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Abstract—We summarize recent results and ongoing activi-
ties in mathematical algorithms and computer science methods
related to proton computed tomography (pCT) and intensity-
modulated particle therapy (IMPT) treatment planning. Proton
therapy necessitates a high level of delivery accuracy to exploit
the selective targeting imparted by the Bragg peak. For this
purpose, pCT utilizes the proton beam itself to create images.
The technique works by sending a low-intensity beam of protons
through the patient and measuring the position, direction, and
energy loss of each exiting proton. The pCT technique allows
reconstruction of the volumetric distribution of the relative
stopping power (RSP) of the patient tissues for use in treatment
planning and pre-treatment range verification. We have inves-
tigated new ways to make the reconstruction both efficient and
accurate. Better accuracy of RSP also enables more robust inverse
approaches to IMPT. For IMPT, we developed a framework for
performing intensity-modulation of the proton pencil beams. We
expect that these developments will lead to additional project
work in the years to come, which requires a regular exchange
between experts in the fields of mathematics, computer science,
and medical physics. We have initiated such an exchange by
organizing annual workshops on pCT and IMPT algorithm
and technology developments. This report is, admittedly, tilted
toward our interdisciplinary work and methods. We offer a
comprehensive overview of results, problems, and challenges in
pCT and IMPT with the aim of making other scientists wanting
to tackle such issues and to strengthen their interdisciplinary
collaboration by bringing together cutting-edge know-how from
medicine, computer science, physics, and mathematics to bear on
medical physics problems at hand.

Index Terms—proton therapy, proton computed tomography,
intensity-modulated therapy, blob basis functions, superioriza-
tion, data partitioning, Monte Carlo simulation, digital phantoms,
motion-adapted reconstruction

I. INTRODUCTION

Proton therapy is becoming increasingly common for cancer
radiation therapy. Protons afford tissue-sparing advantages that
should be carefully tested against the best available photon
therapy techniques, i.e., intensity-modulated radiation therapy
(IMRT). However, this requires further development of image-
guidance and inverse planning techniques for proton and
ion therapy. This report summarizes some developments of
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advanced algorithmic and computational methods for proton
computed tomography (pCT) and for intensity-modulated par-
ticle therapy (IMPT) that we developed by applying expertise
in optimization algorithms, computer science, and medical
physics, related to proton and ion therapy. We give references
to published work when applicable and include details about
work-in-progress. The purpose of over-viewing our work in
this rapidly evolving field is to inspire other researchers to
contribute to it in an interdisciplinary fashion.

Both IMPT and pCT are “inverse problems”; they are pro-
cesses of calculating causal factors from a set of observations
they produced. For example, in IMPT or IMRT the fluence
of individual pencil beams or beamlets will produce a dose
distribution and the clinical prescriptions play the role of
“observations” in this framework from which the proper flu-
ences are calculated. Likewise, in pCT, relative stopping power
(RSP) is the property of tissues that results in energy loss of
protons and ions. Here, measured energy loss of individual
protons traversing the object are the “observations” and the
RSP is calculated from these observations, forming the pCT
image. Starting from this premise, we discuss the following
topics mostly from the mathematical and computational points
of view:

o The development of a feasibility-seeking approach and
algorithms for treatment planning of IMPT.

e The superiorization methodology (SM) combined with
the diagonally relaxed orthogonal projection (DROP)
feasibility-seeking algorithm.

o The application of the SM to total variation superioriza-
tion (TVS) for pCT reconstruction.

e The use of blob basis functions and the reconstruction
from pCT data acquired in the presence of organ motion.

e The derivative-free framework for the SM with
component-wise perturbations.

o The selection of appropriate digital anthropomorphic
phantoms for exploring pCT and IMPT.

o The selection of simulation tools to generate pCT data
and, as a forward calculation method, to calculate dose
contributions from proton pencil beams.

o The development of tools to compare pCT and IMPT
results with those of concurrent methods.

« The development of code optimized for general purpose
graphics processing units (GPGPU) that combines al-



gorithmic advances, memory, and computational tuning,
required to achieve speedup.

o The efforts to acquire pCT data with phantoms using the
preclinical pCT scanner at the Northwestern Medicine
Chicago Proton Center (NMCPC).

II. MODEL FORMULATIONS AND MATHEMATICAL
ALGORITHMS FOR PCT AND IMPT INVERSE PROBLEMS

In this section, we give an overview of some of the
methods used in the investigations of the topics listed above.
If available, we point to additional details about the methods
in the published literature. From the mathematical modeling
and algorithmic points of view, we take recent algorithmic
developments and “translate” them to applications in pCT
and IMPT inverse problems. We demonstrate this approach
by two specific novel techniques that were investigated and
have been published but can benefit from further adaptation
and refinement for these applications. These are the superi-
orization methodology for pCT image reconstruction and the
split inverse problem paradigm for IMPT.

The core of the fully-discretized inverse problems of IMPT
and pCT problems discussed here consists of the constraints,
which are dictated by the underlying physical model. In the
feasibility approach, we look at convex feasibility problems
(CFPs) of the form: find a vector z* € C := N!_,C;, where
the sets C; C R’ are nonempty closed convex subsets of the
Euclidean space R7, see, e.g., [1]-[3] or [4, Chapter 5] for
results and references on this broad topic.

Both IMPT inverse planning and pCT, as well as other
inverse problems where the underlying system has very large
values of I and J and is often very sparse, fall under this
category. Under these circumstances, projection methods are
beneficial [1], [S5]-[9]. These are iterative algorithms that
use projections onto sets, e.g., hyperplanes or half-spaces in
the linear cases, while relying on the general principle that
when a family of, usually closed and convex, sets is present,
projections onto the given individual sets are easier to perform
than projections onto other sets (intersections, image sets under
some transformation, etc.) that are derived from the given
individual sets.!

