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THOUGHTS ON SUPERIORIZATION

CHARLES L. BYRNE

Abstract. Let T : RN → RN be such that the iterative algorithm
xk+1 = Txk converges to a member of Fix(T ), the set of fixed points
of T ; the T is what is called the “Basic Algorithm” . Let h : RN → R+.
The goal of the superiorization method (SM) is to perturb each iterate
of the basic algorithm to obtain a member x of Fix(T ) for which h(x)
is small, although x need not minimize h over Fix(T ). The emphasis so
far has been on the “perturbation resilience”of basic algorithms, that is,
on whether or not a suitably perturbed version of a convergent basic al-
gorithm will still converge to a member of Fix(T ). Because determining
when SM achieves its stated objective of reducing h remains open, we
take the opportunity to examine the significance of SM and to contrast
it with alternative approaches.

1. Overview of Superiorization

Let T : RN → RN be such that the iterative algorithm xk+1 = Txk

converges to a member of Fix(T ), the set of fixed points of T ; the T is what
is called the “basic algorithm” in [9]. Let h : RN → R+. The goal of the
superiorization method (SM) is to modify the basic algorithm to obtain a
member x of Fix(T ) for which h(x) is small, although x need not minimize h
over Fix(T ) [12, 10]. To achieve this goal the usual SM is to use an iteration
of the form

xk+1 = Txk − tk∇h(Txk),(1.1)

for appropriately chosen parameters tk > 0. If T = TITI−1 · · ·T2T1, we may
also consider iterations of the form

xmI+i = Tix
mI+(i−1) − tmI+i∇h(Tix

mI+(i−1)),(1.2)

for m = 0, 1, ... and i = 1, 2, ..., I, in which the operators Ti and the superi-
orization are applied successively.

In [9] Yair Censor distinguishes weak superiorization, applied to feasibility-
seeking algorithms, from strong superiorization. The theory pertaining to
weak SM assumes that the set C of vectors satisfying the constraints is
nonempty and Fix(T ) = C. The theory for strong SM allows for C to be
empty and considers basic algorithms that minimize a proximity function.
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2 C. BYRNE

In both cases the SM involves applying the basic algorithm and then per-
turbing the iterate. The perturbations are bounded and the basic algorithm
is resilient to such perturbations, as described in [9].

The proximity functions considered here will take the (typical) form

p(x) = g(d1(x), ..., dI(x)),(1.3)

where g : RI+ → [0,+∞], with g(x1, ..., xI) = 0 if and only if xi = 0, for
all i, and di(x) is some measure of distance between the vector x and some
projection Pi(x) of x onto the ith constraint set. For example, we could
have

p(x) =
I∑
i=1

‖x− P⊥i (x)‖2,(1.4)

where P⊥i denotes the orthogonal projection of x onto the (closed, convex)
ith constraint set. We shall consider several examples of proximity functions
later in this paper.

The focus in SM is to guarantee “perturbation resilience” , which means
that the limit of the modified sequence of iterates remains within the fixed-
point set of T , while, one hopes, reducing the value of the function h, relative
to what it would have been had the SM modifications not been used. There
is an interesting connection with Isao Yamada’s hybrid steepest descent al-
gorithm [19], which uses the iterative step

xk+1 = Txk − tkF (Txk)(1.5)

to solve the variational inequality problem relative to the fixed-point set of
the operator T and the monotone operator F . Here the sequence {tk} sat-
isfies certain conditions, the operator T is nonexpansive, and F is Lipschitz
and strongly monotone. When F = ∇h is the gradient of a convex differen-
tiable function h, the iteration in Equation(1.5) becomes that of Equation
(1.1). The difference now is that, using stricter conditions on T , h, and the
sequence {tk}, the hybrid steepest descent algorithm seeks to minimize h
over the set of fixed points of T , not simply to reduce h.

2. Some Proximity Functions

As we shall show in this section, several, and perhaps all, simultaneous
feasibiity-seeking iterative algorithms are also ones that minimize a prox-
imity function, reinforcing the view that the distinction between weak and
strong SM is mainly theoretical.

2.1. The Landweber and Projected Landweber Algorithms. Let A
be an M by N real matrix. The Landweber (LW) algorithm for solving
Ax = b is xk+1 = L(xk), where

L(x)
.
= x− γAT (b−Ax),(2.1)
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0 < γ < 2
ρ(ATA)

and ρ(ATA) is the largest eigenvalue of ATA [14]. Theory

tells us that the sequence {xk} converges to the minimizer of the function
f(x)

.
= ‖b−Ax‖2 that minimizes the Euclidean distance ‖x−x0‖. Therefore,

when Ax = b has solutions, the limit is a solution.
The projected Landweber (PLW) algorithm has the iterative step

xk+1 =
(
xk − γAT (b−Axk)

)
+
,(2.2)

where (x)+ denotes the orthogonal projection of x onto the nonnegative
orthant of RN . The sequence {xk} defined by Equation (2.2) converges to
the minimizer of f(x) over the nonnegative orthant for which ‖x − x0‖ is
minimized, whenever f(x) has nonnegative minimizers.

The function f(x) can be viewed as a proximity function. For m =
1, ...,M let Hm

.
= {x|(Ax)m = bm} and Pmx be the orthogonal projection

of x onto Hm. Then

(Pmx)n = xn + α−1m Am,n(bm − (Ax)m),(2.3)

where αm
.
=
∑N

n=1A
2
m,n. Then it is easy to show that

‖b−Ax‖2 =

M∑
m=1

‖x− Pmx‖2.(2.4)

As we shall see, minimizing proximity functions need not produce useful
results.

Suppose that the PLW algorithm converges to a nonnegative vector z
that minimizes the function f(x) over nonnegative x, but that there is no
nonnegative solution to the system Ax = b. Assume also that M < N .
From

z =
(
z − γAT (b−Az)

)
+

it follows that (AT (b− Az))n = 0 for every index n in S, defined to be the
set of all indices n for which zn > 0. Let S have K members and let B
be the M by K matrix obtained from A by deleting the nth column of A
whenever n is not in S. Then we have BT (b − Az) = 0. If M ≤ K ≤ N
and B has full rank, which is typically the case, then BT is a one-to-one
transformation. Therefore b = Az; but this contradicts our assumption that
the system has no nonnegative solutions. We conclude then that K < M
and that the vector z has at most M − 1 positive entries.

This is significant in image processing, where z denotes a vectorized image.
In the hope of achieving higher resolution, one often imposes a fine grid of N
pixels to account for the M < N values of measured data. Often, however,
the data are noisy and there is no nonnegative x consistent with the M
measurements. Minimizing f(x) over nonnegative x leads, as we just saw,
to an image having at most M − 1 positive pixel values. If N is much larger
than M these images can resemble stars in the night sky. This “night sky”
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phenonmenon, as we shall see shortly, is not limited to the PLW algorithm
[2, 3].

3. EMML and SMART

The “expectation maximization maximum likelihood”(̇EMML) algorithm
and the “simultaneous multiplicative algebraic reconstruction technique”
(SMART) both involve the cross-entropy, or Kullback–Leibler, distance [13].
For a > 0 and b > 0 the Kullback–Leibler distance KL(a, b) from a to b is

KL(a, b) = a log a− a log b+ b− a.(3.1)

We call this a distance because it is always nonnegative and equals zero if
and only if a = b. We also define KL(0, b) = b and KL(a, 0) = +∞. Then
we extend the KL distance to nonnegative vectors x and z in RJ component-
wise;

KL(x, z) =

J∑
j=1

KL(xj , zj).(3.2)

Let y be a positive vector in RI and P = [Pi,j ] be an I by J matrix with

nonnegative entries and
∑I

i=1 Pi,j = 1, for all j. The EMML algorithm
[17, 18, 2, 6] minimizes KL(y, Px) over all x ≥ 0, while the SMART [16,
11, 2, 4, 6] minimizes KL(Px, y) over the same x. When y = Px has
nonnegative solutions and x0 > 0 the sequence of SMART iterates converges
to the nonnegative solution for which KL(x, x0) is minimized. The sequence
of EMML iterates also converges to a nonnegative solution dependent on x0,
but nothing further about this solution is known.

