6= ∅
for every λ ∈]0, 1]. Denoting, for all x ∈ X and all λ ∈]0, 1] the limits
xλ = weak limn→+∞Q

n
λ(x), De Pierro conjectured that limλ→0+ xλ = PL(x),

where L is the set of least squares solutions of the convex feasibility problem,
i.e.,

(2.31) L :=

{
x ∈ X |

N∑
i=1

‖x− PCi(x)‖2 = inf
y∈X

N∑
i=1

‖y − PCi(y)‖2
}
.

Bauschke and Edwards proved this conjecture for families of closed affine
subspaces satisfying a metric regularity condition. Baillon, Combettes and
Cominetti [4, Theorem 3.3] proved the conjecture under a mild geometrical
condition. Recently, Cominetti, Roshchina and Williamson [40, Theorem 1]
proved that this conjecture is false in general by constructing a system of
three compact convex sets in R3 for which the least squares solution exists
but the conjecture fails to hold.

2.9. 2001: Proximity function minimization using multiple Breg-
man projections. Motivated by the geometric alternating minimization
approach of Csiszár and Tusnády [41] and the product space formulation
of Pierra [57], Byrne and Censor [18] derive a new simultaneous multipro-
jection algorithm that employs generalized projections of Bregman [17], see
also, e.g., Censor and Lent [30] and Bauschke and Borwein [9], to solve the
convex feasibility problem (CFP) or, in the inconsistent case, to minimize
a proximity function that measures the average distance from a point to all
convex sets. For background material on Bregman functions and Bregman
distances and projections see, e.g., the book of Censor and Zenios [34], [9],
Solodov and Svaiter [61], Eckstein [44], [45], to name but a few. Byrne and
Censor [18] assume that the Bregman distances involved are jointly convex,
so that the proximity function itself is convex. When the intersection of
the convex sets is empty, but the closure clF (x) of the proximity function
F (x), defined by clF (x) := lim infy→x F (y), has a unique global minimizer,
the sequence of iterates converges to this unique minimizer. Special cases
of this algorithm include the “Expectation Maximization Maximum Like-
lihood” (EMML) method in emission tomography and a new convergence
result for an algorithm that solves the split feasibility problem.

Let Ci, i = 1, 2, . . . , I, be closed convex sets in the J-dimensional Eu-
clidean space RJ and let C be their intersection. Let S be an open convex
subset of RJ and f a Bregman function from the closure S of S into R; see,
e.g., [34, Chapter 2]. For a Bregman function f(x), the Bregman distance
Df is defined by

(2.32) Df (z, x) := f(z)− f(x)− 〈∇f(x), z − x〉,
where ∇f(x) is the gradient of f at x. If the function f has the form

f(x) =
∑J

j=1 gj(xj), with the gj scalar Bregman functions, then f and the

associated Df (z, x) are called separable. With gj(t) = t2, for all j, the
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function f(x) =
∑J

j=1 gj(xj) =
∑J

j=1 x
2
j is a separable Bregman function

and Df (z, x) is the squared Euclidean distance between z and x. For each i,

denote by P fCi(x) the Bregman projection of x ∈ S onto Ci with respect to

the Bregman function f, i.e., Df (P fCi(x), x) ≤ Df (z, x), for all z ∈ Ci ∩ S.

In [18, Eq. (1.2)] the proximity function F (x) is of the form

(2.33) F (x) =

I∑
i=1

Dfi(P
fi
Ci

(x), x),

where the Dfi are Bregman distances derived from possibly distinct, possibly
nonseparable Bregman functions fi with zones Sfi . The function F is defined,

for all x in the open convex set U := ∩Ii=1Sfi , which is assumed nonempty.

The proximity function F (x) of (2.33) is extended to all of RJ by defining
F (x) = +∞, for all x /∈ U and its closure clF is as defined above. They
proved convergence of their iterative method whenever clF has a unique
minimizer or when the set C ∩ U is nonempty. The following algorithm is
proposed.

Algorithm 2.10. [18, Algorithm 4.1].
Initialization: x0 ∈ U is arbitrary.

Iterative Step: Given xk find, for all i = 1, 2, . . . , I, the projections P fiCi(x
k)

and calculate xk+1 from

(2.34)
I∑
i=1

∇2fi(x
k+1)xk+1 =

I∑
i=1

∇2fi(x
k+1)P fiCi(x

k),

where ∇2fi(x
k+1) denotes the Hessian matrix (of second partial derivatives)

of the function fi at xk+1.

