
Comput. Optim. Appl. manuscript No.
(will be inserted by the editor)

Finding a best approximation pair of points for two
polyhedra

Ron Aharoni · Yair Censor · Zilin Jiang

Received: date / Accepted: date
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process based on projections onto the half-spaces defining the two polyhedra, which
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1 Introduction

A best approximation pair relative to two closed convex sets A and B is a pair (a,b)∈
A×B attaining ‖a−b‖= min‖A−B‖, where A−B := {x− y | x ∈ A,y ∈ B}.

For a closed convex set C denote by PC the metric projection operator onto C. Take
an arbitrary starting point a0 ∈ Rd , the d-dimensional Euclidean space, and consider
the sequence:
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A well-known theorem of Cheney and Goldstein [15] specifies conditions under
which alternating metric projections onto the two sets are guaranteed to converge to
the best approximation pair. In fact, their result applies when A and B are closed con-
vex sets in a Hilbert space, and one of them is compact. For related results, using
the averaged alternating reflections method and applying it to not necessarily convex
sets, see [6, 23]. For a study of von Neumann’s alternating projection algorithm for
two sets, see [3] and [21]. For best approximation in general, we refer the reader to
Deutsch’s excellent book [16]. A recent review of algorithms for inconsistent feasi-
bility problems, some of which relevant to the work presented here, appears in [13].

In real-life problems, convex polyhedra are usually represented by a set of linear
constraints, namely as the intersection of half-spaces. Projecting onto the polyhedron
can then be done using projections onto the half-spaces. We propose a projection
method for finding the best approximation pair that uses directly projections onto the
half-spaces, instead of on the polyhedra.

An algorithm for approaching the projection of a point a onto a polyhedron, using
projections onto the half-spaces defining the polyhedron, was proposed by Halpern,
Lions, Wittmann and Bauschke (HLWB)1 [2,20,22,25]. The HLWB algorithm works
by projecting successively and cyclically onto the half-spaces, the main stratagem
being that after each projection the algorithm “pulls” a bit back in the direction of a.
The latter guarantees that the algorithm does not “forget” the point a whose projection
onto the polyhedron is sought after.

We propose and study the convergence of an iterative process based on projec-
tions onto the individual half-spaces defining the polyhedra, which are more nego-
tiable than projections on the polyhedra themselves. We apply the HLWB algorithm
alternatingly to the two polyhedra. Its application is divided into sweeps — in the odd
numbered sweeps we project successively onto half-spaces defining A, and in even
numbered sweeps onto half-spaces defining B. A critical point is that the number of
successive projections onto each set’s half-spaces increases from sweep to sweep.
The proof of convergence of the algorithm is rather standard in the case that the best
approximation pair is unique. The non-uniqueness case, however, poses some diffi-
culties and its proof is more involved.

The algorithm belongs to a family known as projection methods. These are iter-
ative algorithms that use projections onto individual sets, to converge to a point in

1 This acronym was dubbed in [10].
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the intersection of these sets, or images of them under some transformation. They
were originally used to solve systems of linear equations in Euclidean space (see,
e.g., [8, 9, 14, 18, 19]), and later were extended to solve general convex feasibility
problems in a Hilbert space, see, e.g., [5]. On the low computational cost of projec-
tion methods, see [7, 12]. Consult also [11].

The paper is organized as follows. In Section 2 we present the alternating HLWB
algorithm. In Section 3 we prove some preliminary results needed for the proof of
convergence of the algorithm. The proof itself is given in Section 4. Finally, in Sec-
tion 5 we discuss possible choices of the parameters for the algorithm.

2 An Alternating HLWB Algorithm

Throughout the paper, we assume that A :=∩M
i=1Ai and B :=∩N

j=1B j are two nonempty

convex polyhedra, where {Ai}M
i=1 and

{
B j
}N

j=1 are two families of closed half-spaces.

By adding Ai or B j that are equal to the entire space Rd (or alternatively repeat the
same half-space) we may assume that M = N. For the purpose of performing un-
boundedly many projections, we extend the sequences {Ai} and

{
B j
}

to all i, j ∈ N
by the rules Ai = Ai mod N and B j = B j mod N , where the mod N function takes values
in {1,2, . . . ,N}.

