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Abstract—Previous work has shown that total variation su-
periorization (TVS) improves reconstructed image quality in
proton computed tomography (pCT). The structure of the TVS
algorithm has evolved since then and this work investigated if this
new algorithmic structure provides additional benefits to pCT
image quality. Structural and parametric changes introduced to
the original TVS algorithm included: (1) inclusion or exclusion
of TV reduction requirement, (2) a variable number, N , of
TV perturbation steps per feasibility-seeking iteration, and (3)
introduction of a perturbation kernel 0 < α < 1. The structural
change of excluding the TV reduction requirement check tended
to have a beneficial effect for 3 ≤ N ≤ 6 and allows full
parallelization of the TVS algorithm. Repeated perturbations
per feasibility-seeking iterations reduced total variation (TV)
and material dependent standard deviations for 3 ≤ N ≤ 6.
The perturbation kernel α, equivalent to α = 0.5 in the
original TVS algorithm, reduced TV and standard deviations
as α was increased beyond α = 0.5, but negatively impacted
reconstructed relative stopping power (RSP) values for α > 0.75.
The reductions in TV and standard deviations allowed feasibility-
seeking with a larger relaxation parameter λ than previously
used, without the corresponding increases in standard devia-
tions experienced with the original TVS algorithm. This work
demonstrates that the modifications related to the evolution of
the original TVS algorithm provide benefits in terms of both pCT
image quality and computational efficiency for appropriately
chosen parameter values.

Index Terms—feasibility-seeking algorithms, image reconstruc-
tion, perturbations, proton computed tomography (pCT), supe-
riorization, total variation superiorization (TVS)

I. INTRODUCTION

PROTON computed tomography (pCT) is a relatively new
imaging modality that has been developed from early

beginnings [1], [2], [3], [4] towards a recent preclinical real-
ization of a pCT scanner [5], [6], [7]; a comprehensive review
of pCT development can be found in [8]. The main motivation
of pCT has been to improve the accuracy of proton therapy
dose planning due to more accurate maps of relative stopping

Copyright c© 2018 IEEE. Personal use of this material is permitted.
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obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

power (RSP) with respect to water, which determines how
protons lose energy in human tissues in reference to water as
a medium. The same method can also be used to image the
patient immediately before treatment to verify the accuracy
of the treatment plan about to be delivered. Proton therapy,
like therapy with other heavy charged particles, e.g., carbon
ions, is very susceptible to changes in tissue RSP, and small
differences of a few percent, both random and systematic, can
lead to range errors exceeding the desired limit of 1-2 mm [9].
Thus, the planner of proton and ion therapy must increase
margins around the target, which leads to unwanted exposure
of normal tissues to high dose.

The faithful reconstruction of proton RSP maps, in terms
of accuracy and reproducibility, is an important part of the
successful clinical implementation of pCT. The approach that
has been selected as the most promising in recent years,
although technologically demanding, is to track individual
protons through the patient and to predict their most likely
path (MLP) [10], [11] in addition to measuring the energy loss
of each proton and converting it to water-equivalent pathlength
(WEPL). This has led to pCT reconstruction algorithms that
are based on solving large and sparse linear equation systems,
where each equation has the linear combination of intersection
lengths of tracked protons through individual object voxels and
the unknown RSP of those voxels on the left-hand side of the
equation and the measured WEPL on the right-hand side of
the equation. A solution of such large systems can be found
with algorithms using projections onto convex sets and solving
them iteratively as shown previously [12]. The noise content
of the reconstructed images depends on many factors, such
as the thickness of the object, the number of protons used in
the image formation, and the details of the iterative algorithm,
such as the number of iterations performed and the relaxation
parameter chosen.

The superiorization method (SM) is another relatively recent
development that has found its place between feasibility-
seeking and constrained optimization in medical physics appli-
cations [13]. The superiorization method has also been tested
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as a technique to improve the image quality, in particular
the noise properties, of pCT images when combined with
the diagonally-relaxed orthogonal projections (DROP) algo-
rithm [14]. Superiorization reduces, not necessarily minimizes,
the value of a target function while seeking constraints-
compatibility. This is done by taking a solely feasibility-
seeking algorithm, analyzing its perturbation resilience, and
proactively perturbing its iterates accordingly to steer them to-
ward a feasible point with reduced value of the target function.
When the perturbation steps are computationally efficient, this
enables generation of a superior result with approximately the
same computation time and efficiency (computational cost) as
that of the original feasibility-seeking algorithm.

The mathematical principles of the SM over general con-
sistent “problem structures” with the notion of bounded per-
turbation resilience were formulated in [15]. The framework
of the SM was extended to the inconsistent case by using the
notion of strong perturbation resilience in [16], [17]. In [17],
the efficacy of the SM was also demonstrated by comparing
it with the performance of the projected subgradient method
for constrained minimization problems.

A comprehensive overview of the state of the art and
current research on superiorization appears in our continuously
updated bibliography Internet page, which currently contains
82 items [18]. Research works in this bibliography include a
variety of reports ranging from new applications to new mathe-
matical results for the foundation of superiorization. A special
issue entitled: “Superiorization: Theory and Applications” of
the journal Inverse Problems appeared in [19].

Recently published works also attest to the advantages of
the superiorization methodology in x-ray CT image recon-
struction. These include reconstruction of CT images from
sparse-view and limited-angle polyenergetic data [20], statis-
tical tomographic image reconstruction [21], CT with total
variation and with shearlets [22], and superiorization-based
multi-energy CT image reconstruction [23].

In this work, we report on improvements in noise properties
(total variation, standard deviation of regions of interest in dif-
ferent materials) and computational efficiency when applying
novel modifications of superiorization to pCT reconstruction.

II. MOTIVATION

Iterative projection methods seeking feasible solutions have
been shown to be an effective image reconstruction technique
for pCT [24], but reconstructed images exhibit local RSP
fluctuations that cannot be removed by the reconstruction
process alone. Inelastic electronic and nuclear events result in a
statistical distribution of energy loss and, consequently, of the
WEPL values calculated from measurements. These statistical
variations in WEPL manifest in the reconstructed image as
correlated localized fluctuations in the reconstructed RSP
values. Although iterative reconstruction algorithms [12] are
less sensitive to these variations than reconstruction transform
methods, such as filtered backprojection (FBP) [25], [26],
there is a propagation and amplification of WEPL uncertainty
with successive iterations. Hence, although accuracy tends to
increase with each iteration, as reconstruction nears conver-
gence, updates of the solution from subsequent iterations are

increasingly dominated by growing fluctuations. Thus, beyond
a certain number of iterations, image quality begins to degrade,
placing a limit on the maximum number of useful iterations
and preventing steady-state convergence. WEPL uncertainty
is inherent in the physical process and cannot be avoided,
but techniques have been developed to reduce fluctuations
and limit their propagation during iterative reconstruction.
Given the amplification of uncertainty in the iterative process,
any reduction in local RSP variations may lead to improved
convergence behavior and, therefore, increase the accuracy of
reconstructed RSP values. Therefore, the current work focused
on further reduction of the noise content in the overall image
as well as in certain regions of defined RSP.