Let F (x) be defined for x ∈ U by (2.33) and for other x ∈ RJ let it be
equal to +∞ and let the set of minimizers of clF over RJ be denoted by Φ.
Denote Γ := inf{clF (x) | x ∈RJ} and consider the following assumptions.

Assumption A1: (Zone Consistency) For every i = 1, 2, . . . , I, if xk ∈
Sfi then P fiCi(x

k) ∈ Sfi .
Assumption A2: For every k = 1, 2, . . . , the function Fk(x) :=

∑I
i=1

Dfi(P
fi
Ci

(xk), x) has a unique minimizer within U.

Assumption A3: If clF (x) = 0 for some x then x is in C ∩ Ū .

Theorem 2.11. [18, Theorem 4.1] Let Assumptions A1, A2 and A3 hold
and assume that the distances Dfi are jointly convex, for all i = 1, 2, · · · , I,
In addition, assume that the set Φ is nonempty. If clF has a unique min-
imizer then any sequence

{
xk
}
, generated by Algorithm 2.10, converges to

this minimizer. If Φ is not a singleton but Γ = inf{clF (x) | x ∈ RJ} = 0,
then the intersection C of the sets Ci is nonempty and

{
xk
}

converges to a
solution of the CFP.
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2.10. 2003: String-averaging projection schemes for inconsistent
convex feasibility problems. Censor and Tom [33] study iterative pro-
jection algorithms for the convex feasibility problem of finding a point in
the intersection of finitely many nonempty, closed and convex subsets in
the Euclidean space. They propose (without proof) an algorithmic scheme
which generalizes both the string-averaging projections (SAP) and the block-
iterative projections (BIP) methods with fixed strings or blocks, respectively,
and prove convergence of the string-averaging method in the inconsistent
case by translating it into a fully sequential algorithm in the product space.

They consider the successive projections iterative process

(2.35)
x0 ∈ V is an arbitrary starting point,
xk+1 = Pk(modm)+1

(
xk
)

for all k ≥ 0,

and offer an extension of Gubin Polyak and Raik’s Theorem 2.4 above by
replacing the demand that one of the sets of the CFP is bounded by a weaker
condition, as follows (V stands for the Euclidean space).

Theorem 2.12. [33, Theorem 4.4] Let C1, C2, · · · , Cm be nonempty closed
convex subsets of V. If for at least one set (for explicitness, say C1) the cyclic
subsequence (of points in C1)

{
xkm+1

}
k≥0 of a sequence

{
xk
}
k≥0, generated

by (2.35), is bounded for at least one x0 ∈ Rn then there exist points x∗,i ∈
Ci, i = 1, 2, · · · ,m, such that Pi+1

(
x∗,i
)

= x∗,i+1, i = 1, 2, · · · , (m− 1) , and

P1 (x∗,m) = x∗,1, and for i = 1, 2, · · · ,m, we have

lim
k→∞

xkm+i+1 − xkm+i = x∗,i+1 − x∗,i,(2.36)

lim
k→∞

xkm+i = x∗,i,(2.37)

where
{
xk
}
k≥0 is any sequence generated by (2.35).

The SAP method has its origins in [28], for a recent work about it see,
e.g., Reich and Zalas [60].

As in Censor and Tom [33, Page 545]), each string It is a finite nonempty

subset of {1, 2, · · · ,m} , for t = 1, 2, · · · , S, of the form It =
(
it1, i

t
2, · · · , itγ(It)

)
,

where the length of the string It, denoted by γ (It), is the number of elements
in It. The projection along the string It operator is defined as the composi-
tion of projections onto the sets indexed by It, that is, Tt := Pit

γ(It)
· · ·Pit2Pit1

for t = 1, 2, · · · , S. Given a positive weight vector ω ∈ RS , i.e., ωt > 0,
t = 1, 2, ..., S, and

∑S
t=1 ωt = 1,define the algorithmic operator

(2.38) T =

S∑
t=1

ωtTt,

yielding the SAP method that employs the iterative process
(2.39)

x0 ∈ V is an arbitrary starting point, xk+1 = T
(
xk
)

for all k ≥ 0.
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The convergence of the string-averaging method in the possibly inconsistent
case is included in the following theorem.