We incorporate into our algorithm the HLWB algorithm, which is designed to
find the projection of a point a onto a polyhedron C, using the projections onto the
half-spaces defining C. Let P1,P2, . . . ,PN be the respective projections onto these half-
spaces. The HLWB algorithm starts by choosing an arbitrary starting point x0 and
numbers λn satisfying:

lim
n→∞

λn = 0, ∑n λn = ∞, ∑n |λn−λn+N |< ∞. (1)

A sequence {xn}∞

n=1 is then recursively generated by the rule:

xn := λna+(1−λn)Pn mod N(xn−1),

Bauschke [2, Theorem 3.1] proved that the sequence {xn}∞

n=0 generated by this
HLWB algorithm convergences to PC(a). Some computational performance results
with the HLWB and the Dykstra [17] algorithms were presented in [10].

In our proposed algorithm, we apply the HLWB algorithm alternatingly to A and
to B. We call this method “A-HLWB” (“A” for “alternating”). Like in HLWB, we
choose numbers λn satisfying (1). For points a,x ∈ Rd and n ∈ N, we recursively
define

QB,0(a;x) := x and QB,n(a;x) := λna+(1−λn)PBn(QB,n−1(a;x)).

For b,x ∈ Rd and n ∈ N, QA,n(b;x) is similarly defined

QA,0(b;x) := x and QA,n(b;x) := λnb+(1−λn)PAn(QA,n−1(b;x)).

Thus, QA,n(b;x) and QB,n(a;x) are operators, each being defined by a sequence of n
iterations.
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We also choose an arbitrary starting point a0 ∈Rd and a non-decreasing sequence
(nk) such that

nk→ ∞ and sup
k0

∑
k>k0

nk

∏
n>nk0

(1−λn)

< ∞. (2)

Once the sequence (λn) is chosen so that (1) holds, one can always make (nk) increase
rapidly enough so that (2) holds. For example, λn =

1
n+1 ,nk = b1.1kc satisfy both (1)

and (2). To see why these parameters satisfy the second inequality in (2), simply
notice that

∑
k>k0

nk

∏
n>nk0

(1−λn) = ∑
k>k0

nk

∏
n>nk0

n
n+1

= ∑
k>k0

nk0 +1
nk +1

≈ ∑
k>k0

1.1k0

1.1k = 10.

The kth sweep of the A-HLWB algorithm uses nk iterations of the HLWB algo-
rithm to generate:

bk+1 = QB,nk(ak;a′k) if k is even; ak+1 = QA,nk(bk;b′k) if k is odd, (3)

where the auxiliary parameter a′k or b′k is chosen before each sweep. The validity
of the algorithm is guaranteed if the auxiliary sequence (a′2k,b

′
2k+1) is bounded. For

example, one may simply take a′2k = b′2k+1 = a0. We now state our main convergence
result.

Theorem 1 If the above assumptions on the mappings and on the parameters hold
and the auxiliary sequence (a′2k,b

′
2k+1) is bounded, then the pairs (a2k,b2k+1), gen-

erated by the A-HLWB algorithm (3), converge to a best approximation pair relative
to (A,B).

The second inequality in (2) is technical and could possibly be redundant. In
fact, if the best approximation pair is unique, the convergence is assured without this
inequality (see Remark 1). However, we are unable to remove it for Theorem 1 in the
non-uniqueness case.

3 Preliminaries for the Proof of Convergence

We present several preliminary results that will be used to prove Theorem 1, the first
of which says, in Lemma 1 below, that the set of points generated by the A-HLWB
algorithm is bounded. This follows from a result of Aharoni, Duchet and Wajnryb [1],
see also Meshulam [24].

Theorem 2 (Theorem of Aharoni, Duchet and Wajnryb [1]) Any sequence of
points in Rd obtained by successive projections of a point onto elements of a finite
set of hyperplanes is bounded.