The two measures that were adopted to quantify the preva-
lence and magnitude of these RSP fluctuations are total
variation (TV) and standard deviation. For an introduction to
TV for image analysis see, e.g., [27]. Standard deviation is
a commonly used measure of variability around the mean in
statistics. In image analysis, it is often employed to character-
ize the amount of fluctuation present in a region of interest
that is known to present a homogeneous material. These
measures provide a basis for comparing the effectiveness of
techniques developed to address the noise problem in iterative
image reconstruction. Total variation superiorization (TVS) is
a technique for reducing image noise content without reducing
the sharpness of edges between boundaries of materials. TV
superiorization consists of repeated steepest descent steps
of TV interlaced between iterations of a feasibility-seeking
algorithm.

In pCT reconstruction, feasibility-seeking tends to accentu-
ate RSP variations present due to WEPL uncertainty. Whereas
this sharpens edges between different material regions, it also
results in an amplification of RSP fluctuations during iterative
image reconstruction. Performing TV reduction steps between
consecutive feasibility-seeking iterations slows the growth of
RSP variations. This permits more feasibility-seeking itera-
tions before fluctuations grow to dominate updates of the
solution. Hence, although the reduction in TV is itself an
important aspect of TVS, another important aspect is the
increased number of useful iterations made possible by the
reduction in the amplification of RSP fluctuations.

III. METHODS

A. TVS Algorithms

The efficacy of TVS for image reconstruction in pCT has
been demonstrated in previous work [14]. In recent years,
the algorithmic structure of the superiorization method has
undergone some evolution in ways that offer several potential
benefits in pCT. The details of this evolution can be found
in the Appendix of [28], titled “The algorithmic evolution
of superiorization”. In addition, there were certain aspects of
the original TVS algorithm, here referred to as OTVS, that
had been proposed but were not previously investigated in its
application to pCT.

With the new version of the TVS algorithm, here referred
to as NTVS, we investigated both the structural changes and
aspects previously not investigated of the OTVS algorithm.
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The notation and other algorithmic details of the NTVS
algorithm can be found in Appendices A and B. The definition
of the OTVS algorithm investigated here and in previous work
is provided in this notation in Section I of the Supplemental
Materials1 of this manuscript.

B. NTVS Algorithm

The NTVS algorithm investigated in this work combines
properties that were scattered among previous works on TVS
in x-ray CT, see the Appendix of [28]. These properties, listed
next, were never combined in a single algorithm, as we do
here, neither for x-ray CT nor for pCT.

1) Exclusion of the TV reduction verification step (step (14)
of the NTVS algorithm in Appendix B).

2) Usage of powers of the perturbation kernel α to control
the step-sizes βk in the TV perturbation steps.

3) Incorporation of the user-chosen integer N (step (8) of
the NTVS algorithm in Appendix B) that specifies the
number of TV perturbation steps between consecutive
feasibility-seeking iterations.

4) Incorporation of a new formula for calculating the power
`k, `k = rand(k, `k−1), used to calculate the step-size
βk = α`k at iteration k of feasibility-seeking (step (6)
of the NTVS algorithm in Appendix B).

The step verifying the reduction of TV (step (10) of the
OTVS algorithm (Section I of the Supplemental Materials1)
is not time consuming, but such decision-controlled branches
present their own challenges with respect to computational
efficiency. Although there are technically a few computations
with data dependencies (e.g., norm calculations), in each case,
these can either be rearranged/reformulated or simply repeated
separately to generate data independent calculations, making
parallel computation of the algorithm possible. Hence, if the
branching introduced by the TV reduction verification can
be removed without compromising image quality, the NTVS
algorithm can be incorporated into the existing parallelization
scheme, providing up to a 30% reduction in sequential oper-
ation count (computation time) and eliminating the repeated
perturbations until a reduced TV is achieved (computation time
and efficiency). This change is similar to, but distinct from, the
investigations performed by Penfold et al [14] in developing
the OTVS algorithm for application in pCT reconstruction in
which he found that the computationally expensive feasibility
proximity check step of the classical TVS algorithm [29],
[30], [31] could safely be removed. Inclusion or exclusion
of such checks not only affects computational efficiency, but
these can also have a significant impact on image quality.
Hence, the formulation of the NTVS algorithm presented in
this work permits exclusion of the TV reduction check by
demonstrating the surprising result that its removal has a
positive impact on reconstructed image quality in addition to
its computational benefits. The algorithm representing NTVS
with the TV reduction requirement included is defined in
Appendix B), but this is only provided for reference purposes
and is not intended for use.

1supplemental materials are available in the supplementary files /multimedia
tab

The OTVS algorithm, initializing TVS with β0 = 1 and
simply halving the perturbation magnitude each time through
the TV perturbation loop, prevented access to one of the most
influential variables of TVS: the perturbation kernel α. With
the magnitude of the perturbations given by βk = α`k , con-
vergence is maintained by requiring 0 < α < 1. The primary
purpose of α is to control the rate at which βk converges
to zero. In OTVS, β0 = 1 and α = 0.5 results in a relatively
modest initial perturbation and a rapidly decreasing β such that
little to no perturbation is applied after the first few feasibility-
seeking iterations. Hence, OTVS perturbations applied after
subsequent feasibility-seeking iterations are unlikely to have
a meaningful impact on the amplification of RSP variations.
This results in an overall under-utilization of TV perturbations.
Thus, NTVS provides direct control of α, and its performance
for various values of α was investigated in this work.

With the ability to increase the perturbation kernel α,
larger reductions in TV can be generated; this also produces
slower-decaying perturbations, which may not be desired.
Alternatively, larger reductions in TV can also be generated by
applying perturbations multiple times per feasibility-seeking
iteration without increasing the magnitude of individual pertur-
bations. Hence, NTVS introduces a variable N controlling the
number of repetitions of TV perturbations between feasibility-
seeking iterations.

Since the exponent ` increases after each of the N applied
perturbations, reducing the perturbation coefficient βk = α`,
an increase in N causes the perturbation magnitude to con-
verge to zero earlier in reconstruction. To preserve meaningful
perturbations in later iterations, the exponent ` is adjusted
between feasibility-seeking iterations by decreasing it to a
random integer between its current (potentially large) value
and the (potentially much smaller) iteration number k, i.e.,
`k = rand(k, `k−1). This update was suggested and justified in
[32, page 38], [33, page 36] and subsequently used in [34] for
maximum likelihood expectation maximization (MLEM) algo-
rithms and in the linear superiorization (LinSup) algorithm [28,
Algorithm 4]. Although the decrease of `k is random within
a bounded range, on average, the corresponding perturbation
coefficient β experiences a sizeable increase. For N = 1, the
difference between `k−1 and k is only nonzero when the TV
reduction requirement is included and at least one perturbation
did not reduce TV; when the TV reduction requirement is
excluded, `k−1 and k are always equal and, therefore, `k is
never decreased. Since `k is incremented after each of the N
perturbations, the random decrease in `k becomes increasingly
important as N increases. This random decrease slows the
rate at which βk converges towards zero while preserving the
convergence property, given that the iteration number k, which
increases sequentially, is set as the lower limit.