A. The Superiorization Methodology

The superiorization methodology (SM) can be applied to the
data of constrained minimization (CM) problems of the form:
minimize {¢(z) | x € C}, where ¢ : R/ — R is a target

The fully-discretized formulation of the inverse problem of IMRT treat-
ment planning was not commonly accepted in the early days as it is today. In
1982, Brahme, Roos, and Lax tried to solve the inverse problem of radiation
therapy treatment planning in its continuous (not fully-discretized) formulation
via integral inversion [10]. However, to be able to generate the required
inverse transform, they had to make unrealistic assumptions on the model
that rendered their analysis impractical. Altschuler and Censor proposed in
1984 [11] a fully-discretized IMRT model. Here, “fully-discretized” means
that not only the irradiated volume is discretized into voxels but that also
the external radiation field is discretized into “rays” (“beamlets” or “pencil
beams” in today’s language). The initial conference report was followed by
a sequence of papers that established this approach [12]-[14]. To the best of
our knowledge, these and the independent 1990 paper of Bortfeld et al. [15]
were the first publications that suggested the fully-discretized approach to the
inverse problem of IMRT, see also [16] and the introduction of [17].

function, and C C©® C R’ is a given feasible set defined by
constraints, see, e.g., [18]. It aims at finding a feasible point
that is superior (with respect to the target function value) to
one returned by an algorithm that is only feasibility-seeking.
In doing so, SM is situated between feasibility-seeking and
full-fledged CM.

There are two main reasons why superiorization is bene-
ficial: (i) for a problem for which an exact CM algorithm
has not yet been discovered, but there are iterative feasibility-
seeking methods that provide constraints-compatible solutions,
which can be turned by the superiorization methodology into
methods that will be practically useful for the target function
reduction effort; and (ii) when existing exact optimization
algorithms are either very time consuming or require too
much computer space for large problems to be processed
by run-of-the-mill computers. On the other hand, space- and
time-efficient algorithms exist for constraints-compatibility-
seeking, and these can be turned into efficient algorithms for
superiorization. Examples of such situations are given in [19],
[20].

There is no general answer yet to the question under
which circumstances one should resort to superiorization as
the method of choice. Even when tractable constrained opti-
mization algorithms are available, the SM often yields better or
comparable results. This has been demonstrated in [19] where
a comparison between the projected subgradient method and
SM showed that the SM performed better when applying it
to an image reconstruction from projections problem. Many
works cited on [21] attest to the practical success of the SM
in a variety of situations.

In the SM, one associates with the feasible set C' a proximity
function Proxc : © — Ry, which is an indicator of how
incompatible a vector z € © is with the constraints. For any
given € > 0, a point € © for which Proxc(z) < ¢ is called
an e-compatible point for C.

The e-output of a sequence, defined in [22], can be ex-
plained as follows. For a nonnegative € and a sequence
R := (), of points in ©, the c-output of the sequence
R is a point x € © that has the following properties:
Proxc(x) < ¢, and there is a nonnegative integer K such
that X = z and, for all nonnegative integers k < K, we
have Proxc(z") > e . If there is such an z, then it is unique.
If there is no such z, then we say that the e-output of the
sequence is undefined and otherwise, that it is defined.

In order to “superiorize” a feasibility-seeking algorithm,
commonly called the “Basic Algorithm”, represented by the
iteration 2**! = Ao (2F), we need it to have strong pertur-
bation resilience in the sense that for every € > 0, for which
an e-output is defined for a sequence generated by the Basic
Algorithm for every z° € ©, we have also that the &’-output
is defined for every ¢ > ¢ and for every sequence {yk}:;o
generated by

v =2 T = Ao (vF + Brob), forall k>0, (D)

where the vector sequence {vk }210 is bounded and the scalars
{Br}1e are such that 8, > 0, for all &k > 0, and Y 72, B <
+o00. See, e.g., [19], [22] for additional details.



Algorithm 1: The Superiorized Version of the Basic Algo-
rithm
set k=0
set 3% = o0
set { = —1
repeat
set n =0
set yk,n — yk
while n<N
set v¥™ to be a non-ascending vector for ¢ at y*"
set loop=true

while loop
set {=/(+1
set ﬁk,n =M

set z = yk,n + Bk,nvk’n
if ¢ (2)< ¢ (y") then
set n=n + 1
set yF =z
set loop = false
set y*tl=Ac (yk,N)
set k=Fk+1

Sufficient conditions for strong perturbation resilience of a
Basic Algorithm were derived in [18, Theorem 1] and [19].
Along with the constraints C' C R7, we look at a target
function ¢ : © C R’ — R, with the convention that a point in
R’ for which the value of ¢ is smaller is considered superior
to a point in R for which the value of ¢ is larger. The essential
idea of the superiorization methodology is to make use of
the perturbations of (1) to transform a strongly perturbation
resilient algorithm that seeks feasibility into an algorithm with
an output that is equally good for constraints-compatibility
but is also superior (not necessarily optimal) according to the
target function ¢.

The SM accomplishes its goal by producing from the Basic
Algorithm another algorithm, called its superiorized version,
that implements, at every iteration, a perturbation that reduces
the target function value locally, i.e., ¢ (y* + o) < ¢ (y¥).
The Superiorized Version of the Basic Algorithm assumes that
we have available a summable sequence {7},-, of positive
real numbers (for example, 7, = a®, where 0 < a < 1) and
it generates, simultancously with the sequence {y"} = in
©, sequences {v"} " and {B}—,. The latter is generated
as a subsequence of {r.},”,, resulting in a nonnegative
summable sequence {f3;},-,. The algorithm further depends
on a specified initial point y° € © and a positive integer N. It
makes use of a logical variable called loop. Such a superiorized
algorithm is presented here by its pseudo-code in Algorithm
1.

In general, the Superiorized Version of the Basic Algorithm
outputs solutions that are essentially as constraints-compatible
as those produced by the original (not superiorized) Basic
Algorithm. However, due to the repeated steering of the
process toward reducing the value of the target function ¢,
we can expect that the output of the Superiorized Version will
be superior (from the point of view of ¢) to the output of the

original algorithm.