Lemma 1 For every bounded set D ⊂ Rd , there exists a compact set C ⊂ Rd con-
taining D such that QA,m(b;x),QB,n(a;x) ∈C for all a,b,x ∈C and m,n ∈ N.
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Proof Take a simplex with vertices x0,x1, . . . ,xd ∈ Rd that contains D. Denote the
bounding hyperplanes of the half-spaces Ai and Bi by ∂Ai and ∂Bi, respectively. Let
X be the set of points obtained by successive projections of x0,x1, . . . ,xd on {∂Ai}M

i=1
and on {∂Bi}N

i=1. By Theorem 2, we know that X is bounded, and so is its convex
hull Y := conv(X).

Notice that QA,m(b;x) is either λmb+ (1− λm)QA,m−1(b;x) or λmb+ (1− λm)
P∂Am QA,m−1(b;x) depending on whether QA,m−1(b;x) is in Am. One can then show by
induction on m that QA,m(b;x) ∈ Y for every b,x ∈ Y .

The same argument shows that QB,n(a;x) ∈ Y for every a,x ∈ Y . Finally, let C be
the closure of Y in Rd . Since QA,m and QB,n are continuous, QA,m(b;x) and QB,n(a;x)
are in C for every a,b,x ∈C. ut

The following result is well-known, see, e.g., [15, Theorem 3].

Theorem 3 If B is a closed convex set in Hilbert space, then the projection map PB
onto B satisfies the Lipschitz condition ‖PB(x)−PB(y)‖ ≤ ‖x− y‖, equality holding
only if ‖x−PB(x)‖= ‖y−PB(y)‖.

The classical 1959 result of Cheney and Goldstein, repeatedly referred to in this
paper, is given next as a paraphrased version of their Theorems 2 and 4.

Theorem 4 Let A and B be two closed convex sets in Hilbert space. A point of A is
nearest to B if and only if it is a fixed point of PAPB. If one set is finite-dimensional
and the distance between the sets is attained, then convergence of ((PAPB)

n(x)) to a
fixed point of PAPB is assured.

We need also the following result, which appeared in [4, Lemma 2.2].

Lemma 2 Let A and B be two closed convex sets in Hilbert space, one of which
being finite-dimensional. Suppose that the distance between the sets is attained. If
S is a nonempty compact set such that PAPB(S) = S, then S consists of points of A
nearest to B.

Proof Define S′ := {s ∈ S | PAPB(s) = s}. Since S is compact and PAPB(S) ⊂ S, by
the second part of Theorem 4, for any x ∈ S, (PAPB)

n(x) converges in S and its limit
is a fixed point of PAPB.

Since S is nonempty, so is S′ and it is easy to see that S′ is compact as well.
Let d := maxs∈S inf‖s−S′‖ and let y ∈ S be such that inf‖y−S′‖ = d. Since

PAPB(S)⊃ S, there exists x ∈ S such that PAPB(x) = y. Since min‖x−S′‖ ≤ d, we can
take s′ ∈ S′ such that ‖x− s′‖ ≤ d.

By way of contradiction, assume that x /∈ S′. By the first part of Theorem 4,∥∥PB(s′)− s′
∥∥= inf‖A−B‖< ‖PB(x)− x‖ .

By Theorem 3, we obtain∥∥y− s′
∥∥= ∥∥PAPB(x)−PAPB(s′)

∥∥≤ ∥∥PB(x)−PB(s′)
∥∥< ∥∥x− s′

∥∥ .
This contradicts with ‖x− s′‖ ≤ d ≤ ‖y− s′‖. Therefore, x ∈ S′, hence y = x and
d = 0. By the first part of Theorem 4, S = S′ implies that S consists only of points of
A nearest to B. ut
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The last ingredient that will be used in our proof of Theorem 1 is the following.

Theorem 5 Let B be a polyhedron in Hilbert space, and assume that B = ∩N
i=1Bi 6=

/0, where {Bi}N
i=1 are closed convex sets. If the sequence (λn) satisfies (1), then

limn→∞ ‖QB,n(a;x)−PB(a)‖= 0 for any points a and x.

Proof This follows from Bauschke’s Theorem 3.1 in [2]. In fact, Bauschke’s theorem
applies to a broader setting, in which the Bi’s are sets of fixed points of nonexpansive
mappings in Hilbert space. ut

It is easy to check that∥∥QB,n(a;x)−QB,n(a′;x′)
∥∥≤ ∥∥a−a′

∥∥+∥∥x− x′
∥∥

for all n. Together with the fact that PB is nonexpansive (i.e., 1-Lipschitz), it is routine
to check the uniform convergence of (QB,n) on any compact set, leading to the next
lemma.