Theorem 2.13. [33, Theorem 5.2] Let C1, C2, · · · , Cm, be nonempty closed
convex subsets of V . If for at least one x0 ∈ V the sequence

{
xk
}
k≥0 ,

generated by the string-averaging algorithm (Algorithm 2.39) with T as in
(2.38)), is bounded then it converges for any x0 ∈ V.

2.11. 2004: Steered sequential projections for the inconsistent con-
vex feasibility problem. Censor, De Pierro and Zaknoon [25] study a
steered sequential gradient algorithm which minimizes the sum of convex
functions by proceeding cyclically in the directions of the negative gradients
of the functions and using steered step-sizes. They apply this algorithm to
the convex feasibility problem by minimizing a proximity function which
measures the sum of the Bregman distances to the members of the family
of convex sets. The resulting algorithm is a new steered sequential Breg-
man projection method which generates sequences that converge, if they
are bounded, regardless of whether the convex feasibility problem is or is
not consistent (i.e., feasible). For orthogonal projections and affine sets the
boundedness condition is always fulfilled.

The steering parameters in the algorithm form a sequence {σk}k≥0 of real
positive numbers that must have the following properties: limk→∞ σk = 0,
limk→∞(σk+1/σk) = 1, and

∑∞
k=0 σk = +∞. If instead of limk→∞(σk+1/σk) =

1 one uses limk→∞ σkm+j/σkm = 1, for all 1 ≤ j ≤ m − 1, then the pa-
rameters are called m-steering parameters. For minimization of a function
g (x) :=

∑m−1
i=0 gi (x) where {gi}m−1i=0 is a family of convex functions from

Rn into R which have continuous derivatives everywhere the cyclic gradient
method is as follows

Algorithm 2.14. [25, Algorithm 5] (The m-steered cyclic gradient
method).

Initialization: x0 ∈ Rn is arbitrary.
Iterative Step: Given xk calculate the next iterate xk+1 by

(2.40) xk+1 = xk − σk∇gi(k)(xk).
Control Sequence: {i(k)}k≥0 is a cyclic control sequence, i.e., i(k) =

kmodm.
Steering Parameters: The sequence {σk}k≥0 is m-steering.

The following convergence result holds.

Theorem 2.15. [25, Theorem 6] Let {gi}m−1i=0 be a family of functions gi :
Rn → R which are convex and continuously differentiable everywhere, let
g (x) :=

∑m−1
i=0 gi (x) and assume that g has an unconstrained minimum.

If
{
xk
}
k≥0 is a bounded sequence, generated by Algorithm 2.14, then the

sequence
{
g
(
xk
)}

k≥0 converges to the minimum of g. If, in addition, g has

a unique minimizer then the sequence
{
xk
}
k≥0 converges to this minimizer.
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Applying Algorithm 2.14 with Bregman distance functions and using The-
orem 2.15 yields a convergence result for sequential Bregman projections
onto convex sets in the inconsistent case.

Algorithm 2.16. [25, Algorithm 14] (Steered cyclic Bregman projec-
tions).

Initialization: x0 ∈ S is arbitrary.
Iterative Step: Given xk calculate the next iterate xk+1 by

(2.41) xk+1 = xk + σk∇2f(xk)
(
P fQi(k)(x

k)− xk
)

.

Control Sequence: {i(k)}k≥0 is a cyclic control sequence, i.e., i(k) =
kmodm.

Steering Parameters: The sequence {σk}k≥0 is an m-steering sequence.

For the Bregman function f (x) := (1/2) ‖x‖2, the algorithm’s iterative
process takes the form

(2.42) xk+1 = xk + σk

(
Pi(k)(x

k)− xk
)

.

Another Bregman function is f (x) = − entx, where entx is Shannon’s
entropy function which maps the nonnegative orthant Rn+ into R by entx :=
−
∑n

j=1 xj log xj , where “log” denotes the natural logarithms and, by def-
inition, 0 log 0 = 0. The steered cyclic entropy projections method that is
obtained uses the iterative process

(2.43) xk+1 = xk + σk


1
x1 0 · · · 0

0 1
x2 · · · 0

...
...

...

0 0 · · · 1
xn


(
P fi(k)(x

k)− xk
)

and its convergence along the lines described above is obtained.