Let Hi be the set of all nonnegative vectors x such that (Px)i = yi. For a

given nonnegative x the vector z in Hi that minimizes
∑J

j=1 Pi,jKL(xj , zj)
can be found in closed form. This z, which we denote by Qix, has entries
(Qix)j = xjyi/(Px)i. Using these generalized projections onto the subsets
Hi we can express both KL(y, Px) and KL(Px, y) as proximity functions:

KL(y, Px) =
I∑
i=1

 J∑
j=1

Pi,jKL((Qix)j , xj)

 ,(3.3)

and

KL(Px, y) =
I∑
i=1

 J∑
j=1

Pi,jKL(xj , (Qix)j)

 .(3.4)

The “night sky” phenomenon that we described in terms of the PLW algo-
rithm also is a feature of both the EMML algorithm and the SMART.
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3.1. The EMML Algorithm. The iterative step of the EMML algorithm
is xk+1 = M(xk), where

M(x)j
.
= xj

(
I∑
i=1

Pi,jyi/(Px)i

)
.(3.5)

Let z ≥ 0 be the limit of the sequence {xk}. Then for all j for which zj > 0
we have

I∑
i=1

Pi,jyi/(Pz)i = 1.

Let R be the I by K matrix obtained from P by deleting those nth columns
for which zn = 0. Then we have

RT (y/Pz) = u,

where y/Pz denotes the vector with entries yi/(Pz)i and u is the vector
whose entries are all 1. If K ≥ I and R has full rank, which is the typical
case, then RT is a one-to-one transformation. But RT (u) = u also. Con-
sequently, y/Pz = u and y = Pz. If, however, the system y = Px has no
nonnegative solutions then K < I, z is the unique fixed point and z has at
most I − 1 positive entries.

3.2. The SMART. The iterative step for the SMART is xk+1 = S(xk),
where

S(x)j
.
= xj exp

(
I∑
i=1

Pi,j log(yi/(Px)i)

)
.(3.6)

Let z ≥ 0 be the limit of the sequence {xk}. Then for all j for which zj > 0
we have

I∑
i=1

Pi,j log(yi/(Pz)i) = 0.

Let R be the I by K matrix obtained from P by deleting those nth columns
for which zn = 0. Then we have

RT log(y/Pz) = 0.

As before, if K ≥ I and R has full rank, which is the typical case, then RT is
a one-to-one transformation. But RT (0) = 0 also. Consequently, y/Pz = u
and y = Pz. If y = Px has no nonnegative solutions, it follows that K < I,
z is the unique fixed point and z has at most I − 1 positive entries.

4. Regularization

We see from this discussion of the “night sky” phenomenon that mini-
mizing a proximity function need not lead to useful results. To avoid this
phenomenon it is common to include some form of regularization. There
are some interesting connections between regularization and SM, as we shall
see.
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4.1. Regularizing the Landweber Algorithm. To regularize the LW
algorithm we can minimize ‖b − Ax‖2 + ε‖x − p‖2, for some small ε > 0
and some p, perhaps a prior estimate of the correct answer. The regularized
iteration is now

xk+1 = (1− α)L(xk) + αp,(4.1)

for some 0 < α < 1. It is interesting to note that, with h(x) = 1
2‖x − p‖

2,
the SM applied to LW gives the iteration

xk+1 = (1− tk)L(xk) + tkp.(4.2)

In Equation(4.1) the α is constant and the limit is not a fixed point of L, in
contrast to Equation (4.2), where the tk go to zero and the limit, because
of perturbation resilience, is a fixed point of L.

4.2. Regularizing the EMML Algorithm. To regularize the EMML al-
gorithm while also obtaining the iterates in closed form we can minimize the
function KL(y, Px) + εKL(p, x), for small ε > 0 and some positive vector
p, perhaps a prior estimate of the correct nonnegative x. The regularized
iteration is now

xk+1 = (1− α)M(xk) + αp.(4.3)

Once again, if we take h(x) = 1
2‖x − p‖

2 and apply the SM to the EMML
algorithm we get the iteration

xk+1 = (1− tk)M(xk) + tkp.(4.4)

4.3. Regularizing the SMART. To regularize the SMART while also ob-
taining the iterates in closed form we can minimize the function KL(Px, y)+
εKL(x, p), for a small ε > 0 and some positive vector p. The regularized
iteration is now

xk+1 = (S(xk))1−αpα.(4.5)

We can rewrite Equation (4.5) as

log xk+1 = (1− α) logS(xk) + α log p.(4.6)

To relate this to SM we select h(x)
.
= 1

2‖x − log p‖2. Then the logarithmic
form of the SMART iteration using SM becomes

log xk+1 = logS(xk)− tk∇h(logS(xk)),(4.7)

or

log xk+1 = (1− tk) logS(xk) + tk log p,(4.8)

which we can write as

xk+1 = (S(xk))1−tkptk .(4.9)
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4.4. SM as Regularization. In all three of the examples just presented
regularization was achieved by adding a second function to the original ob-
jective function and then iteratively minimizing their sum. In each case the
second function was chosen carefully so that each iterate could be obtained
in closed form. In contrast, SM does not alter the original objective function.
However, the formalism of the SM, as expressed in Equation (1.1), suggests
a method for regularization that does not involve adding a second func-
tion, but rather, perturbing the iterates themselves. This approach would
allow for more general regularization methods that still lead to closed-form
iterates.

For example, if we chose to regularize the SMART using a second function
h(x), at each step of the iteration we would have to solve the equation

0 =
I∑
i=1

Pi,j

(
log xk+1

j − log xkj − log yi + log(Pxk)i

)
+∇h(xk+1)

for xk+1. Alternatively, we could take as the iterative step

xk+1 = S(xk)− α∇h(S(xk)).(4.10)

Now we are regularizing by trying to reduce h(x) at each step, rather than
by trying to minimize KL(Px, y)+αh(x). We are freer now to select various
h, since obtaining the iterate in closed form is no longer a problem.

As an example, we could take a vector p > 0 and h(x) = 1
2‖x − p‖

2, as
we did for the LW and EMML algorithms. Then our iterate for regularized
SMART is

xk+1 = (1− α)S(xk) + αp.(4.11)

5. Some Closing Thoughts on SM

As Yair Censor points out in [9], both weak and strong SM are primarily
“research directions” in the sense that by developing theory explicitly for
these two cases we can better understand the effects of SM in practice. The
focus of weak SM is those situations in which the nonempty set of fixed points
of the operator T is exactly the nonempty set of vectors C that satisfy the
finitely many constraints. It is assumed that the basic algorithm converges
to a fixed point of T and that T is perturbation resilient, so that, under
suitably restrictions, the sequence of perturbed iterates also converges to a
fixed point of T . Whether or not the fixed point of the perturbed sequence
provides a smaller value for h than does the unperturbed sequence with the
same starting point is still generally an open question. It is reasonable to ask
if concentrating theoretical development on weak and strong SM is going to
be useful in obtaining insight into the practical problems of reconstructing
from limited data. Here are some reasons for questioning this approach:

(1) Because we never perform infinitely many iterations of the basic
algorithm, only theory can tell us if the iterates of the chosen basic



8 C. BYRNE

algorithm converge to a fixed point and that such fixed points do
satisfy the constraints.

(2) Even theory may be insufficient to tell us if the set C is nonempty.
For example, theory may tell us whether or not the linear system
of equations Ax = b (almost surely) has solutions, but not if it has
nonnegative solutions.

(3) A theory that asserts that, for a given T , h and starting vector x0,
the perturbed iterates will converge to a fixed point of T with smaller
h value only helps us if it also tells us what happens after finitely
many iterations.