Lemma 3 Let B be as in Theorem 5, and let C be a compact set in the Hilbert space.
If the sequence (λn) satisfies (1), then

lim
n→∞

(
sup

a,x∈C
‖QB,n(a;x)−PB(a)‖

)
= 0.

Proof For every ε > 0, let C0 be a finite ε-covering of the compact set C. By Theo-
rem 5, for every a0,x0 ∈C0, there is N(a0,x0)∈N such that ‖QB,n(a0;x0)−PB(a0)‖<
ε for all n > N(a0,x0). Set N := maxa0,x0∈C0 N(a0,x0). Given a,x ∈C, let a0,x0 ∈C0
be such that ‖a−a0‖ ,‖x− x0‖ < ε . For every n > N, since both QB,n and PB are
nonexpansive, we have

‖QB,n(a;x)−PB(a)‖ ≤ ‖QB,n(a;x)−QB,n(a0;x0)‖+‖QB,n(a0;x0)−PB(a0)‖
+‖PB(a0)−PB(a)‖ ≤ ‖a−a0‖+‖x− x0‖+ ε +‖a0−a‖< 4ε. ut

4 Convergence of the A-HLWB Algorithm

In this section we present a proof of the convergence theorem of the A-HLWB algo-
rithm.

Proof (Proof of Theorem 1) In order to prove this theorem we inspect the set of ac-
cumulation points of (a2k). We show that it is compact, fixed under PAPB and, finally,
that it is a singleton. By Lemma 1, there exists a compact set C ⊂ Rd containing
{a0}∪

{
a′2k

}∞

k=0 ∪
{

b′2k+1

}∞

k=0 such that both QA,m and QB,n map C×C to C, hence
the sequences (a2k) and (b2k+1) are contained in C.

Let S be the set of accumulation points of (a2k). By the Bolzano–Weierstrass
theorem S 6= /0. Moreover, since S is closed and S⊂C, it is compact.
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A

T
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B

Fig. 1 Fig. 2

We claim that PAPB(S) = S. Pick any point s ∈ S and any ε > 0. Using Lemma 3
and the first assumption in (2) that nk → ∞, one can choose k sufficiently large such
that

‖a2k− s‖< ε,

sup
a,x∈C

∥∥QB,n2k(a;x)−PB(a)
∥∥< ε/2, sup

a,x∈C

∥∥QA,n2k+1(b;x)−PA(b)
∥∥< ε/2.

In particular, since b2k+1 = QB,n2k(a2k;a′2k) and a2k+2 = QA,n2k+1(b2k+1;b′2k+1), we
have

‖PB(a2k)−b2k+1‖< ε/2, ‖PA(b2k+1)−a2k+2‖< ε/2.

By the triangle inequality and the fact that PA and PB are nonexpansive, we obtain
that

‖PAPB(s)−a2k+2‖ ≤ ‖PAPB(s)−PAPB(a2k)‖+‖PAPB(a2k)−PA(b2k+1)‖
+‖PA(b2k+1)−a2k+2‖≤‖s−a2k‖+‖PB(a2k)−b2k+1‖+‖PA(b2k+1)−a2k+2‖< 2ε.

(4)

This implies that PAPB(s) is also an accumulation point of (a2k). Thus, PAPB(S)⊂ S.
On the other hand, suppose that s ∈ S is the limit of the subsequence (a2kl ). Let
s′ ∈ S be an accumulation point of the subsequence (a2kl−2). The same argument
for PAPB(S) ⊂ S shows that PAPB(s′) is an accumulation point of (a2kl ), and so is
PAPB(s′) = s. This means that PAPB(S) ⊃ S. By Lemma 2, S consists of points of A
nearest to B.

It remains to be shown that S is a singleton, namely that it contains only one point,
which is then the limit of (a2k). This is clear if there is only one best approximation
pair.

From here on we consider the case that A and B have parallel closest faces. This
situation requiers a deeper and more delicate analysis which we give now.