In recent years, the algorithmic structure of the superioriza-
tion method has undergone some evolution in ways that offer
benefits in pCT. The details of this evolution can be found
in the Appendix of [23], titled “The algorithmic evolution of
superiorization”.

A comprehensive overview of the state of the art and
current research on superiorization appears in our continuously
updated bibliography Internet page that currently contains 138
items [21]. Research works in this bibliography include a
variety of reports ranging from new applications to new mathe-
matical results on the foundations of superiorization. A special
issue entitled: “Superiorization: Theory and Applications” of
the journal Inverse Problems [24] contains several interesting
papers on the theory and practice of SM. A special issue
entitled: “Superiorization versus Constrained Optimization:
Analysis and Applications” of the Journal of Applied and
Numerical Optimization (JANO) appeared in 2020 [25].

A word About the history: The superiorization method
was born when the terms and notions “superiorization” and
“perturbation resilience”, in the present context, first appeared
in the 2009 paper of Davidi, Herman and Censor [20] which
followed its 2007 forerunner by Butnariu et al. [26]. The ideas
have some of their roots in the 2006 and 2008 papers of
Butnariu et al. [27] and [28]. All these culminated in Ran
Davidi’s 2010 PhD dissertation [29] and the many papers since
then cited in [21].

B. Derivative-free Superiorization (DFS) with Component-
wise Perturbations

Superiorization reduces, but not necessarily minimizes,
the value of a target function while seeking constraints-
compatibility. When the perturbation steps are computationally
efficient, the superior result is obtained with essentially the
same computational cost as that of the original feasibility-
seeking algorithm.

In the literature on superiorization, the perturbations that in-
terlace target function reduction steps into the basic algorithm
have, up to now, been done mostly by using negative gradients
(or subgradients) directions and, thus, require some form of
differentiability of the target function. In [30], we introduced
component-wise perturbations that allow local non-ascent of
the target function. These enable the SM to be applied with
target functions that are not differentiable, similarly to such
situations in optimization theory, where coordinate descent
approaches are used.

The ramification of DFS for practical applications of the
SM to IMPT treatment planning are meaningful. For example,
normal tissue complication probability (NTCP), which is a
predictor of radiobiological effects for organs at risk, should
be used as an objective function in the mathematical problem
modeling and the planning algorithm. Using NTCP or similar
functions is hampered because these functions are, in general,
empirical functions whose derivatives cannot be calculated,
see, e.g., [31]. In a recent paper [32] the authors say that
“...practical tools to handle the variable biological efficiency
in Proton Therapy are urgently demanded...” highlighting this



need for the near future, but also in a longer perspective, of
the proton therapy community.

By considering component-wise perturbations, we general-
ized previous superiorization schemes to enable the use of a
more extensive selection of methods for step-wise reduction
of the target function. As a first step in validating component-
wise perturbations, we presented in [30] a new superioriza-
tion scheme for reducing total variation (TV) during image
reconstruction from projections. More recently, this work has
been continued in [33]. In that paper, DFS is put in context
with the large field of derivative-free optimization (DFO) with
many relevant references and a tool, called a “proximity-target
curve”, for deciding which of two iterative methods is “better”
for solving a particular problem is developed. It is worth-
while to mention that other methodologies such as averaged
stochastic gradient descent and automatic differentiation, that
are widely used in optimization theory, in particular in the field
of machine learning, also cope with lack of differentiability
and employ “coordinate-wise” searches. There is certainly a
potential to learn from the advances in these fields toward
improving DFS.

C. The Fully-Discretized Problem Formulation of pCT Image
Reconstruction

The water equivalent path length (WEPL) of a proton
through an object, i.e., the length of the path the proton travels
through water that leads to the same mean energy loss as in
the object, can be expressed as a line integral of relative (to
water) stopping power (RSP) along the path [34]. In practice,
the object is described by a set of basis functions, and the
integrals are expressed as discrete sums. This leads to a linear
system Ax = b, where the ijth entry of the matrix A is
the intersection length of the path of the ith proton with
the jth voxel (basis function) and the ith component of the
measurement vector b is the ith proton’s measured WEPL.
The mathematical formulation of the fully-discretized pCT
reconstruction problem is: Given A and b, estimate .

The system matrix A is generated by calculating the path
length through each basis function (normally a voxel). Dif-
ferent from the straight-line assumption in x-ray CT, in pCT,
discrete steps along most likely path (MLP) approximations
developed in [35], created by multiple small-angle Coulomb-
scattering of protons in the object, are used. Thus, proton
paths through the reconstructed object are approximated at a
finite set of points along each MLP. Employing a linear path
approximation through individual basis functions simplifies the
calculation. It is justified by the minor deviation of a proton
path from a straight line on the scale of the voxel dimension
(1-2 mm). However, the need to identify intersection lengths of
protons through individual voxels creates high computational
demand with the need to identify intersection lengths of
millions of protons through millions of voxels. We addressed
this problem by using GPGPUs (general-purpose graphics pro-
cessing units) that perform calculations that would otherwise
typically be conducted by the CPU (central processing unit).
Such GPGPUs were used for the implementations of pCT
reconstruction codes (see Subsection III-A below).

D. A New Algorithm for TV-Superiorized (TVS) pCT Image
Reconstruction

The efficacy of the SM for image reconstruction in pCT
has been shown in previous work [36]. In that work, we
superiorized the total variation (TV) as the target function
to improve pCT image quality. The usefulness of TVS was
demonstrated for pCT image reconstruction with different
superiorized versions of the block-iterative diagonally relaxed
orthogonal projections (DROP) algorithm [37]. Two TVS
schemes added-on to DROP were investigated; the first carried
out the superiorization steps once per cycle and the second
once per block.