C. Input Data Sets

The preliminary investigations of the NTVS algorithm were
performed using a simulated pCT data set to quantify the
variations generated by the random increase in `k between
feasibility-seeking iterations (step 6 of Algorithm B). The
simulated data set of the Catphan R© CTP404 phantom module



0278-0062 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2911482, IEEE
Transactions on Medical Imaging

4

(The Phantom Laboratory Incorporated, Salem, NY, USA)
was generated using the simulation toolkit Geant4 [35] and
contained approximately 120 million proton histories. The
definitive investigations were then performed for two exper-
imental data sets: (1) a scan obtained with an experimental
pCT scanner [5] containing approximately 250 million proton
histories of the same Catphan R© CTP404 phantom and (2) an
experimental pCT scan of a pediatric anthropomorphic head
phantom (model HN715, CIRS, Norfolk, VA, USA) containing
approximately the same number of proton histories. All pCT
data sets were generated with the phantom rotating on a fixed
horizontal proton beam line producing a cone beam (simulated
data set) or a rectangular field using a magnetically wobbled
beam spot (experimental data sets). The simulated data set was
generated with 90 fixed angular step intervals of 4 degrees
ranging from 0 to 356 degrees, and the experimental data sets
were generated from a continuous range of projection angles
between 0 and 360 degrees.

The Catphan R© CTP404 phantom is a 15 cm diameter by
2.5 cm tall cylinder composed of an epoxy material with an
RSP ≈ 1.144; because this value was not known at the time
when the simulated data set was created, it was explicitly set
to RSP = 1.0 (water) in the Geant4 simulation. The theoretical
and experimentally measured RSP of the materials of the
phantom are listed in Table I. The phantom has three geometric
types of contrasting material inserts embedded with the centers
of each arranged in evenly spaced circular patterns of varying
diameter d as follows:

1) d = 30 mm: five acrylic spheres of diameter 2, 4, 6, 8,
and 10mm, with the center of each lying on a circular
cross section midway along the phantom’s axis.

2) d = 50
√

2 mm: four 3 mm diameter rods, 3 × air and
1 × Teflon, running the length of the phantom.

3) d = 120 mm: eight 12.2 mm diameter cylindrical holes,
six filled with materials of known composition2 and two
left empty (air-filled), running the length of the phantom.

Since the acrylic spheres have an RSP ≈ 1.160, in the case
of the experimental data, these cannot be discerned from the
surrounding epoxy material (RSP ≈ 1.144) of nearly the same
RSP.

TABLE I: RSP of the material inserts for the simulated and
experimental Catphan R© CTP404 data sets

Air PMP LDPE Epoxy
Simulated 0.0013 0.877 0.9973 1.024
Experimental 0.0013 0.883 0.979 1.144

Polystyrene Acrylic Delrin Teflon
Simulated 1.0386 1.155 1.356 1.828
Experimental 1.024 1.160 1.359 1.79

TABLE II: RSP of the tissue/bone regions of interest analyzed
in the pediatric head phantom.

Soft Tissue Brain Tissue Trabecular Bone
Experimental 1.037 1.047 1.108

22×air, acrylic, polymethylpentene (PMP), low density polyethylene
(LDPE), Teflon R©, Delrin R©, and polystyrene

D. Data Preprocessing and Implementation Details of Image
Reconstruction

Details of the pCT data preprocessing, calibration, and
image reconstruction have been presented previously [36],
[37]. For the purposes of this work, feasibility-seeking was
performed using the DROP algorithm of [38] with blocks
containing 3200 (simulated data set) and 25,600 (experimental
data set) proton histories. The smaller block-size was chosen
for the simulated data set, which had only half of the histories
as the larger experimental data sets and thus more noise. In
general, smaller block sizes further accentuate noise during
the reconstruction, and would potentially benefit more from
NTVS. The intent of the preliminary investigation with the
simulated data set was twofold: (1) to provide a larger oppor-
tunity for improvement with NTVS to better assess its benefits
for more noisy data sets and (2) to quantify the magnitude of
random variations in performance arising from the random
increases in `k. The random number generator used to de-
termine the random increase in `k between feasibility-seeking
iterations was assigned a random seed based on the Julian time
at execution, yielding a different set of random increases in
`k each time reconstruction is performed.

The experimental data set, on the other hand, was used to
determine the impact of NTVS in a realistic reconstruction
scenario. The block-size was still chosen from the smaller
end of an acceptable range of block-sizes because, although
smaller blocks are more sensitive to noise, they also provide a
greater material differentiation capability and an opportunity
to assess the maximum potential benefits of NTVS for realistic
experimental data sets.

Image reconstruction was performed within a 20 × 20 ×
5 cm3 volume with each voxel representing a volume of 1.0×
1.0×2.5 mm3, yielding 200×200 image matrix for each slice.

Fig. 1: Representative reconstruction of the central slice of the
CTP404 phantom from simulated data.

E. Reconstruction Parameter Space

The following describes the choices for reconstruction pa-
rameters that were systematically investigated in this work.
Note that for the purpose of the investigations performed in
this work, each of the following parameters of the parameter
space remained constant for the duration of a particular
reconstruction.
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Fig. 2: Representative reconstruction of the slice of the pedi-
atric head phantom containing the analyzed regions of interest
(left); the analyzed regions of interest are filled in white and
labeled in the image on the right.

1) Inclusion or exclusion of TV reduction requirement: The
primary structural change to the OTVS algorithm is the option
to exclude the requirement that a perturbation reduces image
TV, thereby eliminating the need to calculate and compare
image TV before and after perturbations. Hence, NTVS was
investigated with and without this check.

2) The number of TV perturbations per feasibility-seeking
iteration: After initial investigations with increasing N , results
were found to degrade as N increased beyond N ≈ 10.
Therefore, in this work, the values of N chosen were between
1 and 12, in increments of 1.

3) The perturbation kernel coefficient: Since the config-
uration of the OTVS algorithm effectively used α = 0.5
and the resulting perturbations did not negatively affect RSP
accuracy [14], this work only investigated with α ≥ 0.5
to determine how large it can be set without affecting RSP
accuracy. The values of α investigated in this work were
α = 0.5, 0.65, 0.75, 0.85, and 0.95.