Let v be the shortest vector of the form a− b, where a ∈ A and b ∈ B. Put dif-
ferently, v is the projection of the origin onto A−B. Set T := A∩ (B+ v). Clearly, T
is precisely the set of all points in A nearest to B. Therefore S ⊂ T . Moreover, T is
a convex polyhedron inside the supporting hyperplane of A that is perpendicular to v
(see Figure 1.)

We decompose the polyhedron T into the relative interiors of its faces (see Fig-
ure 2.) Let e be the largest integer such that the relative interior of some e-dimensional
face Fe intersects S, say at point s. We shall prove that (a2k) converges to s. Since,
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Fig. 3
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ql
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by Lemma 3, limk→∞ ‖b2k+1−PB(a2k)‖ = 0, this will imply that (b2k+1) converges
to PB(s), and (a2k,b2k+1) thus converges to the best approximation pair (s,PB(s)).

The proof that limk→∞ a2k = s combines ideas from the two extreme cases for
e, namely e = 0 or e = d− 1. We first handle these two cases and then present the
general case.

Case 1: e = 0. Suppose that all points of S are vertices of T . Let ε0 > 0 be such
that Nε0(s) (the ε0-neighborhood of s) satisfies Nε0(s)∩T0 = {s}. Denoting by T0 the
set of all accumulation points of (a2k), S ⊂ T0 implies that every neighborhood of T0
contains all but finitely many points of (a2k). For every ε ∈ (0,ε0/4), we can then
choose k0 ∈ N so that

∥∥a2k0 − s
∥∥< ε

4
, inf‖a2k−T0‖<

ε

4
for all k ≥ k0,

and, using Lemma 3,

sup
b,x∈C
‖QA,n(b;x)−PA(b)‖<

ε

4
, sup

a,x∈C
‖QB,n(a;x)−PB(a)‖<

ε

4
, for all n≥ n2k0 . (5)

We claim that for every k≥ k0, if ‖a2k− s‖< ε/4, then ‖a2k+2− s‖< ε0/2 (see Fig-
ure 3) and so ‖a2k+2− s‖= inf‖a2k+2−T0‖, by the choice of ε0. In fact, (4) implies

‖a2k+2− s‖ ≤ ‖a2k− s‖+‖PB(a2k)−b2k+1‖+‖PA(b2k+1)−a2k+2‖
< ε/4+ ε/4+ ε/4 < ε0/2.

Hence, Nε(a2k+2)⊂ Nε0(s), and so

Nε(a2k+2)∩T0 ⊂ Nε0(s)∩T0 = {s} .

This means that

‖a2k+2− s‖= inf‖a2k+2−T0‖< ε/4.

By induction, we know that ‖a2k− s‖< ε/4 for all k ≥ k0.
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Case 2: e= d−1. Suppose s is in the relative interior of the (d−1)-dimensional face
T = Te. Let H be the supporting hyperplane of A that is perpendicular to v. Note that
T ⊂ A∩H. If ∂Ai goes through s, then ∂Ai = H (otherwise, T would have dimension
smaller than d−1.) Similarly, if ∂Bi goes through PB(s) = s− v, then ∂Bi = H− v.

Thus, we can choose an ε0-neighborhood Nε0(s) of s such that Nε0(s) ⊂ Ai for
all ∂Ai 6= H and such that Nε0(PB(s)) ⊂ Bi for all ∂Bi 6= H − v. This, in particular,
implies that for every x ∈ Nε0(PB(s)), PBi(x)− x is always orthogonal to T .

For the rest of the proof of this case for e = d−1, we only highlight the key steps
and leave the full-fledged proof to the general case below. For a fixed k ≥ k0, let T⊥

and T⊥(a2k+2) be the lines orthogonal to T through s and through a2k, respectively,
and define `+ := `+ n2k0 and q` := QB,`+(a2k;a′2k) (see Figure 4). We claim that if
q` ∈ Nε0(PB(s)) for all `≥ 0, then

inf
∥∥∥b2k+1−T⊥(a2k)

∥∥∥= inf
∥∥∥q0−T⊥(a2k)

∥∥∥ · n2k

∏
n>n2k0

(1−λn).