2.12. 2006: Alternating Bregman proximity operators. It all began
with Bregman’s paper [17] which was actually Lev Bregman’s Ph.D. work.
This paper had no follow up in the literature until 14 years later in Cen-
sor and Lent [30]. For a bibliographic brief review on Bregman functions,
distances and projections consult page 1233 (in the notes and references
section) of the book by Facchinei and Pang [47]. See Subsection 2.9 here for
additional pointers and read the recent excellent report of Reem, Reich and
De Pierro [58].

In an attempt to apply compositions of Bregman projections to two dis-
joint convex sets Bauschke, Combettes and Noll [12] investigated the prox-
imity properties of Bregman distances. This investigation lead to the intro-
duction of a new type of proximity operator which complements the usual
Bregman proximity operator.
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The lack of symmetry inherent to the Bregman distanceD (x, y) prompted
the authors to consider two single-valued operators defined on U , namely,

(2.44)

←−−proxϕ : y → arg min
x∈U

ϕ (x) +D (x, y) ,

−−→proxψ : x→ arg min
y∈U

ψ (y) +D (x, y) ,

where a variaty of assumptions (consult Bauschke, Combettes and Noll [12])
apply to the functions ϕ (x) , ψ (y) and D (x, y) . They proposed the following
iterative process [12, Equation (13)]

(2.45)

{
fix x0 ∈ U and set
(∀n ∈ N) yn = −−→proxψ (xn) and xn+1 =←−−proxϕ (yn) ,

for which they proved convergence that yielded the following corollary.

Corollary 2.17. [12, Corollary 4.7] Let A and B be closed convex sets in
RJ such that A∩U 6= ∅ and B ∩U 6= ∅. Suppose that the solution set S of
the problem

(2.46) minimize D over (A×B) ∩ (U × U)

is nonempty. Then the sequence ((xn, yn))n∈N generated by the alternating
left-right projections algorithm

(2.47)

{
fix x0 ∈ U and set

(∀n ∈ N) yn =
−→
P B (xn) and xn+1 =

←−
P A (yn) ,

converges to a point in S.

2.13. 2012: There is no variational characterization of the cycles in
the method of periodic projections. Baillon, Combettes and Cominetti
[3] studied the behavior of the sequences generated by periodic projections
onto m ≥ 3 closed convex subsets of a Hilbert space H. For an ordered
family of nonempty closed convex subsets C1, C2, · · · , Cm of H with associ-
ated projection operators P1, P2, · · · , Pm consider sequences defined by the
following rule: Choose any x0 ∈ H. For every n = 0, 1, 2, 3, · · · perform

(2.48)


xmn+1 = Pmxmn
xmn+2 = Pm−1xmn+1
...
xmn+m = P1xmn+m−1.

They define the set of cycles associated with the given m closed convex
subsets by:

(2.49)

cyc (C1, C2, · · · , Cm) =

{
(y1, y2, · · · , ym) ∈ Hm such that

y1 = P1y2, · · · , ym−1 = Pm−1ym, ym = Pmy1

}
and asked if there exist a function Φ : Hm → R such that, for every or-
dered family of nonempty closed convex subsets (C1, C2, · · · , Cm) of H,



PROJECTION METHODS FOR INCONSISTENT FEASIBILITY PROBLEMS 17

cyc (C1, C2, · · · , Cm) can be characterized as the solution set of a minimiza-
tion problem of Φ? They proved the negative answer to this question by the
following theorem.

Theorem 2.18. [3, Theorem 2.3] Suppose that dimH ≥ 2 and let m be an
integer at least equal to 3. There exists no function Φ : Hm → R such that,
for every ordered family of nonempty closed convex subsets (C1, C2, · · · , Cm)
of H, cyc (C1, C2, · · · , Cm) is the set of solutions to the variational problem:
minimize{Φ(y1, y2, ..., ym) | y1 ∈ C1, y2 ∈ C2, · · · , ym ∈ Cm}.

This shows, in particular, that the Cheney and Goldstein [35] (see Sub-
section 2.1 above) result of minimizing the distance between two disjoint
sets cannot be extended to more than two sets.