(4) As we have seen, some (all?) simultaneous iterative algorithms that
are feasibility-seeking methods, that is, which seek vectors that sat-
isfy all the constraints, are also methods for minimizing a proximity
function, so the distinction between weak and strong SM is not as
clear as it would seem.

(5) Weak SM can achieve its objective only when it is possible for it to
achieve its objective. This obvious statement makes clear that SM
is of no use when there is a unique fixed point of T , or when the
iterates of the basic algorithm converge to a minimizer of h over the
set Fix(T ), which can depend of the choice of x0.

(6) On the other hand, even if the unperturbed iterates converge to
a minimizer of h over the constraint set, it may happen that SM
produces a sequence of iterates for which h is smaller, at each step,
than it would be if SM were not used.

(7) The data we obtain will always include round-off errors and, most
likely, some form of noise and model error. Because inverse problems
are often ill-conditioned, it is usually not a good idea to seek feasi-
bility, or even to try to minimize a proximity function, since both
approaches risk instability due to overfitting to erroneous data. Reg-
ularization is usually the safest choice, and, as we have seen, bears
close resemblance to SM, particularly when SM is combined with a
stopping rule.

(8) The SM formalism suggests new possibilities for regularization, indi-
cating that SM may also be studied as a method for regularization.

(9) In regularization there is always the issue of how much to use. This
same issue arises in SM, in the form of deciding how small to make
the function h. In an example in [8] the authors use total varia-
tion (TV) as the superiorizing function. They note that they have
stopped their iteration at a point where the TV of the iterate is
actually lower than that in the simulated image they are trying to
recapture. As they say, in the effort to get near the simulated orig-
inal, going further in reducing the TV “is unlikely to be helpful
towards achieving this aim”. In practice, of course, we never know
the actual TV, or much else, about the true image being recovered,
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so we would not know how much to reduce h. Had they gone fur-
ther they might have obtained a less useful image. Knowing how
much regularization to use, or, essentially equivalently, when to stop
reducing h, is an issue that will certainly need to be investigated.
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THOUGHTS ON SUPERIORIZATION II

CHARLES L. BYRNE

Abstract. As I had hoped, my note [11] did elicit several responses
from researchers familiar with the superiorization methodology (SM).
As I read some of the foundational papers on SM [12, 20, 19, 13, 14], my
thinking on the subject is evolving, as I hope to explain in this second
note.

1. Overview

To prepare for my discussion here of the superiorization methodology
(SM) I have been reading some of the foundational articles on the subject
[12, 20, 19, 13, 14]. I have chosen notation somewhat different from that in
the cited articles, but with which I am more comfortable. In some places
my interpretation of SM differs from ones presented in these papers. I
have found that the emphasis these articles place on the novelty of SM
obscures important connections between SM and other approaches, such
as regularization, and confuses shortcomings of particular algorithms with
inadequacies of underlying mathematical problems and models.

In [20], which is devoted to describing the usefulness of SM for medical
applications, it is acknowledged that the ultimate objective is to produce a
helpful result, and any method should be judged accordingly. Nevertheless,
the authors accept the translation of the real-world problem into a mathe-
matical problem and choose to judge algorithms only in so far as they solve
the basic mathematical problem; they do not question the suitability of the
model itself. This is, of course, their choice, but I do not believe they are
consistent in this.

Let me give two quotes from [19] that make clear the view of the authors.
The abstract of [19] begins “A reconstructed image in positron emission
tomography (PET) should be such that its likelihood, assuming a Pois-
son model, is high given the observed detector readings.” Two sentences
later, in discussing the ML-EM algorithm [23, 25, 26] (which I shall call
the EMML algoroithm here), they write “An undesirable property of the
algorithm is that it produces images with irregular high amplitude patterns
as the number of iterations increases.” I disagree with both of these state-
ments. The first one fails to distinguish between the real-world problem
of reconstructing from PET data and the mathematical problem of max-
imizing (or at least making high) a likelihood. The second statement is
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simply false; poor reconstruction is not a property of the algorithm, but a
property of the maximizers of the likelihood function itself, as I proved in
[4]. Indeed, the projected Landweber algorithm and the simultaneous mul-
tiplicative algebraic reconstruction technique (SMART) [17, 24] also exhibit
the same irregularities [4, 5], which also shows that it is not simply the
Kullback–Leibler distance [21] that is at fault.

Let A be a real M by N matrix and f(x) = 1
2‖b − Ax‖

2. The projected
Landweber (PLW) algorithm [22] has the iterative step

xk+1 =
(
xk − γAT (b−Axk)

)
+
,(1.1)

where (x)+ denotes the orthogonal projection of x onto the nonnegative
orthant of RN . The sequence {xk} defined by Equation (1.1) converges to
the minimizer of f(x) over the nonnegative orthant for which ‖x − x0‖ is
minimized, whenever f(x) has nonnegative minimizers.

Suppose now that z ≥ 0 minimizes f(x) over all x ≥ 0. Since the gradient
of f(x) is ∇f(x) = AT (b−Ax) it follows that 〈AT (b−Az), x−z〉 ≥ 0, for all
x ≥ 0. Therefore, we must have (AT (b− Az))n = 0 for every index n in S,
defined to be the set of all indices n for which zn > 0. Let S have K members
and let B be the M by K matrix obtained from A by deleting the nth column
of A whenever n is not in S. Then we have BT (b−Az) = 0. If M ≤ K ≤ N
and B has full rank, which is typically the case, then BT is a one-to-one
transformation. Therefore b = Az; but this contradicts our assumption that
the system has no nonnegative solutions. We conclude then that K < M
and that the vector z has at most M − 1 positive entries. This fact leads
to the “irregular high amplitude patterns” observed by the authors of [19].
Clearly, it is not the fault of any algorithm, but is a property of the chosen
mathematical problem, namely to find a nonnegative least-squares solution.

The authors of the cited papers clearly want to blame the particular algo-
rithms and to show that by changing the algorithms through the perturba-
tions of SM, as opposed to changing the model or the mathematical problem
itself, one can do better. The emphasis on resilience throughout the cited
papers makes it clear that what the basic algorithm is trying to do is good,
at least in theory, but that the algorithm can do better with help from SM.
They believe that there is a sharp distinction to be made between the usual
approach to regularization, that is, the use of an add-on secondary function,
and what SM offers. As I hope to show in this paper, the distinction may
only be between incremental and simultaneous optimization.

2. Two Scenarios

The basic problem is a mathematical one, to minimize a function f : Ω ⊆
RJ → R, subject to some constraints. It is important, at this stage, to
distinguish two scenarios, in preparation for the introduction of the superi-
orization methodology (SM):
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(1) Solving the basic problem, minimizing f subject to constraints, is a
good thing, in the sense that doing so will make a positive contribu-
tion to solving the real-world problem; or

(2) Solving the basic problem, although originally thought to be a good
idea, is revealed to produce results that are not useful.

We shall consider examples of both of these scenarios in what follows. In
the cited papers on SM the underlying assumption is that we are in the first
scenario, although their example of reconstruction from projections clearly
lies within the second scenario.

3. Some Notation

Superiorization is about modifying an iterative algorithm to achieve a
better result without significantly increasing the effort required or deviating
from the original objective for which the algorithm was designed. With
T : Ω ⊆ RJ → RJ the iterative step of the basic algorithm is

xk+1 = Txk.(3.1)

We shall assume that the sequence {xk} converges to a constrained mini-
mizer of the function f , for all starting vectors x0. A typical iterative step
of a superiorized version of the basic algorithm is

zk+1 = Tzk + tkv
k,(3.2)

where tk > 0 and
∑∞

k=1 tk < +∞, and the sequence of perturbations {vk}
is bounded. An important special case of Equation (3.2) employs vk

.
=

−∇h(Tzk), for some secondary differentiable function h; the iterative step
is then

zk+1 = Tzk − tk∇h(Tzk).(3.3)

In this case the purpose of the superiorization is to solve the original math-
ematical problem, while also making h smaller than it would otherwise be
without the perturbation. We note that it is also acceptable, in those cases
in which the operator T is a product of other operators, that is, T =

∏I
i=1 Ti,

for the perturbations to be inserted sequentially, after the application of each
Ti.