4) The choice of relaxation parameter in the feasibility-
seeking algorithm: In previous unpublished work λ =
0.0001 yielded optimal results for a block-size containing
3200 proton histories; increasing λ beyond this value re-
sults in increased standard deviations. To investigate the
interaction between TVS parameters and λ and determine
if NTVS is capable of reducing the increase in standard
deviations, the values of λ investigated in this work were
λ = 0.0001, 0.00015, and 0.0002.

IV. COMPUTATIONAL HARDWARE AND PERFORMANCE
ANALYSIS

Image reconstruction was executed on a single node of a
compute cluster with input data read from a local solid state
drive and the bulk of computation was performed in parallel
on a single NVIDIA k40 GPU. The parallel computational
efficiency of the DROP algorithm increases as the number of
histories per block increases since this permits better GPU
utilization, but even with only 3200 histories per block, the
total computation time from reading of input data from disk
through the writing of reconstructed images to disk was, at
most, about 6 minutes (for k = 12 feasibility-seeking iterations
and N = 12 perturbation steps).

The central slices of the CTP404 phantom containing the
spherical inserts have the most complicated material compo-

sition and represent the greatest challenge to reconstruction.
Consequently, the data acquired for protons passing through
these slices will have a greater variance in paths and WEPL
values, which manifests in the corresponding slices of the
reconstructed images as an increase in noise. Hence, analysis
of these slices provides a better basis for comparing the
NTVS and OTVS algorithms. Since the coplanar centers of
the spherical inserts lie in the central slice, the comparative
analyses performed in this work focused on this slice. A
representative reconstruction of this slice is shown in Figure 1.

The image analysis program ImageJ2 1.51r [39] was used to
perform quantitative analyses of reconstructed image quality.
The cylindrical material inserts of the CTP404 phantom were
analyzed by selecting a 7mm diameter circular region of
interest (ROI) centered within the boundary of each insert and
measuring the mean and standard deviation in reconstructed
RSP of the voxels within the ROI selection. The polygon and
ovular selection tools were used to measure the mean and
standard deviation in reconstructed RSP within the more real-
istically complicated ROIs of the HN715 phantom. Although
the finer structure of the HN715 phantom make it difficult to
select an ROI of a single material, particularly for the brain
tissue, ROIs were chosen from regions composed primarily of
the material of interest and a minimal number of voxels of
disparate material; the analyzed ROIs are shown shaded and
labeled in Figure 2.

RSP error was calculated as the percentage difference
between the mean measured RSP in an ROI and the RSP
(a) defined for the material in the Geant4 simulation for the
simulated data and (b) based on experimental material RSP
investigations for the experimental data sets; the theoretical
RSP used in the analyses of each material ROI of the (a)
CTP404 and (b) HN715 phantoms are listed in Tables I
and II, respectively. In accordance with [27], total variation
was calculated as the sum of local variations over all voxels
of the entire image for both the TV reduction requirement
(when included) and the analysis of reconstructed images.

V. RESULTS

In the following, we present results from an investigation
of the multi-parameter space, including potential interactions
between parameters, first for the preliminary investigation with
the simulated CTP404 data set and then for the definitive
investigation with the experimental CTP404 and HN715 data
sets. Note that each data point on the following plots represents
a separate, complete reconstruction with the corresponding
combination of reconstruction and superiorization parameters
held fixed throughout the reconstruction.

A. Simulated CTP404 Data Set

The preliminary investigations with the simulated CTP404
data set demonstrated that the random increase in `k results in
random variations in both the overall TV of reconstructed im-
ages and the standard deviations within the individual material
inserts. However, the benefits of NTVS for 3 ≤ N ≤ 6 were
consistently larger by multiple standard deviations than the
random variations. Figures 3(a) and 3(b) show a comparison
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of overall TV and standard deviation within the LDPE insert,
respectively, obtained after 12 feasibility-seeking iterations
with λ = 0.0001 using OTVS (horizontal line) and NTVS with
α = 0.5 and including/excluding the TV reduction require-
ment (grey/black curves, respectively). Interested readers may
find a more detailed analysis of the preliminary investigations
with the simulated data set in Section II of the Supplemental
Materials3 of this manuscript.
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Fig. 3: (a) TV and (b) standard deviation (LDPE) as a
function of N after 12 feasibility-seeking iterations for the
simulated CTP404 data set using OTVS and NTVS including
and excluding the TV reduction requirement with λ = 0.0001
and α = 0.5. The error bar at N = 5 denotes the variation
in standard deviation (σ = 0.00038) between 8 repetitions of
reconstruction with N = 5.

To determine whether the observed fluctuations were due
to random or systematic variations, an analysis of 8 separate
reconstructions with N = 5, α = 0.5, λ = 0.0001, and the TV
reduction requirement excluded was performed. The standard
deviation obtained within the LDPE insert varied between
reconstructions with a standard deviation of σLDPE = 0.00038
(shown as an error bar on the point at N = 5 in Figure 3(b));
similar variations were also obtained within the ROI of the
other materials. Note that the standard deviation obtained
within the LDPE insert at N = 5 with the TV reduction
requirement excluded was nearly 2σLDPE less than that ob-
tained with the requirement included and just under 4σLDPE

less than that obtained with OTVS. In addition, the standard
deviation obtained with N = 5 was at least 1.5σLDPE less
than that obtained with any other value of N .

These differences are large enough to conclude that the
observed fluctuations in standard deviation as a function of N

3supplemental materials are available in the supplementary files /multimedia
tab

were primarily systematic variations inherent to the NTVS al-
gorithm, arising due to its interaction with feasibility-seeking,
and not the product of random variations. Further support
for this conclusion was the observance of similar fluctuations
for each combination of α and λ, with differences in the
magnitude of TV and standard deviations but with similarly
shaped curves as a function of N ; for each combination of α
and λ, maximal benefits of NTVS were obtained with the TV
reduction requirement excluded and 3 ≤ N ≤ 6.

B. Experimental CTP404 Data Set

The experimental CTP404 data set was then used to recon-
struct images for the same combination of parameter values
from the reconstruction parameter space as for the simulated
data set.
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Fig. 4: TV as a function of N after each of the first 4
feasibility-seeking iterations for the experimental CTP404
data set using OTVS and NTVS (TV reduction requirement
excluded) with λ = 0.0001 and α = 0.5 .

1) Number of TVS steps (N ): The number of TV pertur-
bations per feasibility-seeking iteration, N , was again varied
sequentially between 1 and 12 for the experimental CTP404
data set; Figure 4 shows plots of TV as a function of N for
each of the first four feasibility-seeking iterations for the case
where the TV reduction requirement is excluded. TV did not
fluctuate as much as it did with the simulated data but the same
general trend can be seen: increasing N results in a monotonic
reduction in TV for the first iteration, but as subsequent
feasibility-seeking iterations are performed on the resulting
image, the reductions in TV obtained by increasing N reverse
and eventually exceed the results obtained with OTVS. As
with the simulated data, a consistent benefit was obtained by
performing 3 ≤ N ≤ 6 TVS perturbations per feasibility-
seeking iteration, but increasing beyond N ≥ 7 results in
an image whose perturbations place it in a less advantageous
point in the solution space for feasibility-seeking.