2.14. 2012: Alternating projections onto two sets with empty or
nonempty intersection. Kopecká and Reich [54] used tools from non-
expansive operators theory to prove that alternating projections onto two
closed and convex subsets of a real Hilbert space H, generate two subse-
quences such that the sequence of distances between them converges to the
distance between the two sets. Formally, let P1 : H → S1 and P2 : H → S2
be the orthogonal projections of H onto S1 and S2, respectively, and denote
the distance between them by d (S1, S2) . Define the sequence {xn | n ∈ N}
by

(2.50) x2n+1 = P1x2n and x2n+2 = P2x2n+1,

then the following theorem holds

Theorem 2.19. [54, Theorem 1.4] Let S1 and S2 be two nonempty, closed
and convex subsets of a real Hilbert space (H, 〈·, ·〉) , with induced norm ‖·‖ ,
and let P1 : H → S1 and P2 : H → S2 be the corresponding nearest point
projections of H onto S1 and S2, respectively. Let the sequence {xn | n ∈ N}
be defined by (2.50) then

(2.51) lim
n→∞

‖x2n+2 − x2n+1‖ = lim
n→∞

‖x2n+1 − x2n‖ = d (S1, S2) .

2.15. 2016: Inconsistent split feasibility problems. The split common
fixed point problem (SCFPP), first proposed in Censor and Segal [32], re-
quires to find a common fixed point of a family of operators in one space
such that its image under a linear transformation is a common fixed point of
another family of operators in the image space. This generalizes the convex
feasibility problem (CFP), the two-sets split feasibility problem (SFP) and
the multiple sets split feasibility problem (MSSFP).

Problem 2.20. The split common fixed point problem.
Given operators Ui : RN → RN , i = 1, 2, . . . , p, and Tj : RM → RM ,
j = 1, 2, . . . , r, with nonempty fixed points sets Ci, i = 1, 2, . . . , p and
Qj , j = 1, 2, . . . , r, respectively. The split common fixed point problem

(SCFPP) is

(2.52) find a vector x∗ ∈ C := ∩pi=1Ci such that Ax∗ ∈ Q := ∩ri=1Qj .
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Such problems arise in the field of intensity-modulated radiation therapy
(IMRT) when one attempts to describe physical dose constraints and equiv-
alent uniform dose (EUD) constraints within a single model, see Censor,
Bortfeld, Martin and Trofimov [23]. The problem with only a single pair
of sets C in RN and Q in RM was first introduced by Censor and Elfv-
ing [27] and was called the split feasibility problem (SFP). They used their
simultaneous multiprojections algorithm (see also Censor and Zenios [34,
Subsection 5.9.2]) to obtain iterative algorithms to solve the SFP.

Iiduka [51] discusses the multiple-set split feasibility problem (MSFP)

(2.53) Find x∗ ∈ C := ∩i∈IC(i) such that Ax∗ ∈ Q := ∩j∈JQ(j),

where C(i) ⊆ RN for all i ∈ I := {1, 2, · · · , I} and Q(j) ⊆ RM for all
j ∈ J := {1, 2, · · · , J} are nonempty, closed and convex, and A ∈ RM×N
is a matrix. The author [51, Page 187] introduces an inconsistent split fea-
sibility problem (IMSFP) in which the CFP in RN is “hard” (called there
“absolute”) and the CFP in RM is “soft” (called there “subsidiary”) as
meant in Subsection 2.7 here. The infeasibility imposed by assuming that(
∩i∈IC(i)

)
∩
(
∩j∈JD(j)

)
= ∅ where D(j) :=

{
x ∈ RN | Ax ∈ Q(j)

}
.

For user-chosen weights
(
w(j)

)
j∈J ⊂ (0, 1) satisfying

∑
j∈J w

(j) = 1

Iiduka employs, for all x ∈ RN , the proximity function

(2.54) fD (x) :=
1

2

∑
j∈J

w(j)
∥∥∥PQ(j) (Ax)−Ax

∥∥∥2 ,
where PQ(j) is the metric projection onto Q(j), and represents the IMSFP
as the constrained minimization problem

(2.55) Find x∗ such that fD (x∗) = min
{
fD (x) | x∗ ∈ C := ∩i∈IC(i)

}
.

Actually, Iiduka uses nonexpansive mappings T (i) : RN → RN and de-
fines C(i) := Fix

(
T (i)

)
. He proposes a sophisticated projections method for

solving (2.55) and formulates conditions under which it converges.