The basic algorithm is said to be perturbation resilient if, whenever the
sequence {xk} converges to a solution of the original problem for every start-
ing vector x0, so does the sequence {zk} [12]. In [13] the author distinguishes
between weak SM and strong SM. Weak SM and the associated notion of re-
silience refers exclusively to what happens in the limit, after infinitely many
iterations, and a solution here is understood to be an exact constrained
minimizer of f(x). Strong SM is concerned with the behavior of a proxim-
ity function after finitely many steps and acknowledges the significance of
approximation. Because we always stop after finitely many iterations, this
distinction seems unnecessary. As was shown in [11], many of the functions
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f(x) that concern us can also be formulated as proximity functions for some
convex feasibility problem.

It is clear from the definition of perturbation resilience and the empha-
sis on it in the cited papers that we are supposed to assume that solving
the mathematical problem is desirable and that will still be possible after
the perturbation. Said another way, we like what the basic algorithm does,
but we would like to do a bit better. However, the example of likelihood
maximization in [19] concerns a situation in which the basic algorithm does
something that, while sounding like a good idea initially, is producing an
image with irregular high oscillations. The superiorization using total vari-
ation, coupled with the necessarily finite number of iterative steps, effects
a smoothing of the image. Although the authors of [20] deny that they are
changing the mathematical model, the effect is the same as would have been
achieved through a maximum a posteriori (MAP) regularization. What this
suggests is that, in those cases in which the basic algorithm produces an
undesirable result, the superiorization provides a generalization of regular-
ization that is simpler than, but just as effective as, a MAP method. It
appears to me that the distinction between SM and regularization rests on
a rather restrictive notion of regularization. I’ll return to this issue later in
this note.

4. Some Examples of the First Scenario

In all three of the examples in this section we are in the first scenario,
that is, we like what the basic algorithm is doing, but want more.

4.1. Bauschke’s Algorithm. Consider the problem of finding the point in
the nonempty set C = A ∩ B that is closest to x in the Euclidean sense,
where A and B are closed convex subsets of RN . The alternating orthogonal
projection (AOP) algorithm is the following. Let y0 = x. Having found yn−1
let

zn−1 = PAyn−1
yn = PBzn−1.(4.1)

The sequences {yn} and {zn} both converge to the same member of C, but
not necessarily to PCx [16]. Now we apply sequentially the SM formalism
of Equation (3.3) with h(z) = 1

2‖x− z‖
2 and y0 = x. Having found yn−1 we

take

zn−1 = PAyn−1 − tk∇h(PAyn−1)
yn = PBzn−1 − tk∇h(PBzn−1).(4.2)

With tk → 0,
∑∞

k=1 tk =∞, and
∑∞

k=1 |tk−tk+1| < +∞, the sequences {yn}
and {zn} converge to PCx. This is Bauschke’s algorithm for C = A∩B [1].
It is interesting to note that, while tk → 0, we require that

∑∞
k=1 tk = ∞,

in contrast to Equation (3.2). In Bauschke’s algorithm there is increased
emphasis on the ∇h term, which keeps the x alive longer and results in
convergence to PCx.
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4.2. A Similar Algorithm. Here is a similar algorithm for finding PCx,
obtained using the SM formalism. Again, let h(z) = 1

2‖x− z‖
2 and y0 = x.

Having found yn−1, we take

zn−1 = PAyn−1 −∇h(yn−1),
yn = PBzn−1 −∇h(zn−1).(4.3)

Although the reader may not recognize it, this is Dykstra’s algorithm [18].
The perturbations involved are∇h(yn−1) = yn−1−x and∇h(zn−1) = zn−1−
x. The sequences {yn} and {zn} need not converge separately, indeed, they
need not be bounded, in which case the perturbations are not bounded.
However, the sequences {PAyn} and {PBzn} both converge to PCx and the
sequence {yn + zn} converges to x+PCx. In both these algorithms we have
applied the SM formalism to the alternating orthogonal projection iterative
algorithm. We can do the same for the alternating Bregman projection
iterative algorithm, as was shown in [8].

4.3. Yamada’s Hybrid Steepest Descent Algorithm. There is an in-
teresting connection between SM and Isao Yamada’s hybrid steepest descent
algorithm [27], which uses the iterative step

xk+1 = Txk − tkF (Txk)(4.4)

to solve the variational inequality problem relative to the fixed-point set of
the operator T and the monotone operator F . Here the sequence {tk} sat-
isfies certain conditions, the operator T is nonexpansive, and F is Lipschitz
and strongly monotone. When F = ∇h is the gradient of a convex differen-
tiable function h, the iteration in Equation (4.4) becomes that of Equation
(3.2). The difference now is that, using stricter conditions on T , h, and the
sequence {tk}, the hybrid steepest descent algorithm seeks to minimize h
over the set of fixed points of T , not simply to reduce h. Once again, we
need tk → 0, but

∑∞
k=1 tk = +∞.

5. Is SM Just Regularization?

The authors of the cited papers on SM would certainly deny this. They
point out that regularization, as commonly understood, involves adding to
the objective function a secondary function and then optimizing their sum,
and SM does no such thing. An example will help to clarify the issue.

5.1. The EMML Algorithm. To investigate this point, let’s take the ex-
ample of the EMML algorithm for minimizing

KL(y, Px)
.
=

I∑
i=1

yi log yi − yi log(Px)i + (Px)i − yi,(5.1)
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where y is a positive vector, P is a nonnegative matrix with
∑I

i=1 Pi,j = 1,
for all j = 1, ..., J , and x is a nonnegative vector. With

(Mx)j
.
= xj

I∑
i=1

Pi,jyi/(Px)i,(5.2)

the EMML algorithm has the iterative step xk+1 = Mxk. For any starting
vector x0 > 0 the sequence {xk} converges to a nonnegative minimizer
of KL(y, Px) [4, 5]. Minimizing KL(y, Px) over x ≥ 0 is equivalent to
maximizing the likelihood function for the Poisson model in PET image
reconstruction.

Let z ≥ 0 be the limit of the sequence {xk}. Then for all j for which
zj > 0 we have

I∑
i=1

Pi,jyi/(Pz)i = 1.

Let R be the I by K matrix obtained from P by deleting those nth columns
for which zn = 0. Then we have

RT (y/Pz) = u,

where y/Pz denotes the vector with entries yi/(Pz)i and u is the vector
whose entries are all 1. If K ≥ I and R has full rank, which is the typical
case, then RT is a one-to-one transformation. But RT (u) = u also. Con-
sequently, y/Pz = u and y = Pz. If, however, the system y = Px has no
nonnegative solutions then K < I, z is the unique fixed point and z has
at most I − 1 positive entries [4]. Once again, we see the irregular high
amplitude pattern mentioned in [19], but, as with the PLW algorithm, it is
not the algorithm that is at fault.

5.2. Regularizing the EMML Algorithm. To regularize the EMML al-
gorithm while also obtaining the iterates in closed form we can minimize the
function KL(y, Px) + εKL(p, x), for small ε > 0 and some positive vector
p, perhaps a prior estimate of the correct nonnegative x. The regularized
iteration is now

xk+1 = (1− α)M(xk) + αp.(5.3)

If we take h(x) = 1
2‖x− p‖

2 and apply the SM to the EMML algorithm we
get the iteration

xk+1 = (1− tk)M(xk) + tkp.(5.4)

In fairness, let it be noted that finding a suitable second function that leads
to a closed-form iterate is usually not a simple matter and that the formalism
of the SM is certainly simpler. But, again in fairness, it seems that SM is
a simpler way to regularize, not something quite different, or, to use the
phrase in [14], an “antipodal way of thinking” .
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6. Simultaneous or Incremental Optimization?