2) Inclusion/Exclusion of TV Reduction Requirement: An
investigation that isolated the impact of the exclusion of
the TV reduction requirement on NTVS results was also
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Fig. 5: (a) TV and (b) standard deviation as a function of
N after 12 feasibility-seeking iterations for the experimental
CTP404 data set using the OTVS algorithm and the NTVS
algorithm including and excluding the TV reduction require-
ment with λ = 0.0001 and α = 0.5 (note that the 2 NTVS
curves overlap).
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Fig. 6: (a) TV and (b) standard deviation as a function of
N after 12 feasibility-seeking iterations for the experimental
CTP404 data set using the OTVS algorithm and the NTVS
algorithm including and excluding the TV reduction require-
ment with λ = 0.0001 and α = 0.75.

performed for the experimental CTP404 data set. Figures 5(a)
and (b) show a comparison of TV and standard deviation,
respectively, for inclusion and exclusion of the TV reduction
requirement in reconstructions of the experimental data set

with α = 0.5. In this case, the difference in TV and standard
deviation is not large enough to discern between the lines
representing inclusion and exclusion of the TV reduction
requirement; this occurred for each value of λ and, in the
case of standard deviation, within the ROI of each material.
However, for α = 0.75, the exclusion of the TV reduction
requirement consistently resulted in smaller TV and standard
deviation, as demonstrated by Figures 6(a) and (b); similar
trends were also seen for other values of λ and in the other
cylindrical material inserts.

The scale of these plots also provides a better perspective
on the reductions obtained with the larger α = 0.75 compared
to those obtained with OTVS, indicating a consistent and
sizeable reduction in TV and standard deviation for every
value of N investigated, including those with N ≥ 7. These
results demonstrate that the 50% increase in α resulted in a
reduction in TV and standard deviation with approximately
the same magnitude as the largest difference in TV and
standard deviation obtained with varying N . In particular, the
difference between the standard deviation obtained with OTVS
and 3 ≤ N ≤ 6 was more than twice as large as the maximum
difference between results within this range of N , a trend
that was also consistently seen within the ROIs of the other
materials.
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Fig. 7: (a) TV and (b) standard deviation (LDPE) as a function
of N after 12 feasibility-seeking iterations for the experimental
CTP404 data set using OTVS and NTVS (TV reduction
requirement excluded) with λ = 0.0001 and varying α.

3) Perturbation Kernel (α): Increasing α produces larger
perturbations and results in the perturbation magnitude βk
converging to zero more slowly. Thus, one can expect a larger
reduction of TV and standard deviations for larger values of
α. Figures 7(a) and (b), which show plots of TV and standard
deviation as a function of N for λ = 0.0001 and with the
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TV reduction requirement excluded for reconstructions of the
experimental data set, demonstrate this effect. Although these
figures do not exhibit as strong of a dependence on α or N
as was observed with the simulated data, they do indicate the
same general trend of decreasing TV and standard deviation
as α increases, with the difference growing increasingly larger
as α increases in steps of 0.1. Notice that increasing α
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Fig. 8: RSP error (Delrin) for each value of α as a function of
N after 12 feasibility-seeking iterations for the experimental
CTP404 data set using OTVS and NTVS (TV reduction
requirement excluded) with λ = 0.0001.

beyond α ≈ 0.75 begins to have a significant impact on the
reconstructed RSP and, hence, the RSP error. The direction in
which the reconstructed RSP is driven (i.e. increases/decreases
reconstructed RSP) is unpredictable, as demonstrated by the
fact that an increasing α reduced the RSP error in the Delrin
insert for the simulated data set, but Figure 8 shows that an
increasing α increased the RSP error in this insert in the case
of the experimental data. In fact, for the experimental data
set, increasing α > 0.75 resulted in an increase in RSP error
within every cylindrical material insert.
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Fig. 9: (a) TV and (b) standard deviation (soft tissue) as a
function of N for λ = 0.0001, k = 12; λ = 0.00015, k = 8;
and λ = 0.0002, k = 6 iterations, respectively, and α = 0.75
for the experimental CTP404 data set.

4) Relaxation Parameter (λ): Comparisons of TV and
standard deviation as a function of N for varying relaxation
parameter λ are shown in Figures 9(a) and (b) for α = 0.75.
As with the simulated data, the results for λ = 0.0001 after
k = 12 feasibility-seeking iterations are shown and the number
of iterations k was chosen for λ = 0.00015, 0.0002 such
that these reconstructions had converged to the same point
(i.e., reached approximately the same RSP); this occurred at
k = 8 for λ = 0.00015 and k = 6 for λ = 0.0002 for the
experimental data as it did for the simulated data.

Figure 9(a) indicates that, for each value of N , increasing
λ results in a reduction in TV. This trend demonstrates the
benefit of performing reconstruction with as few iterations as is
necessary to obtain an acceptable level of convergence since a
side effect of feasibility-seeking is a consistent increase in TV.
On the other hand, the plot of standard deviation in Figure 9(b)
indicates that, unlike with the simulated data, an increase in λ
results in a slight increase in standard deviation in the LDPE
insert. For both TV and standard deviation, optimal results
were obtained with N = 5 for each value of λ and within each
material insert, with nearly identical behavior as a function of
both N and λ seen in each insert.

C. Experimental HN715 Pediatric Head Phantom Data Set

The experimentally acquired data for the pediatric head
phantom was reconstructed using the same set of parameter
value combinations as those used to reconstruct the simulated
and experimental CTP404 phantom data sets. This phantom
provides a considerably different material composition and
internal structure to determine the impact these properties have
on the behavior of the NTVS algorithm and the combination
of parameter values that produce maximal benefit.
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Fig. 10: TV as a function of N after each of the first
4 feasibility-seeking iterations for the experimental HN715
data set using OTVS and NTVS (TV reduction requirement
excluded) with λ = 0.0001 and α = 0.5 .

1) Number of TVS steps (N ): Figure 10 shows plots of
TV as a function of N for the first four feasibility-seeking
iterations for the case where λ = 0.0001 and the TV reduction
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requirement is excluded. These results are very similar to those
of the experimental CTP404 phantom, particularly for N ≤ 6,
but unlike for both the simulated and experimental CTP404
data sets, the benefits of NTVS do not degrade as quickly for
N ≥ 7 and continue to outperform OTVS for all values of N .
However, the optimal values of N after 4 feasibility-seeking
iterations occur at N = 2 and N = 5 for all 3 data sets.