A new version of the TVS algorithm, referred to as NTVS
(New TVS), was investigated in [38]. Compared to the original
TVS algorithm published by Penfold et al. in [36], the NTVS
includes several structural changes and new aspects previously
not investigated. It combines properties that were scattered
among previous works on TVS in x-ray CT but were never
combined in a single algorithm, neither for x-ray CT nor for
pCT. These properties are: (1) exclusion of the TV reduction
verification step; (2) usage of powers of a perturbation kernel
« to control the step-sizes [y in the TV perturbation steps;
(3) incorporation of the user-chosen integer N that specifies
the number of TV perturbation steps between consecutive
feasibility-seeking iterations; and (4) incorporation of a new
formula for calculating the power of « that is used to calculate
the step-size of the perturbation steps. The notation and other
algorithmic details of the NTVS algorithm can be found in
[38].

E. Adding Robustness to pCT Image Reconstruction

Imaging systems commonly contain some uncertainty in
modeling and measurement. For pCT, there is uncertainty in
the estimated MLP and the measurement of the WEPL of
individual protons. In standard algorithms, this uncertainty,
often measured by the residuals r =|| b — Az ||, is considered
part of the measurements b rather than the modeled system
Azx. In robust systems, errors are modeled as part of both
the system matrix A (in pCT, intersection length of individual
proton MLPs with individual voxels) and the measurement
vector b (in pCT, the WEPL). Methods such as total least
squares, ridge regression, and Tikhonov regularization are
classic techniques for robust systems, and all can be solved
as a diagonal perturbation to the normal equations of least
squares, see for example [39]. The main difference relates to
the regularization parameter, which is typically a small number
related to the uncertainty parameter, and bounds on A and b.
A more recent technique, Bounded Data Uncertainty (BDU)
models the uncertainty as perturbations F, to the matrix A,
such that the actual system is (A -+ E)x. The perturbations are
bounded such that || E|| < 7. For the worst case perturbations
[40] and [41] and best case perturbations [42] and [43] the
resulting problem is solved by # = (A'®A + W)=t AT,
which again can be solved by a diagonal perturbation to the
normal equation of least squares. In BDU, the perturbation
to the diagonal is dependent on the solution and must be
solved for iteratively using a “secular equation,” which is




a one dimensional, nonlinear equation involving uncertainty
parameter 7, and bounds on A and b. These diagonal pertur-
bations can be thought of as perturbing the singular values
of the underlying system of A and b. Analogously, in [44],
we introduced the fully-simultaneous adaptive iterative solver
(FSAIS) for the fully-discretized problem formulation of pCT
image reconstruction and provided a convergence analysis. To
obtain a sparse robust solution, we formed the augmented

linear system
x 0
=) e

where A, x, and b are defined as in II-C, and the choice of
the matrix parameters ¥ and @ is discussed below. Solving the
top equation for x and the second equation for r, one obtains
the following system of equations:

- AT
A ot

r=o(b— Az), 3)
z=v""ATr, 4)

which reduces to
r=0"1AT® (b - Az). )

This equation opens a formal way of selecting an iterative
algorithm that leads to robust RSP values. Given a current
iteration vector x*, the FSAIS generates the next iteration
vector z*T! by

eF Tt = gk L o AT B(b — Axh). (6)

Since many robust methods result in diagonal perturbations
with values that typically lie in a similar area, in FSAIS the two
diagonal parameter matrices ¥ and @ are free parameters that
can be adjusted for robustness and speed of convergence. The
parameter ¢ handles normalization and weighting between the
rows of A and b. The parameter ¥ includes the relaxation
paramter and adjusts weighting between the uncertainty 7,
the elements of z, and the matrix A. Our choices for these
parameters are @, := 0 AliH?’ where A; is the ith row of the

matrix A, and Wj’l(k) = (1 — 2¥)A(k), where A(k) is the
relaxation parameter at the kth iteration and x? is the jth
component of the kth iteration vector. In a pCT reconstruction
study with the Catphan® CTP404 sensitometry module (The
Phantom Laboratory, Inc., Salem, NY), which contains cylin-
drical inserts with a wide range of RSP, FSAIS was shown
to obtain results similar to the DROP algorithm of [37] for
RSP values near 1 but obtained significantly better results
than DROP for denser materials (RSP>1) such as acrylic
(1.160), Delrin® (1.359), and Teflon® (1.790). FSAIS was also
able to handle missing data, i.e., proton histories in an angle
interval being removed. This was done to simulate situations,
for example, where protons cannot penetrate individual body
sections because the proton energy would not be sufficient.
Using the filtered back projection (FBP) reconstruction along
straight proton paths as the initial iterate, FSAIS stayed within
2% of the RSP for up to 60 degrees of lost data and was within
1% for almost all materials for 30 degrees of lost data.

F. Development of a Motion-Adapted Iterative Reconstruction
Algorithmic Framework for pCT

In the past and up to now, it was assumed that the object
that undergoes pCT imaging is static throughout the pCT data
acquisition. However, this is not the case when imaging, for
example, the lungs because, during the image acquisition, the
acquired data belong to different motion states at different
specific time instances. It is important to note here that we
register individual protons with a time tag during the data
acquisition process. During the data acquisition, one can also
measure a surrogate breathing signal that gives information
about the tidal volume of the lungs. Common concepts in
four-dimensional-CT (4D-CT) imaging with the registration
of the breathing motion are those of a “reference state” and
the “reference image” which represent the patient lungs in a
specific state of filling and, typically, at rest, respectively, for
example, at the end of normal expiration when the breathing
airflow ceases for a moment. In the work-in-progress described
next, we developed and investigated an algorithmic framework
that enables the reconstruction of the reference image of
a breathing patient assuming that the tissue motion can be
described by accurate deformation vector fields, see, e.g.,
[45]. For ordinary (motion-free) pCT data acquisition, one
uses a detector-fixed coordinate system for tracking discrete
proton coordinates for MLP calculation and an object-fixed
coordinate system for reconstructing the RSP; both coordi-
nate systems are represented by a regularly spaced, three-
dimensional voxel grid [46]. When motion is present, the
object-fixed voxel grid is only regular for the reference state.
However, it is deformed for all other motion states according to
the deformation described by the motion model. The general
reconstruction equation Ax = b is retained because motion
only influences the A-matrix elements according to the MLP
intersection length of the deformed grid cells. Assuming that
the RSP values of the deformed grid cells are retained (an
approximation), the reconstructed image corresponds to the
reference image when the solution vector is assigned to the
rectangular voxel grid, and any other motion state when it is
assigned to the deformed grid of that motion state.