Let the operator F be such that the sequence {F kx0} converges to a con-
strained minimizer of the function f(x). Regularization, as it is commonly
understood and described in the papers on SM cited here, involves replacing
f(x) with f(x) + h(x) and minimizing this sum iteratively. Unless the h(x)
is carefully chosen, it can be difficult to find a function h(x) and an iterative
algorithm that produces closed-form iterates. Superiorization is offered as
a much different and simpler way to achieve a similar effect. However, we
can look at SM in a different way that reveals a much closer connection to
regularization.

Suppose that there is an operator H such that the sequence {Hkx0}
converges to a constrained minimizer of the function h(x). There is probably
no way to employ F and H to perform the regularization, if we insist on
using these operators simultaneously. But what if we proceed incrementally
[2]? Let G

.
= H ◦ F , so that Gxk = H(F (xk)). For example, suppose that

H is a gradient descent operator, that is,

Hx
.
= x− γ∇h(x).(6.1)

Then we have

xk+1 = Gxk = Fxk − γ∇h(Fxk).(6.2)

Look familiar?
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THOUGHTS ON SUPERIORIZATION III

CHARLES L. BYRNE

Abstract. The term “proximity function” is used in several of the
foundational papers on the superiorization method (SM) in two distinct
ways, leading to some confusion and complication in defining resilience.
In this note I suggest a modification of the framework for SM and illus-
trate this modification by applying it to the convex feasibility problem
(CFP) and likelihood maximization.

1. My Modified Framework for SM

Let P denote some mathematical problem whose potential solutions are
members of RJ . Let d : RJ → R+ be continuous, with d(x) measuring the
distance a vector x is from solving P, such that x is a solution of P if and
only if d(x) = 0. Let T : Ω ⊆ RJ → Ω be an operator and xk+1 = Txk

the iterative step of the basic algorithm. For suitable tk > 0 and vk ∈ RJ

the perturbed sequence is defined by zk+1 = Tzk + tkv
k. We say that T

is perturbation resilient (pr) if {xk} converges to a solution of P, for each
starting vector x0, and {zk} also converges to a solution of P, for each z0

and suitable tk > 0 and vk ∈ RJ .
In several of the foundational papers on SM [5, 10, 9, 6, 7] the function

that I call d(x) is termed the proximity function. This is an unfortunate
choice, because this term already has a well understood meaning within the
context of the convex feasibility problem (CFP). When the CFP is used
as an example in these papers, the same function is used as the objective
function to be minimized and as the d(x) function that measures how well
x does as a potential solution to the minimization problem. Not only is this
confusing, but it complicates the discussion of resilience. Let me give several
examples to illustrate the modifications I am suggesting.

2. The Convex Feasibility Problem

Let Ci, i = 1, ..., I, be closed convex subsets of RJ . The convex feasibility
problem is to find a member of C

.
= ∩Ii=1Ci. We consider two cases: 1) C is

not empty; and 2) C is empty.

2.1. C is not empty. The problem P is to find a member of C. As our
iterative algorithm proceeds we need a way to measure how we are doing.
As a measure d(x) of how far x is from solving P we have several choices.
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We let Pix denote the orthogonal projection of x onto the set Ci. Some of
the choices for d(x) are

d(x) =
I∑

i=1

‖x− Pix‖;(2.1)

d(x) = max{‖x− Pix‖, i = 1, ..., I};(2.2)

d(x) =
1

2

I∑
i=1

‖x− Pix‖2.(2.3)

It is often the case in practice that we do not know if the intersection C
.
=

∩Ii=1Ci is nonempty; therefore, it makes sense to broaden the problem and
to seek a minimizer of a proximity function F (x).

2.2. C is empty. Because C is empty, we define our problem P to be an
optimization problem, to minimize an objective function F (x). For the
purpose of this discussion we take as our objective function

F (x)
.
=

1

2

I∑
i=1

‖x− Pix‖2.(2.4)

The gradient of F (x) is

∇F (x) =
I∑

i=1

x− Pix,(2.5)

and x̂ minimizes F (x) if and only if ∇F (x̂) = 0, or, equivalently

x̂ =
1

I

I∑
i=1

Pix̂.(2.6)

As a measure of progress, of how well x does as a minimizer of F (x), we
define

d(x)
.
= ‖x− 1

I

I∑
i=1

Pix‖2.(2.7)

We then can say that a vector x is a solution of the original problem P if
and only if d(x) = 0. In the cited papers no distinction is made between the
objective function F (x) and the function d(x); F (x) is used in both roles,
making it difficult to discuss resilience.
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3. Likelihood Maximization

In [9] SM is illustrated by taking as the problem P the maximizing of
the likelihood function, assuming the Poisson model for PET data. With y
a positive vector whose entries are the measured PET data values, P the
system matrix, with

∑I
i=1 Pi,j = 1, for all j, and x ≥ 0 a potential image,

maximizing the likelihood is equivalent to minimizing the Kullback–Leibler
distance from y to Px, given by

KL(y, Px)
.
=

I∑
i=1

yi log yi − yi log(Px)i + (Px)i − yi.(3.1)

It was shown in [4] that KL(y, Px) can be rewritten as a proximity function
for a CFP. Although KL(y, Px) can be minimized using a variety of iterative
algorithms, the authors here choose the ML-EM algorithm, which I have
called the EMML algorithm. With

(Mx)j
.
= xj

I∑
i=1

Pi,jyi/(Px)i,(3.2)

the EMML algorithm has the iterative step xk+1 = Mxk. It is known that,
for any starting vector x0 > 0, the sequence {xk} converges to a nonnegative
minimizer of KL(y, Px) [1, 2]. It was also shown there that the sequence
{xk} is Fejér monotone with respect to the set of all nonnegative minimizers
of KL(y, Px), that is, if x̂ is a nonnegative minimizer of KL(y, Px), then
the sequence KL(x̂, xk) is decreasing.

Because P is a minimization problem our function d(x) must measure how
far x is from minimizing KL(y, Px). If x minimizes KL(y, Px) then

0 = xj

(
1−

I∑
i=1

Pi,jyi/(Px)i

)
,(3.3)

for all j. Therefore, we take as the function d(x)

d(x) =

J∑
j=1

x2j

(
1−

I∑
i=1

Pi,jyi/(Px)i

)2

.(3.4)

Then x̂ is a minimizer of KL(y, Px) if and only if d(x̂) = 0, even if KL(y, P x̂)
is not zero.

4. Two Opposing Views

In [9] the EMML algorithm and SM are studied in the context of recon-
struction from PET data. It seems to me that there are two opposing views
that one can adopt now.

(1) An image x that maximizes the likelihood will provide a useful re-
construction. Because the EMML algorithm is slow to converge, we
would have to take a large number of iterations before we would
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obtain a reasonably close approximation of the maximum-likelihood
image. Unfortunately, the images produced by the earlier iterates
exhibit irregular, high-amplitude oscillations. If we were able to iter-
ate much further, these oscillations would begin to disappear, giving
us a decent approximation of the maximum-likelihood image. To
overcome this annoying behavior of the EMML algorithm, we apply
SM; in the example in the cited papers the authors use total vari-
ation. The effect of using SM is the same as if we had been able
to iterate much longer; the irregular high-ampitude oscillations have
been significantly reduced.

(2) The image produced by a maximizer of the likelihood function may
exhibit irregular high-amplitude oscillations and any iterative algo-
rithm that converges to a likelihood maximizer will exhibit similar
oscillations as the iterates approach the limit; remember that the
sequence is Fejér monotone. The EMML algorithm is not at fault;
likelihood maximization is simply a poor choice in some cases.

I believe it is clear that the authors of [5, 10, 9, 6, 7] hold the first view,
while I hold the second. In fact, there is theory to back me up on this.

Let z ≥ 0 be the limit of the sequence {xk}. Then for all j for which
zj > 0 we have

I∑
i=1

Pi,jyi/(Pz)i = 1.