As previously noted, repeated reconstructions with the same
value of N yield variations in TV and standard deviation.
Again, the difference in TV and standard deviation as a
function of N is seen to be a property of the algorithm and
its relationship with feasibility-seeking and not the result of
the random variations arising from random increases in `k.
The objectives of feasibility-seeking and TVS are somewhat
opposed; feasibility-seeking tends to amplify noise, thereby
increasing TV, while each TVS perturbation may drive the
solution to a more or less feasible solution. The resulting
push back and forth begins to produce small differences in TV
between successive values of N after the first two feasibility-
seeking iterations and these subsequently increase as each
additional feasibility-seeking iteration amplifies the resulting
differences. Simultaneously, TV perturbations and updates
applied in feasibility-seeking both decrease in magnitude as
k increases, diminishing their ability to counteract the impact
of a previous, less optimal solution. Hence, a solution that is
less optimal after the first few iterations will rarely overcome
its performance deficit and will far more often become in-
creasingly suboptimal, particularly if parameter values are held
fixed and not adapted based on performance as in the present
case. Hence, values of N that yield a larger reduction in TV
early in reconstruction also experience a lesser amplification
of noise at each feasibility-seeking iteration, resulting in a
compounding effect that accounts for the relatively large
differences in TV between similar values of N .

As can be seen in Figure 11, showing the TV and standard
deviation within the soft tissue ROI as a function of N after all
12 feasibility-seeking iterations for λ = 0.0001 and α = 0.5,
NTVS including and excluding the TV reduction requirement
both yield larger reductions in TV and standard deviation
for every value of N except for the slight increase in TV
obtained with N = 12. Repeating these reconstructions with
α = 0.75 consistently yields images with significantly larger
reductions in both TV and standard deviation for every value
of N , with similar standard deviation results obtained for every
material ROI. These results also demonstrate that the smallest
reductions in TV and standard deviation obtained with N = 1
and N = 12 were approximately 50% larger than the largest
difference between varying values of N and more than twice
as large for 3 ≤ N ≤ 6.

2) Inclusion/Exclusion of TV Reduction Requirement:
Comparisons of TV and standard deviation as a function of N
after 12 feasibility-seeking iterations are shown for OTVS and
NTVS including and excluding the TV reduction requirement
in Figures 11(a) and (b), respectively. These are shown for
λ = 0.0001 and α = 0.5, which makes the reduction in
βk with NTVS equivalent to that of OTVS. As with the
experimental CTP404 data set, the difference in TV and
standard deviation between the results with and without the
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Fig. 11: (a) TV and (b) standard deviation as a function of
N after 12 feasibility-seeking iterations for the experimental
HN715 data set using the OTVS algorithm and the NTVS al-
gorithm including and excluding the TV reduction requirement
with λ = 0.0001 and α = 0.5 (note that the 2 NTVS curves
overlap).
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Fig. 12: (a) TV and (b) standard deviation as a function of
N after 12 feasibility-seeking iterations for the experimental
HN715 data set using the OTVS algorithm and the NTVS al-
gorithm including and excluding the TV reduction requirement
with λ = 0.0001 and α = 0.75.

TV reduction requirement were not discernable for α = 0.5
and, again, independent of the value of λ and material of the
ROI. On the other hand, for α = 0.75, exclusion of the TV
reduction requirement consistently yielded a larger reduction
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in TV and standard deviation for each value of N , as seen
in Figures 12(a) and (b), respectively. Again, this was seen
for all λ and, in the case of the standard deviation, within
the ROI of each material. As with the previous data sets, all
subsequent analyses for this data set were performed using the
NTVS algorithm with the TV reduction requirement excluded
(as defined in Appendix B).
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Fig. 13: (a) TV and (b) standard deviation (soft tissue) as a
function of N after 12 feasibility-seeking iterations for the
experimental HN715 data set using OTVS and NTVS (TV
reduction requirement excluded) with λ = 0.0001 and varying
α.

3) Perturbation Kernel (α): Plots of TV and standard
deviation in the ROI of soft tissue ROI a function of N for
λ = 0.0001 and with the TV reduction requirement excluded
are shown for each value of α in Figure 13 for the HN715 data
set; as with the other data sets, the standard deviation results
for the ROIs of the other materials showed a similar trend
as a function of α. As with the simulated and experimental
CTP404 data sets, TV and standard deviation decreased as α
increased, but the standard deviation was less sensitive to the
value of N than observed with the CTP404 data sets.

Figure 14 once again demonstrates the impact that values
of α > 0.75 had on reconstructed RSP error within the
different materials inserts. Unlike the RSP reconstructed from
the experimental CTP404 data set, the RSP reconstructed from
the experimental HN715 data set was driven in unpredictable
directions depending on the particular material insert (as it
was with the simulated CTP404 data set), improving accuracy
within some material inserts while decreasing accuracy in
others.

4) Relaxation Parameter (λ): Figures 15(a) and (b) shows
comparisons of TV and standard deviation within the ROI
of soft tissue, respectively, as a function of N for varying
relaxation parameter λ with α = 0.75 and excluding the
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Fig. 14: RSP error in the (a) brain tissue and (b) soft tissue
ROIs as a function of N after 12 feasibility-seeking iterations
for the experimental HN715 data set using OTVS and NTVS
(TV reduction requirement excluded) with λ = 0.0001 and
varying α.
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Fig. 15: (a) TV and (b) standard deviation (soft tissue) as
a function of N for λ = 0.0001, k = 12; λ = 0.00015,
k = 8; and λ = 0.0002, k = 6 iterations, respectively, and for
α = 0.75 for the experimental HN715 data set.

TV reduction requirement. Plots of standard deviation for the
ROI of other materials displayed the same dependence on
N and λ. The number of feasibility-seeking iterations k for
λ = 0.00015 and λ = 0.0002 were again chosen such that
these reconstructions reached the same point in convergence
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as the λ = 0.0001 reconstructions yielded after 12 feasibility-
seeking iterations; this resulted in the same feasibility-seeking
iteration numbers k = 8 and k = 6 for λ = 0.00015
and λ = 0.0002, respectively, as for the simulated and
experimental CTP404 data sets.

As was seen with the CTP404 data sets, increasing λ
consistently yielded larger reductions in TV for each value of
N . The standard deviation obtained within the ROI of soft
tissue was similar to those obtained with the experimental
CTP404 data set, demonstrating a slight increase in standard
deviation as λ increases for each value of N . However, the
results for 3 ≤ N ≤ 6 are consistently better than those
obtained with N = 1 for NTVS and with OTVS for the less
noise sensitive λ = 0.0001 (see Figure 5).
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Fig. 16: Standard deviation in the ROI of trabecular bone as
a function of N after 6 feasibility-seeking iterations for λ =
0.0002 as compared to OTVS with λ = 0.0001 and λ =
0.0002.