We define a “motion model,” in the context of pCT image
reconstruction, to be a system (like a blackbox) capable of
describing the three-dimensional (3D) spatial displacement of
human moving tissues at any time instance relative to their
reference position. To make this statement more concrete, we
consider a 3D regular voxel grid fixed in the object-fixed
coordinate system whose voxel centers are, for each voxel
7, at the 3D position vector U For every voxel index,
j = 1,2,...,J, the pair (y(()] ), é] )) represents the relative
stopping power (RSP) of the voxel j, denoted by y((f ), and the

location ?(()J ) of the voxel center in the reference image, see

Figure II.1.
According to the modeled displacement of the object tissues
due to motion, at time ¢, the pair ), _ &)Y becomes

(y(()j %Y , meaning that the RSP value yy ) remains un-
changed, but its reference point has moved to a new spatial
location ?y ), not necessarily conforming with the original

fixed grid, as determined by the nature of a transformation 7’
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Fig. II.1. Two-dimensional schematic of the reference image (left) with a
regular system of points marking the centers of an object-centered fixed voxel
grid j =1,2,..., J. In the moving image (right), the position of the original
voxel center points have shifted as a whole (translation) and relative to each
other (deformation) to new locations due to tissue motion, which is described
by a deformation vector field 7". The blue-shaded regions are Voronoi cells
(see text for details).

described by a deformation vector field that is, in general, not
repeatable nor periodic and is described by the motion model.

Our motion-adapted pCT reconstruction makes use of the
concept of Voronoi diagrams and cells, see, e.g., [47, Subsec-
tion 5.5], [48]. We use the following definition.

Definition 1. Let P := py,ps,...,ps be a set of J voxel cen-
ter points (called sites) in the 3D reference image space and
let dist(pj, px) denote the Euclidean distance between voxel
center point p; and any other voxel center point py,k # j.
The “Voronoi diagram” of P, is defined as the partition of the
3D space into J connected 3D cells (called “Voronoi cells”
or “Voronoi polygons”) such that any point q in the image
space belongs to the Voronoi cell corresponding to a site p;
if and only if dist(q,p;) < dist(q, px) for each py, € P with
k # 7.

It is understandable from Figure II.1, when expanded into
the third spatial dimension, that boundaries of Voronoi cells are
formed by plane sections that are created by the intersection
of bisecting half-spaces between pairs of sites, line segments
formed by the intersection of these planes, and vertices formed
by the intersection of two or more of these line segments. The
“bisecting plane” of two points p and ¢ is the plane that is
perpendicular to the line segment pq and intersects it at the
midpoint. This bisecting plane divides the 3D space into two
half-spaces. Then the Voronoi cell of point pj, denoted by
V(pr), is

J
Vior) = () ok D)), (7)
J#k,j=1

where h(py,p;) is the bisecting plane of the points (pg, p;).

In our approach to motion-adapted pCT reconstruction,
which is illustrated in Figure I1.2, the Voronoi cells become
the new basis functions, and the originally formulated fully-
discretized problem of pCT reconstruction remains unchanged.
The specific Voronoi cell basis functions depend on the motion
state of the tissues, which is described by a motion model. The
motion model allows calculation of the displacement vector
for individual voxel points at any given instance of time. The
new positions of the voxel points are used to compute the

Fig. I1.2. Two-dimensional schematic of the pCT reconstruction problem of
a moving organ at a specific time instance ¢t when the organ is represented
by the Voronoi cell basis functions shown. The most likely path (MLP)
of an individual proton intersects the shaded cells. The summation of the
intersection lengths of the ith MLP with the jth voxel, a;; multiplied by the
unknown RSP values yg] of each cell is set equal to the ¢th component of
the b vector of measured WELP values, and thus form a linear system of
equations Ayp = b that is solved iteratively for the reference image vector
yo by a feasibility-seeking algorithm.

plane segments of the Voronoi cells. Together with an MLP
algorithm, one can then calculate the intersection length of the
ith proton through the jth Voronoi cell basis function, and the
ith component of the WEPL measurement vector b gives the
ith proton’s measured WEPL. This results in a linear system
of equations that is solved iteratively by a feasibility-seeking
algorithm. The unknown RSP values of each cell are assumed
not to change from their values in the reference image. Thus,
the reconstructed voxel image where each voxel is assigned
the reconstructed RSP value y(()j ), 7 =1,2,...,J, corresponds
to the reference image. One can also calculate the image at
any point in time by calculating a weighted average of the
RSPs with weights that are proportional to the area a voxel
shares with overlapping Voronoi cells.

The motion model parameters could be known at the time
of pCT imaging from a separate motion imaging study, or
they could be included in the image reconstruction prob-
lem and estimated after the imaging. By way of example
only, we mention here the lung motion model originally
developed by Low and colleagues [49], [S50]. This model
has recently been applied in conjunction with an iterative
projection algorithm for a motion-compensated simultaneous
algebraic reconstruction technique (MC-SART) of cone beam
CT (CBCT) [51], [52]. There is, however, a fundamental
conceptual difference between our approach and the MC-
SART algorithm. To “handle” the motion, the authors modified
the reconstruction algorithm (SART in their work) while we,
to handle the motion, modify the problem (the linear system
of equations in our work). Our approach is, therefore, general
in the sense that once the problem is appropriately modified
to handle the motion, one can apply any iterative algorithm to
the “modified problem.” Our framework can take the output of
any motion model as input to the algorithm for computation
of the basis functions at each instance in time when proton
histories are acquired. The motion model and the algorithm
are, thus, two separate entities that have to be used in tandem
when applied to simulated or real data.