Let R be the I by K matrix obtained from P by deleting those nth columns
for which zn = 0. Then we have

RT (y/Pz) = u,

where y/Pz denotes the vector with entries yi/(Pz)i and u is the vector
whose entries are all 1. If K ≥ I and R has full rank, which is the typical
case, then RT is a one-to-one transformation. But RT (u) = u also. Con-
sequently, y/Pz = u and y = Pz. If, however, the system y = Px has no
nonnegative solutions then K < I, z is the unique fixed point and z has at
most I − 1 positive entries [1]. The image then exhibits the irregular high
amplitude pattern mentioned in [9], but it is not the algorithm that is at
fault. Because of measurement and model error, both hard to avoid, it is
often the case that y = Px will have no exact nonnegative solutions. The
matrix R will typically have full rank. In [9] I = 30, 300, while J = 225, 625,
which says that most of the pixels of the likelihood-maximizing image will
be zero. As I showed in [4], irregular high-amplitude oscillations are not
restricted to the minimizers of KL(y, Px); the limit of the SMART and of
the projected Landweber algorithm exhibit similar behavior in some cases.

5. Summary

Throughout the discussion of SM in the cited papers there are several
assumptions:
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(1) solving the problem P will be useful in solving the original real-world
problem; maximizing likelihood will give us a useful PET recon-
structed image;

(2) the basic iterative algorithmic sequence {xk} will eventually converge
to this useful solution of P;

(3) the basic algorithm may exhibit features that make the iterates ob-
tained early in the iteration not useful; but

(4) using SM we can leap-frog these early unpleasant iterates and obtain
iterates that more closely resemble those we would have obtained,
had we been able to iterate the basic algorithm longer.

In short, the difficulty is always with the iterative algorithm, not with the
choice of P to be solved. The difficulty can be overcome using SM, and we
never change the P. I disagree with these assumptions. As we just saw in
discussing the EMML algorithm, there are cases in which the difficulty lies
with the choice of P, not with the algorithm. The observed benefits of using
SM come from the implicit regularization (and therefore the alteration of P)
achieved by the SM perturbations.
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THOUGHTS ON SUPERIORIZATION IV

CHARLES L. BYRNE

Abstract. The connection between the superiorization mmethod and
regularization is further clarified using forward-backward splitting.

1. Can Superiorization Do Regularization?

Although there are some theorems and proofs in the foundational papers
on the superiorization method (SM) [5, 12, 11, 6, 7] the authors are clear
that they intend the SM to be taken heuristically, at least at this early
stage of development. In previous notes [2, 3, 4] I pointed out that it seems
worthwhile, in some cases, to view the effects of SM as regularization of
an unwisely chosen problem. This is particularly the case in the popular
example of reconstructing an image from PET data using likelihood maxi-
mization. My suggestions there were also intended to be taken heuristically;
I presented some examples, but no theorems or proofs. In this note I attempt
to include a bit more mathematical rigor.

In rebuttal to my suggestion to view SM as a type of regularization, some
have defended the distinction between SM and regularization by pointing
out that the traditional view of regularization is that the original objective
function is changed by adding a second function and then optimizing the
sum, and that the SM approach does not appear to be doing this. In re-
sponse, I claimed that perhaps a more general notion of regularization was
at work here or the optimization of a sum was being achieved incremen-
tally, rather than simultaneously. In this note I make this more explicit,
showing that the forward-backward splitting (FBS) algorithm [10], an incre-
mental method for optimizing the sum of two functions, and thereby for
doing regularization, leads directly to an iterative step identical to that of
SM.

In formulating the SM it is assumed that there is a mathematical problem
P to be solved and that the basic sequence xk+1 = Txk generated by the
operator T converges to a solution of P. For the purpose of this discussion
I shall take as P the minimizing of a convex differentiable function f . The
goal of SM is to perturb the iterates so as to maintain convergence to a
solution of P while reducing, if possible, the value of a secondary function
h. The iterative step of the SM is

zk+1 = Tzk + tkv
k.(1.1)
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With vk = −∇h(xk) we have

zk+1 = Tzk − tk∇h(Txk).(1.2)

Equivalently, we have

wk+1 = T
(
wk − tk∇h(wk)

)
,(1.3)

for wk
.
= Tzk.

The cited papers on SM emphasize resilience, which is achieved by requir-
ing that the sequence {tk} of parameters converge to zero and be summable.
For resilient operators T the perturbed sequence will still converge to a so-
lution of P. The implication is then that other iterative algorithms that
do not require both of these conditions on the {tk} are not truly SM, even
though they may have identical iterative steps. While such distinctions are
important in theory, they have no significance in practice. Because we never
iterate to infinity, we detect no difference between sequences that converge
to zero and those that do not, nor between summable sequences and diver-
gent ones. When I point out connections between SM and regularization I
am speaking only about the practical effects we observe after finitely many
iterations. Differences that show up only at the limits are irrelevant in prac-
tice. There is no practical difference between parameters that do not vary
with k and those that may vary.

It is my contention that, at least in some cases, the practical effect of
using SM is the same as that of doing regularization of an ill-chosen P.
Since regularization of P here would involve the selection of a secondary
function h and the minimization of the sum f + h, it is helpful to consider
situations in which iterates of the SM type do converge to such a minimizer.
For that purpose we turn to the forward-backward splitting (FBS) method
[10].

2. Forward-Backward Splitting

Let F : RJ → R be convex, but not necessarily differentiable. For each
x ∈ RJ we say that z = proxFx if y = z is the unique minimizer of the
function F (y) + 1

2‖y − x‖
2. Then we have 0 ∈ ∂F (z) + z − x, or

x ∈ z + ∂F (z),(2.1)

where ∂F (z) denotes the subdifferential of F at z. We note that the inclusion
in Equation (2.1) characterizes z as proxFx. As an example consider the
function F (x) = 1

2‖x− p‖
2; then z = proxFx if and only if y = z minimizes

1
2‖y − p‖

2 + 1
2‖y − x‖

2. It follows that z = proxFx = 1
2(x+ p).

In [1] it was shown that the sequence generated by xk+1 = Txk, for T =
proxF , converges to a minimizer of the function F , if minimizers exist. We
turn now to the problem of minimizing F (x) + g(x), where F is convex, but
not necessarily differentiable, and g : RJ → R is convex, differentiable, and
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has gradient ∇g that is L-Lipschitz continuous, that is, ‖∇g(a)−∇g(b)‖ ≤
L‖a− b‖, for all a and b.

Let 0 < γ < 1
L . As shown in [1], we can get the iterate xk+1 of the FBS

method by minimizing the function

Gk(x) = F (x) + g(x) +
1

2γ
‖x− xk‖2 −Dg(x, x

k),(2.2)

where

Dg(x, y)
.
= g(x)− g(y)− 〈∇g(y), x− y〉

is the Bregman distance. Then we have

0 ∈ ∂γF (xk+1) + xk+1 − xk +∇γg(xk)

or

xk − γ∇g(xk) ∈ xk+1 + ∂γF (xk+1.

It follows that

xk+1 = proxγF

(
xk − γ∇g(xk)

)
.(2.3)

It was shown in [10, 1] that the sequence {xk} converges to a minimizer
of F (x) + g(x) whenever this function has minimizers. Using the Baillon–
Haddad Theorem and Krasnosel’skii-Mann iteration, Combettes and Wajs
show that γ can be selected in the interval (0, 2

L) [10].
Comparing Equation (1.3) with Equation (2.3) we see that, at least in

some cases, SM can be used to minimize the sum of two functions, and
therefore to do regularization. To make the comparison we would take F to
be the primary function f , g to be the secondary function h and T = proxf .