The benefit of NTVS in permitting reconstruction with
larger λ can be seen by considering the plots of standard
deviation within the ROI of the trabecular bone for λ = 0.0002
as compared to OTVS for λ = 0.0001 and λ = 0.0002, as
shown in Figure 16. The λ = 0.0001 solution with OTVS
yields a noticeably smaller standard deviation for the same
level of RSP accuracy, a trend that has previously been
encountered for different phantom data sets, leading to the
choice of λ = 0.0001 for reconstructions for block sizes up
to 250, 000 histories. However, using NTVS with α = 0.75,
the λ = 0.0002 solution yields smaller standard deviations
than those obtained with OTVS and λ = 0.0001 for all values
of N and with negligible differences in standard deviation
obtained with NTVS and λ = 0.0001 for many values of N
(particularly at the often optimal N = 5; see Figure 15(b)).
The larger reduction in TV also obtained with λ = 0.0002
leads to the conclusion that reconstruction with λ = 0.0002 is
now an appropriate choice made possible by introduction of
the NTVS algorithm.

VI. DISCUSSION

In this work, we have investigated the impact of the in-
novative changes made to the original version of the DROP-
TVS algorithm (OTVS) on both a cylindrical phantom with
material inserts (simulated and experimental data sets) and
an anthropomorphic head phantom closely resembling a hu-
man head (experimental data set). Whereas the changes in
noise parameters (TV and standard deviation) introduced by

modifications of the OTVS algorithm, leading to the NTVS
algorithm are admittedly small, less than 5% improvements for
most parameter variations investigated, and for some instances
no improvement was seen, we feel one can learn from these
small improvements and they are expected to be proportionally
larger with noisier data sets such as those introduced by very
low fluences or fluence-modulated pCT methods [40], [41].
We thus feel that it is worthwhile sharing the experiences
made with the innovative algorithmic structures introduced
into NTVS and the fact that a repeated TV check is actually
not required or even leads to inferior results.

The reconstruction parameter space investigated in this work
contained 360 parameter value combinations (2 {TV check
on/off} · 5 {alpha} · 3 {lambda} · 12 {N}), requiring 360
separate reconstructions for each of the investigated data
sets. The benefit of NTVS was dependent on the number
of perturbations per feasibility-seeking iteration, N , with the
largest benefit consistently attained for 3 ≤ N ≤ 6, typically
optimal with N = 5. For N ≥ 7, these benefits decreased
as the number of feasibility-seeking iterations, k, increased
except for α ≥ 0.85, but these benefits were negated by the
fact that the RSP error with these α is affected in an unpre-
dictable and often counterproductive direction. This can be
understood as the effect that larger N have on the magnitude
of perturbations βk as k increases. With `k increasing by 1
after each of the N perturbations, increasing N results in
βk = α`k decreasing more quickly as k increases. Hence,
for larger N , meaningful perturbations persist for a smaller
number of feasibility-seeking iterations unless α is close to
1.0, in which case perturbations can decrease too slowly and
result in inappropriately large perturbations as reconstruction
nears convergence.

A remarkable finding of our investigations was a fluctuating
reduction of TV and standard deviation as a function of N for
all three data sets, which persisted for each of the 30 different
parameter value combinations for each value of N . It was
important to determine if these fluctuations were an inherent
and reproducible characteristic of NTVS or if the random
decrease in `k or some other aspect of TVS or feasibility-
seeking accounted for this observation. Hence, reconstructions
were performed repeatedly (8 times) for N = 5 and the
same parameter value combination from the reconstruction
parameter space to determine the variation in reconstructed
images between independent reconstructions. This analysis
demonstrated that the bounded randomness of ` did not
produce large enough variations to account for the observed
fluctuations. In general terms, the fluctuations are the result
of the opposing objectives and resulting effects on TV of the
alternating applications of TVS and feasibility-seeking.

The inclusion of the TV reduction requirement results in
the image being perturbed with perturbations of successively
smaller magnitude due to the resulting increment of `k each
time a perturbation fails to decrease the image TV. Since a
failure of this requirement almost always happens during the
early feasibility-seeking iterations while it is far from conver-
gence, the resulting increase in `k after each failure results
in all subsequent perturbations having a smaller perturbation
magnitude βk = α`k

k for each of the N perturbation steps of
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the remaining K−k iterations. By excluding the TV reduction
requirement, the magnitude of subsequent perturbations is
preserved throughout the remainder of reconstruction. Hence,
although a perturbation applied early in feasibility-seeking
may temporarily increase TV slightly, the cumulative effect of
larger perturbations throughout the remainder of reconstruc-
tion usually results in a larger overall reduction in TV and,
consequently, standard deviation. For the range 3 ≤ N ≤ 6,
the removal of the TV reduction requirement produced at
least comparable and often superior TV and standard deviation
results for both the simulated and experimental data sets,
particularly with α = 0.75 as seen most clearly with the
experimental data sets.

Removing the TV reduction requirement also improves
computation time by eliminating the conditional branch that
prevents full parallelization of the superiorization algorithm
and eliminating repeated perturbations until an improved TV
is achieved. There are global calculations within the TVS algo-
rithm, such as the `2 (discrete-space) norm used to normalize
perturbation vectors, which act as a bottleneck in an explicit
and direct implementation. However, such data dependencies
can be eliminated by performing these calculations in each
thread rather than communicating these from a central lo-
cation. Hence, there are no real data dependencies and the
parallelization made possible by removing the conditional
branch reduces NTVS computation time by up to 30% (es-
timated based on a count of the reduced number of sequential
computational operations).

An appealing aspect of NTVS is the added ability to control
the perturbation kernel α, which was previously held constant
in OTVS at a value of α = 0.5. Increasing the perturbation ker-
nel α yields larger reductions in TV and standard deviations.
However, it was found that as α increased beyond α ≈ 0.75,
perturbations began to affect reconstructed RSP values in an
unpredictable and region-dependent manner. The direction that
the RSP was driven was shown not to be an inherent property
of the phantom geometry and/or composition, as demonstrated
by the observation that the RSP within the Delrin insert of
the CTP404 phantom was driven in opposite directions for
the simulated and experimental data sets, respectively. Thus,
we suggest using α = 0.75 as this maximized the benefits
that an increasing α have on TV and standard deviation while
avoiding the unpredictable and potentially negative impact of
larger α values.

Another benefit of NTVS is that it allows feasibility-seeking
to be performed with a larger relaxation parameter λ than
was appropriate with OTVS (λ = 0.0001, k = 12). It was
found that with NTVS, the same RSP error can be obtained
with λ = 0.0002 after performing k = 6 feasibility-seeking
iterations without producing larger standard deviations, as
previously experienced in practice with OTVS, which lead to
the choice of λ = 0.0001 in previously published work with
the simulated data set [42], [36]. Arriving at an acceptable
solution in k = 6 feasibility-seeking iterations also offers
substantial computational benefit. As mentioned previously,
feasibility-seeking increases TV at each feasibility-seeking
iteration k. Since reconstruction with a larger λ reaches the
same point in convergence at an earlier iteration k while

perturbations are still larger, an image with a smaller TV can
be obtained by performing fewer iterations.