Indeed, recall that for `≥ 1, we have the recursion

q` = λ`+a2k +(1−λ`+)PB`+
(q`−1). (6)

Since q`−1 ∈ Nε0(PB(s)), by the choice of ε0, we know that PB`+
(q`−1)− q`−1 is

orthogonal to T , hence

inf
∥∥∥PB`+

(q`−1)−T⊥
∥∥∥= inf

∥∥∥q`−1−T⊥
∥∥∥ .

Therefore,
inf
∥∥∥q`−T⊥

∥∥∥= (1−λ`+) inf
∥∥∥q`−1−T⊥

∥∥∥ .
The claim follows from repeated application of this equality and the fact that b2k+1 =
qn2k−n2k0

.
Loosely speaking, the claim suggests that b2k+1 does not deviate far from T⊥(a2k),

and, similarly, neither does a2k+2 deviate from T⊥(b2k+1). The accumulated devia-
tions of a2k from T⊥ then can be bounded. This, together with the fact that a2k con-
verges to a point in T , implies that limk→∞ a2k = s.

General case: 0 ≤ e ≤ d− 1. The proof of the general case is the juxtaposition of
the ideas in the two previos cases above. Let Te be the union of the e-dimensional
faces of T . Since s is in the relative interior of Fe, we can choose ε0 > 0 so that the
following hold:

1. Nε0(s)∩Te ⊂ Fe;
2. for every x ∈ Nε0(s), PAm(x)− x is orthogonal to Fe for all m;
3. for every x ∈ Nε0(PB(s)), PBn(x)− x is orthogonal to Fe for all n.

In view of (2), there is a constant Z > 1 such that

∑
l>k0

n2l+1

∏
n>n2k0

(1−λn)< Z for all k0 ∈ N. (7)
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F⊥e

F⊥e (a2k)

s

s′

Fe

a2k
PB(s′)

ql

b2k+1

Fig. 5

For every ε ∈ (0,ε0/4), we can choose k0 ∈ N so that (5) and the following hold.∥∥a2k0 − s
∥∥< ε

4Z
, inf‖a2k−Te‖<

ε

4Z
for all k ≥ k0.

Let F⊥e be the (d− e)-dimensional affine subspace through s orthogonal to Fe. We
prove by induction that for all k ≥ k0,

inf‖a2k−Fe‖<
ε

4Z
, (8a)

inf
∥∥∥a2k−F⊥e

∥∥∥< ε

4Z
+

ε

2Z
·

k

∑
l>k0

n2l+1

∏
n>n2k0

(1−λm), (8b)

‖a2k− s‖< ε. (8c)

When k = k0, it is obvious from the choice of k0. Assume that (8) holds for k, we
prove it for k+1.
Proof of (8a). We use (4) to obtain

‖s−a2k+2‖ ≤ ‖s−a2k‖+‖PB(a2k)−b2k+1‖+‖PA(b2k+1)−a2k+2‖

< ε +
ε

4Z
+

ε

4Z
<

ε0

2
.

Hence, N2ε(a2k+2)⊂ Nε0(s), and so

N2ε(a2k+2)∩Te ⊂ Nε0(s)∩Te ⊂ Fe.

This means that
inf‖a2k+2−Fe‖= inf‖a2k+2−Te‖<

ε

4Z
.

Proof of (8b). Again, define `+ := `+n2k0 and q` := QB,`+(a2k;a′2k). For every `≥ 0,
we have

‖PB(s)−q`‖ ≤ ‖s−a2k‖+‖PB(a2k)−q`‖< ε +
ε

4Z
< ε0. (9)
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Let F⊥e (a2k) be the (d− k)-dimensional subspace through a2k orthogonal to Fe (see
Figure 5). We have the recursion (6) for ` ≥ 1. Since ‖PB(s)−q`−1‖ < ε0, by the
choice of ε0, we know that PB`+

(q`−1)−q`−1 is orthogonal to Fe, hence,

inf
∥∥∥PB`+

(q`−1)−F⊥e (a2k)
∥∥∥= inf

∥∥∥q`−1−F⊥e (a2k)
∥∥∥ .