2.16. 2017: Best approximation pairs relative to two closed convex
sets. Given two disjoint closed convex sets, say C and Q, a best approxi-
mation pair relative to them is a pair of points, one in each set, attaining
the minimum distance between the sets. Cheney and Goldstein [35] showed
that alternating projections onto the two sets, starting from an arbitrary
point, generate a sequence whose two interlaced subsequences converge to a
best approximation pair. See Subsections 2.1 and 2.14 here. While Cheney
and Goldstein considered only orthogonal projections onto the sets, related
results, using the averaged alternating reflections (AAR) method and ap-
plying it to not necessarily convex sets, appeared in Bauschke, Combettes
and Luke [11] and [55]. Remaining solely on theoretical ground, Achiya Dax
[42] explores the duality relations that characterize least norm problems.
He presents a new Minimum Norm Duality (MND) theorem, that considers
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the distance between two convex sets. Roughly speaking, it says that the
shortest distance between the two sets is equal to the maximal “separation”
between the sets, where the term “separation” refers to the distance between
a pair of parallel hyperplanes that separates the two sets.

The problem of best approximation pair relative to two sets cannot be ex-
tended to more than two sets in view of Baillon, Combettes and Cominetti’s
result [3], see Subsection 2.13 here. From a practical point of view, the best
approximation pair relative to two sets obviously furnishes a solution to the
hard and soft constrained inconsistent feasibility problem, see Subsection
2.7 here. However, the algorithmic approach is hindered by the need to
perform projections onto the two sets C and Q if they are not “simple to
project onto”.

Aharoni, Censor and Jiang [2] propose, for the polyhedral sets case, a
process based on projections onto the half-spaces defining the two poly-
hedra, which are more negotiable than projections on the polyhedra them-
selves. A central component in their proposed process is the Halpern–Lions–
Wittmann–Bauschke (HLWB2) algorithm for approaching the projection of
a given point onto a convex set.

The HLWB algorithm is applied alternatingly to the two polyhedra. Its
application is divided into sweeps — in the odd numbered sweeps we project
successively onto half-spaces defining the polyhedron C, and in even num-
bered sweeps onto half-spaces defining the polyhedron Q. A critical point
is that the number of successive projections onto each set’s half-spaces in-
creases from sweep to sweep. The proof of convergence of the algorithm is
rather standard in the case that the best approximation pair is unique. The
non-uniqueness case, however, poses some difficulties and its proof is more
involved.

2.17. 2018: Replacing inconsistent sets with set enlargements:
ART3, ARM, Intrepid, Valiant. Searching for a solution to a system of
linear equations is a convex feasibility problem and has led to many different
iterative methods. When the system of linear equations is inconsistent, due
to modeling or measurements inaccuracies, it has been suggested to replace
it by a system of pairs of opposing linear inequalities creating nonempty hy-
perslabs. Applying projection methods to this problem can be done by using
any iterative method for linear inequalities, such as the method of Agmon
[1] and Motzkin and Schoenberg [56] (AMS). However, in order to improve
computational efficiency, Goffin [48] proposed to replace projections onto the
hyperslabs by a strategy of projecting onto the original hyperplane (from
which the hyperslab was created) when the current iterate is “far away” from
the hyperslab, and reflecting into the hyperslab’s boundary when the cur-
rent iterate is “close to the hyperslab” while keeping the iterate unchanged
if it is already inside the hyperslab.

2This acronym was dubbed in [22].
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In [50] Herman suggested to implement Goffin’s strategy by using an ad-
ditional enveloping hyperslab in order to determine the “far” and the “close”
distance of points from the hyperplane, resulting in his “Algebraic Recon-
struction Technique 3” (ART3) algorithm. In [20] Censor also embraced the
idea of hyperslabs, and defined an algorithmic operator that implemented
Goffin’s strategy in a continuous manner, resulting in the Automatic Re-
laxation Method (ARM). For applications and additional details see Censor
and Herman [29] and [21].

A fundamental question that remained open since then was whether the
hyperslabs approach to handle linear equations and Goffin’s principle can
be applied to general convex sets. This question was recently studied by
Bauschke, Iorio and Koch in [14], see also [15] and Bauschke, Koch and
Phan [16] for further details and interesting applications. They defined
convex sets enlargements instead of hyperslabs and used them to generalize
the algorithmic operator that appeared in Herman [50]. They defined an
operator which they called the “intrepid projector”, intended to generalize
the ART3 algorithm of [50] to convex sets. Motivated by [14], Censor and
Mansour [31] present a new operator, called the “valiant operator”, that
enables to implement the algorithmic principle embodied in the ARM of [20]
to general convex feasibility problems. Both ART3 and ARM seek a feasible
point in the intersections of the hyperslabs and so their generalizations to
the convex case seek feasibility of appropriate enlargement sets that define
the extended problem.
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