In the work presented here, each of the TVS parame-
ter values was held fixed throughout a reconstruction. One
possible direction to explore in future work is investigating
how parameter values can be varied during reconstruction to
produce greater benefits with NTVS.

Another interesting question to explore is if the diminishing
benefits for N ≥ 7 are due to an excessive use of TVS per
feasibility-seeking iteration or if this is simply a consequence
of βk decreasing too quickly as a function of k, perhaps
resulting in an under-utilization of TVS at larger values of
k. Note that the value of the perturbation kernel α determines
not only the initial perturbation magnitude βk(k = 1), but also
the rate at which βk decreases after each perturbation.

One would like the ability to control the initial perturbation
magnitude βk(N = 1) as a function of k while independently
determining the rate at which βk decreases between each of the
N perturbations per feasibility-seeking iteration. This is not
possible with βk = α` since the value of ` implicitly depends
on both n and k. Hence, an interesting direction to explore
is the introduction of another parameter γ that independently
controls the rate at which perturbation magnitude decreases
as a function of k; the parameter α would then control
only the rate at which βk,n decreases between each of the
n = 1, 2, . . . , N perturbation steps. This makes βk,n an
explicit rather than an implicit function of n and k, eliminating
the need to randomly increase ` between feasibility-seeking
iterations to prevent perturbation magnitude decreasing too
quickly as a function of k. By reformulating the perturbation
magnitude as βk,n = αnγf(k), with 0 < α, γ < 1 and f(k)
chosen such that limk→∞ f(k) =∞ (e.g., f(k) = k), the rate
at which βk,n decreases as a function of n and k can then be
controlled independently while preserving the superiorization
requirement that limk→∞ βk,n = 0.

VII. CONCLUSIONS

The investigations performed in this work demonstrate
that the modifications implemented by the NTVS algorithm
provide clear advantages over the OTVS algorithm in terms
of both quality and computational cost. Future work should
include investigating whether varying parameters during re-
construction or controlling the decrease of the perturbation
magnitude independently during iterations and repeated pertur-
bation steps can further increase the advantages of the NTVS
algorithm.

APPENDIX A
DEFINITION OF TERMS

The list below defines the terms and mathematical notation
used in describing the OTVS and NTVS algorithms:
• k : overall cycle #, i.e., k-th iteration of feasibility-seeking

and TV perturbations.
• K : total # of cycles, i.e., total # of iterations of

feasibility-seeking and TV perturbations.
• n : TV perturbation step #, 1 ≤ n ≤ N .
• xk : image vector x at cycle k.
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• x̄ : initial iterate x0 of image reconstruction.
• N : # of TV perturbation steps per feasibility-seeking

iteration.
• α : perturbation kernel, 0 < α < 1.
• `k : perturbation kernel exponent.
• βk,n: perturbation coefficient βk,n = α`k at TV pertur-

bation step n and feasibility-seeking iteration k.
• φ : the target function to which superiorization is applied;

here, φ = TV, the total variation of the image vector.
• φ(xk,n) : TV of image vector xk,n at TV perturbation

step n and feasibility-seeking iteration k.
• vk,n : normalized non-ascending perturbation vector for
φ at xk,n, i.e.,

vk,n = − ∇φ(xk,n)

||∇φ(xk,n)||
= φ′(xk,n)

.
• PT : projection operator representative of an iterative

feasibility-seeking algorithm.

APPENDIX B
NTVS ALGORITHM

A pseudocode definition of the NTVS algorithm is written
as follows:

1: set k = 0
2: set `−1 = 0
3: set xk = x̄
4: while k < K do
5: set n = 0
6: set `k = rand(k, `k−1)
7: set xk,n = xk

8: while n < N do
9: set vk,n = φ′(xk,n)

10: set βk,n = α`k

11: set xk,n+1 = xk,n + βk,nv
k,n

12: set n = n+ 1
13: set `k = `k + 1
14: end while
15: set xk+1 = PT (xk,N )
16: set k = k + 1
17: end while

*FOR REFERENCE ONLY: A pseudocode definition of the
NTVS algorithm with the TV reduction requirement included:

1: set k = 0
2: set `−1 = 0
3: set xk = x̄
4: while k < K do
5: set n = 0
6: set `k = rand(k, `k−1)
7: set xk,n = xk

8: while n < N do
9: set vk,n = φ′(xk,n)

10: set βk,n = α`k

11: set loop = true
12: while loop do
13: set zk,n = xk,n + βk,nv

k,n

14: if φ(zk,n) ≤ φ(xk,n) then
15: set xk,n = zk,n

16: set loop = false
17: end if
18: set `k = `k + 1
19: end while
20: set n = n+ 1
21: end while
22: set xk+1 = PT (xk,N )
23: set k = k + 1
24: end while

ACKNOWLEDGMENT

We greatly appreciate the constructive comments of three
anonymous reviewers which helped us to significantly improve
this paper. The research in proton CT was supported by
the National Institute of Biomedical Imaging and Bioengi-
neering (NIBIB) of the National Institute of Health (NIH)
and the National Science Foundation (NSF) award number
R01EB013118, and the United States - Israel Binational Sci-
ence Foundation (BSF) grant no. 2009012, and is currently
supported by BSF grant no. 2013003. The content of this
paper is solely the responsibility of the authors and does not
necessarily represent the official views of NBIB or NIH. The
support of UT Southwestern and State of Texas through a Seed
Grants in Particle Therapy award is gratefully acknowledged.

REFERENCES

[1] A. Cormack and A. Koehler, “Quantitative proton tomography:
preliminary experiments,” Physics in Medicine & Biology, vol. 21,
no. 4, pp. 560–569, 1976. [Online]. Available: http://stacks.iop.org/
0031-9155/21/i=4/a=007

[2] K. M. Hanson, J. N. Bradbury, T. M. Cannon, R. L. Hutson, D. B.
Laubacher, R. Macek, M. A. Paciotti, and C. A. Taylor, “The application
of protons to computed tomography,” IEEE Transactions on Nuclear
Science, vol. 25, no. 1, pp. 657–660, Feb 1978.

[3] K. M. Hanson, “Proton computed tomography,” IEEE Transactions on
Nuclear Science, vol. 26, no. 1, pp. 1635–1640, Feb 1979.

[4] K. M. Hanson, J. N. Bradbury, T. M. Cannon, R. L. Hutson,
D. B. Laubacher, R. J. Macek, M. A. Paciotti, and C. A. Taylor,
“Computed tomography using proton energy loss,” Physics in Medicine
& Biology, vol. 26, no. 6, pp. 965–983, 1981. [Online]. Available:
http://stacks.iop.org/0031-9155/26/i=6/a=001

[5] R. P. Johnson, V. A. Bashkirov, G. Coutrakon, V. Giacometti, P. Karbasi,
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