Therefore,

inf
∥∥∥q`−F⊥e (a2k)

∥∥∥= (1−λ`+) inf
∥∥∥q`−1−F⊥e (a2k)

∥∥∥ . (10)

Let s′ be the intersection of Fe and F⊥e (a2k), which is guaranteed to be nonempty by
‖a2k− s‖< ε < ε0. Moreover, we have∥∥a2k− s′

∥∥= inf‖a2k−Fe‖<
ε

4Z
.

Since s′ ∈ T , PB(s′) = s′+ v ∈ F⊥e (a2k). Notice that

inf
∥∥∥q0−F⊥e (a2k)

∥∥∥≤∥∥q0−PB(s′)
∥∥≤‖q0−PB(a2k)‖+

∥∥a2k− s′
∥∥≤ ε

4Z
+

ε

4Z
=

ε

2Z
.

With repeated application of (10) and the fact that b2k+1 = qn2k−n2k0
, we derive

inf
∥∥∥b2k+1−F⊥e (a2k)

∥∥∥≤ ε

2Z
·

n2k

∏
n>n2k0

(1−λm). (11)

Let F⊥e (b2k+1) be the (d− k)-dimensional subspace through b2k+1 orthogonal to Fe.
Notice that (9) implies that

‖b2k+1−PB(s)‖< ε +
ε

4Z
.

This would allow us to carry out a similar argument to conclude that

inf
∥∥∥a2k+2−F⊥e (b2k+1)

∥∥∥< ε

2Z
·

n2k+1

∏
n>n2k0

(1−λm). (12)

Combining (11) and (12), we get what is needed for the inductive step.
Proof of (8c). It follows from

‖a2k+2− s‖ ≤ inf‖a2k+2−Fe‖+ inf
∥∥∥a2k+2−F⊥e

∥∥∥
and (7, 8a, 8b). ut

Remark 1 As mentioned in the proof, if the polyhedra A and B are known a priori
to have only one best approximation pair, then the set S is automatically a singleton,
hence (a2k,b2k+1) converges to the best approximation pair. In this case, the second
inequality in (2) could be dropped from the assumptions in Theorem 1.
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a0

A

B

Fig. 6

a0

A

B

Fig. 7

5 Discussion

One has the freedom to choose the auxiliary sequence (a′2k,b
′
2k+1) in the A-HLWB

algorithm as long as it is bounded. The simplest way is to take a′2k = b′2k+1 = a0. In
Figure 6, we run 50 iterations of the algorithm, and we plot the more recent points in
darker color. The half-spaces are

A1 : 4x−3y≤ 17, A2 : x≤−4, A3 : x+ y≤−11, A4 : y≤−5;
B1 : 5x−4y≤ 30, B2 : x−2y≤ 0, B3 : − x−4y≤−24, B4 : −2x− y≤−13.

The choices of the parameters are

a0 = (8,−13), λn =
1

n+1 , nk = b1.1kc, a′2k = b′2k+1 = a0.

The auxiliary point a′2k can be seen as the starting point of the HLWB algorithm
for polyhedron B. It makes sense to choose a′2k close to B. Since b2k−1 is our best
approximation to B so far, heuristically a′2k = b2k−1 might be a better choice. Simi-
larly, it might be better to choose b′2k+1 = a2k. One can use Lemma 1 to show that
(a′2k,b

′
2k+1) is bounded. In Figure 7, we again run 50 iterations for the same half-

spaces and the parameters, except that

a′0 = a0, a′2k = b2k−1 for all k > 0, b′2k+1 = a2k for all k ≥ 0.

Comparing Figure 6 and Figure 7, interestingly we do not see significant differ-
ence in convergence. One possible explanation is the following. It is easily checked
that ∥∥QB,n2k(a;x)−QB,n2k(a;x′)

∥∥≤ ∥∥x− x′
∥∥∏

n2k
n=1(1−λn).

When ∏
n2k
n=1(1− λn) is extremely small, the contribution of the auxiliary points is

negligible.
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Now that the convergence of the A-HLWB algorithm has been established here,
it would be interesting in future work to investigate non-asymptotic bounds on the
number of steps of half-space projections to reach an approximate solution and rate
of convergence results.

Acknowledgements We thank Yehuda Zur for Matlab programming work at the early stages of our re-
search.
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