3. Using SM for Regularization

In most of the optimization problems to which we would apply the SM
the primary objective function f is typically more complicated that the sec-
ondary one h, since the primary one is dictated largely by the real-world
problem, while the secondary function is chosen so as not to further com-
plicate the calculations. In maximum a posteriori (MAP) methods the sec-
ondary function h is the logarithm of the probability density function attrib-
uted to the parameter vector x. It is helpful, then, that the prox operator be
associated with the secondary function h, which can be conveniently chosen
by the user. In [9] we find a number of examples in which the prox function
is given explicitly for popular log probability density functions. In Equation
(1.3) we assume that xk+1 = Txk minimizes the primary function f , while
h is the secondary function. But this is not essential if we are to use SM to
do regularization. Even when the operator T in the SM iteration is not a
prox operator, we can still view SM as providing regularization, at least in
a heuristic sense.
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4. Summary

To help make the case that SM can, at times, be viewed as regulariza-
tion, it is helpful to have examples of incremental methods that succeed in
minimizing the sum of two function. The FBS method provides just such
examples. The iterative optimization in the FBS is incremental, rather than
simultaneous, and as such resembles closely the iteration in SM. When the
FBS algorithm is used to perform regularization the iterative step is essen-
tially that of the SM. The appearance of tk in one and γ in the other is
not significant, since what happens after finitely many iterations is all that
matters in practice. Although the typical problem to which we would ap-
ply the SM may not fit precisely into the framework of the FBS, that is, T
need not be either proxf or proxh, the existence of a convergent SM-type
incremental optimization method does strengthen the idea that SM can be
viewed as regularization. Because the foundational papers on SM clearly
invite us to view SM in heuristic terms, the failure, at times, of SM to fall
into the FBS framework is not a serious impediment to considering SM in
terms of regularization.
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THOUGHTS ON SUPERIORIZATION V

CHARLES L. BYRNE

Abstract. In this note I discuss my evolving understanding of superi-
orization by posing, and trying to answer, several questions.

1. What is Going On Here?

The problem of reconstructing an image from PET data is discussed
in three of the foundational papers on the superiorization method (SM)
[9, 19, 18]. There is no question that the improvement exhibited in the re-
constructions from simulated data is impressive. What is in question is just
what is actually being illustrated by these examples.

The reconstruction problem is translated into the mathematical problem
of maximizing the likelihood, given the Poisson model [21, 23, 24], or, equiv-
alently, minimizing the Kullback–Leibler distance KL(y, Px) over x ≥ 0 [7].
The iterative algorithm is what I call the EMML algorithm [3, 4, 5]. Be-
cause the EMML iterates are automatically positive, for any positive starting
vector, there is no need for additional constraints; the problem is an uncon-
strained minimization problem. At first glance this problem does not seem
to fit into the SM framework; we are not trying to minimize a function f over
the minimizers of KL(y, Px). However, as the iteration proceeds it becomes
evident that the constructed images exhibit random high-frequency oscilla-
tions and are therefore useless. To improve the images one can attempt
to reduce the total variation function, denoted by f , over the minimizers of
h(x) = KL(y, Px). In the simulations given in these articles the SM is used,
with perturbations coming from the total-variation functon f .

We are told that these examples demonstrate the usefulness of the SM
approach, but that is not really the case. As I pointed out in [8], in most
cases the maximizer of likelihood will be unique and will have many ran-
domly placed zero pixel values. Any iterative algorithm that converges to
the likelihood maximizer will begin to exhibit random high-frequency oscil-
lations as the iterative sequence approaches the limit. It is not the EMML
algorithm that is at fault, but the chosen problem itself, that of maximiz-
ing likelihood. The improvements made in the examples come from the
smoothing effect of the perturbation term, in effect a form of regularization
at work. Because we only see the results after finitely many iterations of
an algorithm, we can never be sure which algorithm we are watching. Two
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methods that have identical iterative steps and differ only in what happens
to the parameters at the limit of infinitely many iterations cannot be dis-
tinguished after finitely many iterations. Bounded perturbation resilence in
SM requires that

∑∞
k=1 tk <∞, while algorithms discussed by Bauschke [2],

Yamada [25] and Andersen and Hansen [1] present algorithms whose iter-
ative steps are identical to that of SM, but achieve different objectives by
requiring that the sum must diverge. Clearly, we can never decide, looking
at any finite number of iterates, which algorithm is being used.

With the matrix P normalized so that
∑I

i=1 Pi,j = 1, for all j, the iterative

step of the EMML algorithm is xk+1 = Mxk, where

(Mx)j = xj

I∑
i=1

Pi,jyi/(Px)i.(1.1)

The SM is applied in [18] using the iterative step

zk+1 = Mzk + tkv
k,(1.2)

where the vk are nonascending directions for the total variation. We can
regularize the EMML using the iterative step

zk+1 = (1− α)Mzk + αp = Mzk − α∇f(Mzk),(1.3)

for f(x) = 1
2‖x − p‖

2, p some positive vector and α = ε
1+ε , for some ε > 0.

The sequence {zk} converges to the minimizer of the function KL(y, Px) +
εKL(p, x). If the vk in Equation (1.2) is vk = −∇f(Mzk) the only difference
between SM and the regularization in Equation (1.3) is what happens to the
sequence {tk} in the limit. If tk = α for all k we get regularization, while, if
tk → 0 and

∑∞
k=1 tk < +∞ and the EMML is resilient, the limit minimizes

KL(y, Px).
My point here is that SM is used in this example as a convenient form of

regularization. Generally speaking, regularization of a minimization prob-
lem involves adding a second function and minimizing the sum. Finding a
second function such that the iterates can be obtained easily is not itself
an easy problem. The choice of KL(p, x) above is particularly convenient
and leads to the closed form for the iterate in Equation (1.3). The choice
of KL(x, p) would not lead to a closed-form iterate. When SM performs
regularization there is no need to worry about this; we simply perturb each
iterate and not require that some sum of two functions is being minimized.

2. What is SM?

A number of articles on the superiorization method (SM) have a section
that asks this question. I see no reason why this note should be any different.
Here is my version of the answer.

We have a real-world problem that we have translated into a mathemat-
ical problem that we denote by P. Potential solutions of the mathematical
problem are vectors in RJ . There is a discrepancy function d : RJ → [0,+∞]
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such that d(x) measures how far x is from solving P; x is a solution of P if
and only if d(x) = 0. The (possibly empty) solution set S consists of all x
with d(x) = 0. There is a convenient basic iterative algorithm for solving
P, taking the form xk+1 = Txk. It is assumed that the sequence {xk} con-
verges to some solution x̂ of P, whenever P has solutions, and {d(xk)} → 0
in any case. Superiorization involves modifying the basic iterative algorithm
at each step to obtain a perturbed sequence

zk+1 = Tzk + tkv
k,(2.1)

or, equivalently,

wk+1 = T
(
wk + tkv

k
)
,(2.2)

that will improve the value of some function f while still having {d(zk)} → 0.
Operators T for which {d(zk)} → 0 for suitable tk and vk are said to be
resilient to such perturbations.

Constrained minimization (CM) is one of the main applications that mo-
tivate the study of SM. Suppose that we want to minimize f : RJ → R over
all x ∈ C, where C is some nonempty subset of RJ . The forward-backward
splitting (FBS) algorithm [15] uses the iterative step

xk+1 = PC

(
xk − γ∇f(xk)

)
.(2.3)

The sequence {xk} converges to a solution if f is convex and differentiable,
∇f is L-Lipschitz continuous, and 0 < γ < 2

L . Of course, the hard part
will usually be the implementation of PC , the orthogonal projection onto C.
The basic idea of SM is to begin by focusing on the constraint set C and
worrying about f later. The basic problem P is then to find a convenient
iterative method xk+1 = Txk so that {xk} converges to a member x̂ of C.
Using T , we form a perturbed sequence, as given by Equation (2.1), where
vk is a nonascending direction for f , that is, f(zk+1) ≤ f(Tzk). The hope is
that, under the right conditions on T , the tk and the vk, the sequence {zk}
will converge to a member ẑ in C and f(ẑ) < f(x̂). It is not expected that
ẑ will actually minimize f over C.