Besides the motion model of Low et al., other motion
models exist, see, e.g., [53]-[55].



(a) (b)

Fig. I1.3. Profile of a voxel (a) and a blob (b).

G. Blob Basis Functions for pCT Image Reconstruction

“Blob” basis functions, called “radial basis functions” in
approximation theory, see, e.g., [56], are spherically symmetric
basis functions for CT reconstruction that were suggested in
the field of image reconstruction from projections by Lewitt
in the early 1990s [57], [58]. These blobs are generalizations
of a well-known class of functions used in digital signal
processing called Kaiser-Bessel window functions and they
yield excellent results in multiple imaging modalities, see, e.g.,
the enlightening tutorial by Herman [59]. Matej and Lewitt
[60], [61] provided a careful investigation of how the blob
basis functions should be chosen when they are used in the
context of image reconstruction from projections. Since then
blobs have been used extensively for image reconstruction
in X-ray computerized tomography, positron emission to-
mography, single photon emission computerized tomography,
optoacoustic tomography and electron microscopy (consult
[59] for references and details). Adhering to the term “blobs”,
as commonly used in this field, we have started to develop a
methodology for using blobs instead of standard square voxels
in pCT. The use of blobs will potentially improve pCT image
quality and computational efficiency.

Current pCT makes use of conventional voxels for re-
constructing and representing reconstructed images. However,
proton paths through the reconstruction object are curved and
must be approximated at a finite set of points along each path.
The computational burden to identify intersection lengths of
protons through individual voxels is quite large, especially
when the object elements are not spatially invariant. Using
blobs as a replacement of voxels in pCT can significantly
reduce this computational burden because of the spherical
symmetry of the blobs. We presented initial encouraging
results in collaboration with UCLA graduate student Howard
Heaton as a poster at the 2016 Joint Mathematics Meetings
(IMM) [62].

Voxels have a uniform value inside a set domain, and blobs
are spherically symmetric and taper smoothly to zero at their
border, see Figure II.3. The formal definition for blob basis
functions for CT imaging, first proposed by Lewitt [58], is as
follows:

™"

%Im(a 1—(r/a)?), ifre(0,a],

0, otherwise,

3)
where b; is the basis function of the jth blob, r is the
radial distance from the center of the jth blob, I,,, denotes
the modified Bessel function of the first kind of order m, a
denotes the radius of the blobs, and « is a nonnegative real
number that controls the shape and taper of the blob. It is
common practice to choose m = 2, which gives a smooth

b;(r) =

and differentiable blob function. Following Benkarroum et al.
[63], we have chosen the blob parameters to be a = 2.453144
mm and o = 13.738507. Those parameter values were chosen
for optimal representation of piecewise-constant images.

To generate the system matrix A, the path length through
each basis function must be computed. Employing a linear path
approximation through individual basis functions (voxels or
blobs) allows the use of the Radon transform R to approximate
each entry A;j, i.e.,

Aij :/ bj(5) ds =~ [Rb;](4;,0;), )
path

where

[Rb;](6:,0;) = /

line

b; (\/E? + 22, 0; +tan™! (z/él)> dz
(10)
is the Radon transform of the straight-line approximation of
the path through the blob. Note that with blobs, the Radon
transform depends solely on perpendicular distance from the
blob center, ¢;.
To construct the system matrix, we use the following
problem formulation.

Problem 1. Generation of the A-matrix for blob basis
functions: Let {7 “}L_| denote an ordered set of points along
a proton path in R3. Suppose that this path passes through
an object represented with a set {b;} of blob basis functions.
Using successive points @ * along the path, uniquely estimate
each nonzero blob intersection length of the path to generate
the corresponding system matrix.

A key step in the algorithm presented in [62] is to identify
blobs within a given proximity of a point ¢ ¢ on the path.
This is accomplished by identifying a corresponding point ot
located nearby on the grid of blob centers with grid unit £.
The algorithm identifies each nonzero blob intersection length
by identifying a blob in proximity to @ ¢. Then the algorithm
begins to cycle through nearby blobs within a chosen range
x. Finally, it restricts intersection lengths to being assigned
during the last step the proton takes before passing the blob
center in depth. Further details can be found in [62].

H. Algorithms for IMPT: Dose-volume Constrained Split Fea-
sibility

IMPT is a rapidly developing field wherein active pencil
beam scanning became the norm in proton and ion beam treat-
ment centers. IMPT requires scanning of a particle treatment
field with a grid of pencil beam spots that are rapidly and
often repeatedly “visited” during the treatment to deliver a
spot dose with varying intensity. Such a scan demands fast
IMPT algorithms that solve the inverse problem with multiple
dose constraints within target volumes and organs at risk.
During our research, we tackled the additional complication
that dose constraints are often modified, by the treatment
planner, allowing violation of the constraints by a specific
percentage of the dose for a specific percentage of the volume.
The method we developed to handle this is also useful for x-
ray IMRT, see [64].



The linear feasibility problem (LFP) formulation, which is
a special case of the well-known convex feasibility problem
(CFP), see, e.g., [1], forms a basic model for the inverse prob-
lem in the fully-discretized approach to both IMPT and IMRT
treatment planning. In 2015, we showed that IMPT inverse
planning is possible by using a fully-discretized model and a
feasibility-seeking algorithmic approach [65]. In particular, we
demonstrated on a simple 2D example that solutions meeting
the planning objectives could be found by these feasibility-
seeking iterative projection algorithms.

In the planning of IMPT or IMRT, one uses dose-volume
constraints (DVCs) to evaluate treatment plans. Mathemat-
ically, DVCs are percentage-violation constraints (PVCs).
PVCs single out individual subsets of the existing volume
constraints and allow a specified percentage of dose constraints
to be violated in each subset. Without incorporating the PVCs
into the mathematical inverse planning model and algorithm
themselves, it is not possible to guarantee that an appropriate
solution will be found [64].

A tractable model and an algorithmic approach to solve the
IMPT/IMRT inverse planning problem as a feasibility problem
that includes DVCs has been developed. A rigorously defined
notion of PVCs cause integers to enter the problem, which
makes it difficult to solve. To circumvent this difficulty, we
reformulated the PVC with the aid of a “sparsity-norm” that
counts the number of nonzero entries in a vector. There is
a rich literature on how to handle this norm, called also the
£y-norm, which is still stimulating recent and ongoing related
work. It is not in the scope of this paper to review this field
but see, e.g., [66] and its references, where the problem is
formulated and handled as a full fledged constrained optimiza-
tion problem. Using the £p-norm enables to enforce the DVCs
and leads to redefining the “linear feasibility problem with
PVCs” as another feasibility problem that includes non-convex
constraints for the sparsity-norm.

Problem 2. [64] Linear Interval Feasibility with DVC for
the inverse problem in the fully-discretized approach to
IMRT treatment planning. Find x* € R" for which

0< Az < (1+p)b, (1)
b > Asz > b2, (12)

0 < Asz < b, (13)
x>0, (14)

I(Arz — Y4 |lo < amy, 15)

where Ay € R™", Ay € R"*", A3 € R™™" are given
matrices, b € R, b2,b3 € R™™, b € R are given
vectors, and 3 > 0 and « € [0, 1] are given real numbers.

In this problem, applicable to both IMPT and IMRT, the
sparsity constraint (15) takes place in the space R™!, where
the vectors of doses in the organs at risk reside. Therefore,
we cannot use plain feasibility-seeking methods but need
feasibility-seeking methods for “split feasibility problems.”
Thus, we recognized that Problem 2 is a split feasibility prob-
lem. Split feasibility problems were introduced first in [67]
and further studied in [68], [69] and many other publications.
The reader may consult the brief review of “split problems”

formulations and solution methods in [70] for more details
and references. For the solution of Problem 2, which includes
a non-convex sparsity-norm induced constraint, we developed
a new iterative projection algorithm, which is a combination
of the C'Q-algorithm [71] and the automatic relaxation method
(ARM) [72]. Full details of this approach appear in [64], which
applied it to a single OAR. Following this line of development,
we expanded the model to include DVCs for several OARSs in
a more recent paper [70]. Handling DVCs in radiation therapy
treatment planning is a viable research area and a variety of
techniques have been applied to solve it, see, e.g., [73] and
references therein.

III. DEVELOPMENT OF SOFTWARE TOOLS AND PHANTOMS
TO TEST ADVANCED PCT AND IMPT ALGORITHMS

The demand for high-performance computing capabilities
for pCT image reconstruction and IMPT algorithm develop-
ment, is apparent. In this section, we summarize developments
facilitating fast algorithms for pCT and IMPT.

A. GPGPU Data Fartitioning

An essential aspect of our work as members of the pCT
collaboration has been to provide tools for fast and efficient
image reconstruction using GPGPU computations. The pCT
detector hardware was developed in two phases from a fairly
small and slow detector system in Phase I to a much faster
Phase II system completed in 2015 [74]. As the reconstructed
image gets larger, the number of proton histories that enter
the reconstruction is up to one hundred times the number of
voxels in the image, see [75]. Currently, objects requiring a
six minutes scan time (up to 360 million proton histories) with
the “Phase II proton CT scanner” can be reconstructed on the
order of a few minutes [76]-[78]. As we image larger objects
with protons, not only does the reconstruction time grow
significantly, but, more importantly, the memory requirements
grow too. Therefore, we need to split the data into coherent
data blocks for efficient reconstruction. Since the Phase II pCT
scanner acquires the data during a 360-degree rotation of the
object relative to the pCT scanner with a wobbled or scanned
beam spot [77], [79], we can efficiently split the data into
slices orthogonal to the rotational axis, see [78].

For a nominal proton entrance energy of 200 MeV and a
few tens of MeV exit energy, proton path histories within
three standard deviations of the nominal path in lateral di-
rection do not pass through more than three 1 mm slices.
So, when reconstructing a slice, no more than three slices
above or below the slice need to be available in memory of
a particular GPGPU to reconstruct the image efficiently, see
[80]. When reconstructing slice-by-slice, we can allocate up
to one GPGPU per slice. For proton histories passing through
multiple slices, each GPU associated with a slice holds the
most recent copy of the RSP values of adjacent slices. Updates
from adjacent slices are transferred when the thread calculating
the update finishes an iterative cycle of the algorithm.

The results presented in [78], [80] show that this method
does not cause a significant image quality reduction while



permitting reconstruction of the anthropomorphic head phan-
tom described below in under 10 minutes on NVIDIA P100
GPGPUs. Further speedup to reconstruction in under 1 minutes
is within reach.

B. Monte Carlo Simulation Tools

Monte Carlo (MC) simulations are an essential tool in
the development and testing of algorithms for pCT image
reconstruction and serve as a forward calculation tool for the
radiation dose deposited in object voxels of IMPT plans. While
testing algorithms on real-world experimental data is equally
important, MC-based data are more readily available and
provide a great deal of flexibility when testing and developing
new algorithms or algorithmic variants.

We have made extensive use of the general-purpose MC
simulation tool Geant4 [81] to develop a faithful model of
the Phase II pCT detector system developed by the pCT
collaboration (see Section III-A). For this project, we re-
produced the exact geometry and composition of materials
of the scanner as well as the research proton beamline at
the Loma Linda University Medical Center. Details of the
initial Geant4 platform development and the methods we
used to validate its output, in connection with reconstruction
algorithms that we developed, can be found in Dr. Giacometti’s
thesis publications, see [82]. We then used pCT simulations
produced by that platform in addition to experimental data to
test the performance of the new TVS algorithms described in
Section II-A.