In [10] the authors present two ways in which the constraint set C might
be described for CM:

(1) The set C is the nonempty intersection of finitely many closed convex
subsets Ci of RJ and the problem P is now the convex feasibility
problem (CFP). The solution set S is now C itself.

(2) The problem P is to minimize a function h : RJ → R, and the
solution set S is the nonempty set of all y such that h(y) ≤ h(x), for
all x ∈ RJ .

In those cases in which the problem P is to minimize some function h, it is
important not to confuse d with h. For example, suppose that the intersec-
tion of the closed convex sets Ci, i = 1, ..., I, is empty. It is reasonable, then,
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to redefine P as minimizing

h(x) =

I∑
i=1

‖x− Pix‖2,(2.4)

where Pi is the orthogonal projection onto Ci. Now we have turned a CFP
for which C is empty into a function-minimization problem for which the
solution set S need not be empty.

If the problem P is to minimize h in Equation (2.4) and x̂ is in S then

x̂ =
1

I

I∑
i=1

Pix̂.(2.5)

Therefore, a reasonable choice to measure how far any x is from solving this
problem is the discrepancy function

d(x) = ‖x− 1

I

I∑
i=1

Pix‖2,(2.6)

not h itself. Note that if the iteration being used is xk+1 = Txk with

Tx =
1

I

I∑
i=1

Pix,(2.7)

then the d in Equation (2.6) is simply d(x) = ‖x−Tx‖2. In such cases mon-
itoring {h(xk)}, instead of {d(xk)}, to see how the iteration is progressing
is not a good idea, since we usually have no idea how small the values of h
can be.

In [11] the author identifies two research directions for SM: weak SM is
when S is assumed to be nonempty, while in strong SM the solution set
S may be empty. He claims that strong SM is more practical because in
the real world having consistent constraints is unlikely. However, it is not
unlikely that h will have minimizers, in which case S is not empty and we
will be in the weak SM situation.

3. Should the requirements for the SM Be Weakened?

In [20] the authors point out that it is often the case that iterative al-
gorithms cannot be implemented exactly. The perturbations that are in-
troduced come from unavoidable inexactness and are not put there by the
user. When these algorithms are accelerated the hope is that the perturbed
iterates will exhibit the same improved rates of convergence as the exact
iterates would. In other words, one wants the iteration to be resilient. This
suggests to these authors that there may be a role for SM that goes beyond
what I have described in the preceding paragraphs. We give some examples
to illustrate this point.
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3.1. Some Examples.

3.1.1. Bauschke’s Algorithm. In [2] Heinz Bauschke considers the problem
of finding a vector that is a common fixed point for a finite family of nonex-
pansive mappings on Hilbert space. A particular case of his main theorem
applies to the CFP in RJ . With T given by Equation (2.7), f(x) = 1

2‖x−p‖
2,

and vk = −∇f(Tzk), the algorithm with the iterative step given by Equation
(2.1) converges to the orthogonal projection of p onto the set of fixed points
of T , which is also the set of minimizers of the function h given by Equation
(2.4), provided that {tk} → 0,

∑∞
k=1 tk = +∞ and

∑∞
k=1 |tk − tk+1| < +∞.

3.1.2. Yamada’s Algorithm. There is an interesting connection with Isao
Yamada’s hybrid steepest descent algorithm [25], which uses the iterative
step

xk+1 = Txk − tkF (T (xk))(3.1)

to solve the variational inequality problem relative to the fixed-point set of
the operator T and the monotone operator F . The operator T is nonex-
pansive, F is Lipschitz and strongly monotone, and, once again, the sum of
the sequence {tk} must diverge. When F = ∇f is the gradient of a con-
vex differentiable function f , the iteration in Equation(3.1) becomes that
of Equation (2.1). The difference now is that the hybrid steepest descent
algorithm seeks to minimize f over the set of fixed points of T , not simply
to reduce f .

3.1.3. Dykstra’s Algorithm. Because the objective is to design iterative al-
gorithms for projecting onto C = ∩Ii=1Ci using only the projections onto
the individual Ci, it would help if we had a way to characterize projection
onto C in terms of these projections onto the Ci. We do not have such a
characterization, but we do have sufficient conditions for c to be PCx. Our
lemma [6], relating the orthogonal projection operator PC to the Pi

.
= PCi ,

will serve to motivate the Dykstra algorithm.

Lemma 3.1. If x = c+p1 +p2 + ...+pI and c = Pi(c+pi), for each i, then
c = PCx.

Proof: Let d be arbitrary in C. Then, for each i,

〈c− (c+ pi), d− c〉 ≥ 0,(3.2)

since d is in Ci. Summing the inequalities over i gives

〈c− x, d− c〉 ≥ 0,(3.3)

for all d in C. Therefore, c = PCx.

Consider the problem of finding the point in the nonempty set C = A∩B
that is closest to p in the Euclidean sense, where A and B are closed convex
subsets of RJ . The alternating orthogonal projection (AOP) algorithm is
the following. Let y0 = p. Having found yn−1 let

zn−1 = PAyn−1
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yn = PBzn−1.(3.4)

The sequences {yn} and {zn} both converge to the same member of C, but
not necessarily to PCp [14].

Again, let f(x) = 1
2‖x− p‖

2 and y0 = p. Having found yn−1, we take

zn−1 = PAyn−1 −∇f(yn−1),
yn = PBzn−1 −∇f(zn−1).(3.5)

Although the reader may not recognize it, this is Dykstra’s algorithm [17].
The perturbations are ∇f(yn−1) = yn−1 − p and ∇f(zn−1) = zn−1 − p.
The sequences {yn} and {zn} need not converge separately, indeed, they
need not be bounded, in which case the perturbations are not bounded.
However, the sequences {PAyn} and {PBzn} both converge to PCp and the
sequence {yn + zn} converges to p+ PCp.

4. Is Likelihood Maximization a Linear-Algebra Problem?

For the problem of image reconstruction from PET data the “moment
estimator” of the unknown x is found by solving the system of linear equa-
tions y = Px for x ≥ 0. As the authors of [24] point out, noise and model
error usually result in this system having no nonnegative solutions. They
therefore dismiss the idea that the problem is linear-algebraic and turn to
statistical estimation using likelihood maximization and the EMML algo-
rithm. In the Comments that follow that article G.T. Herman et al. point
out that one can attempt to solve y = Px approximately, using ART or some
other method from numerical linear algebra, and suggest that the statistical
approach is not all that different from their linear-algebraic approach. In
their response to this Comment the original authors deny that the two ap-
proaches are at all similar and that solving, even approximately, any system
of linear equations bears no resemblance to their statistical approach.

In [3, 4, 5] I showed that maximizing the likelihood is, in fact, finding
an approximate solution of y = Px; maximizing likelihood is equivalent to
minimizing KL(y, Px). Moreover, the “simultaneous multiplicative alge-
braic reconstruction technique” (SMART) [16, 22] minimizes KL(Px, y) .
The SMART has the iterative step xk+1 = Sxk, where

(Sx)j = xj exp

(
I∑
i=1

Pi,j log(yi/(Px)i)

)
.(4.1)

The similarities between Equation (4.1) and Equation (1.1) are striking.
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5. Is SM Regularization Made Easy?

The minimizers of KL(Px, y) behave just like those of KL(y, Px) when
y = Px has no nonnegative solutions, and so require regularization to pro-
duce useful images. We can minimize KL(Px, y) + εKL(x, p) with the iter-
ative step defined by

log xk+1
j = (1− α) log(Sxk)j + α log pj ,(5.1)

or

xk+1
j = (Sxk)1−αj pαj ,(5.2)

with α = ε
1+ε . But we can use SM and f(x) = ‖x−p‖2 to regularize SMART

more simply, with the iteration

xk+1 = Sxk + εp.(5.3)

We are not claiming convergence to any sum of two functions, as typical
regularization would require. All we are claiming is that this modification
of the iterative step will avoid the random high-frequency oscillations that
we may begin to see after some finite number of iterations.
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