Later, we implemented the Phase II scanner in the TOPAS
(TOol for PArticle Simulation) platform, which is also based
on the Geant4 toolkit but has a more user-friendly interface
[83]. We also tested the Phase II pCT scanner at the North-
western Medicine Chicago Proton Center (NMCPC), where it
is operated on a clinical proton beamline. The TOPAS model
of the NMCPC beamline was validated with beam profile
measurements acquired at NMCPC and by acquiring and sim-
ulating pCT images using a wobbled 200 MeV proton beam.
With the TOPAS tool, we then investigated the sources of
systematic uncertainty introduced during the steps of iterative
RSP reconstruction with the DROP-TVS algorithm [36] for CT
QA phantom modules (Catphan®, The Phantom Laboratory
Incorporated, Salem, NY, USA) and a digital representation
of a pediatric patient with known ground truth RSP values
in the simulation, see [84]. The important point here is that
with Monte Carlo simulations of the pCT system performance,
we can intentionally include or exclude different sources of
random and systematic uncertainties that arise from random
fluctuations in the proton energy loss and scattering, which are
unavoidable, and sources of imperfections in the beam source
or the detector construction. For example, we had to under-
stand the origin of ring artifacts seen in the reconstruction
of homogeneous phantoms. Through systematic Monte Carlo
studies, we learned that these artifacts were related to using
a WEPL calibration phantom with discrete thickness steps. A
simulation of the pCT detector replacing the step phantom with
a wedge phantom demonstrated that the ring artifacts could be
significantly reduced [84].

At the end of 2016, we shipped the Phase II pCT scanner to
the Heidelberg Ion Therapy (HIT) Center in Germany for first
experiments with helium ion imaging. Again, TOPAS was used
to simulate helium CT data for predicting and evaluating the
characteristics of HeCT images reconstructed with the DROP-
TVS algorithm now in comparison with proton CT images,
see [85]. Given the ease and accuracy of results, it is thus a
“natural” choice to use TOPAS for forward dose calculations
when testing new IMPT algorithms.

C. Digital Phantoms

Another critical need is to identify or develop anthropomor-
phic digital phantoms necessary for realistic pCT and IMPT
algorithm testing. The general strategy we have followed for
most of the algorithms we have tested has been to demonstrate
the algorithmic idea with several phantoms ranging from sim-
ple phantoms often in two dimensions to increasingly larger
and more realistic phantoms. We believe that this approach
prevents the “masking” of the principal numerical performance
of new algorithms by difficulties stemming from the com-
plexity of realistic object data, which may require different
adjustments after the performance of the algorithms has been
demonstrated on simpler datasets. In the following paragraph,
we describe the digital head phantom that we specifically
designed to support our pCT algorithmic developments.

Head Phantom: We created the HIGH_RES_HEAD digital
head phantom with very high resolution, [86] for the develop-
ment and evaluation of pCT image reconstruction algorithms
and IMPT algorithms, but it can be used for other medical
physics purposes as well. The phantom is now available as
a computational DICOM head phantom to the Geant4 user
community in the open source Geant4 MC simulation tool
package [87]. The phantom represents a head of a 5-year-
old child. It is a very close approximation of the commercial
head phantom (model HN715, CIRS, Norfolk, VA, USA). The
HIGH_RES_HEAD digital phantom includes most anatomical
details of a human head and is characterized by a high
spatial resolution (0.18 x 0.18 x 1.25 mm? voxel size). We
used it together with the Geant4 simulation platform of the
pCT system to validate its performance by comparing digital
phantom reconstructions with reconstructions from experimen-
tal data [88]. The phantom was also used for testing the
parameter space of a novel superiorization algorithm for pCT
reconstruction [38], described in Subsection II-D above. Figure
III.1 shows a representative proton CT reconstruction from that
work.

IV. THE LOMA LINDA UNIVERSITY ALGORITHM
WORKSHOPS

We have organized, since 2015, five “Loma Linda Uni-
versity (LLU) Workshops on Algorithms and Computational
Techniques in Proton Imaging and Intensity-Modulated Proton
Therapy.” For details about the previous and planned Annual
Loma Linda workshops, see http://ionimaging.org/. The first
three workshops were face-to-face meetings at LLU, Loma
Linda, CA, USA, during the weeks following the annual meet-
ings of the American Association of Physicists in Medicine



Fig. III.1. Representative pCT reconstruction of the slice of the pediatric head
phantom containing regions of interest (left); the regions of interest are filled
in white and labeled by their composition (right). (reproduced from [38]).

(AAPM). Participation was by invitation only, and we wel-
comed applied mathematicians, computer scientists, medical
physicists, radiobiologists, and radiation oncologists. We have
organized the workshops in an informal setting: there were
no workshop fees, no parallel sessions, and no strictly timed
talks. The emphasis was on scientific exchange, learning, and
discussions. In all workshop meetings, the participants learned
from each other, and new research projects and collaborations
have emerged that are still on-going. For the 4th and 5th work-
shops, we also allowed participation by video-conferencing
via Zoom, and the 6th workshop in July 20-22, 2020, was a
Zoom-only workshop due to the COVID-19 pandemic. The
7th workshop was held in August 2-4, 2021 at Loma Linda
via Zoom, see: http://ionimaging.org/llu2021-overview/.

V. DISCUSSION AND CONCLUSION

When it comes to advanced techniques such as pCT and
IMPT, there is a strong need for input from experts in
computer science and mathematics to support the medical
physicist’s insight and understanding. With this in mind, we
collaborate on developing advanced reconstruction algorithms
for pCT imaging based on mathematical expertise in iter-
ative projection methods. With computer science expertise,
we have achieved progress and fast implementation of novel
mathematical algorithms on advanced computing hardware.
There is still much more to accomplish with increasing de-
mands for high-speed and high-performance medical imaging
and verification techniques leading to online-adaptive particle
therapy, the inclusion of biological weighting in treatment
planning optimization or superiorization, and a combination of
different image guidance technologies such as MRI and pCT.
Such interdisciplinary collaboration should stimulate others to
follow a similar path and widen the network of collaborations
in the disciplines of medical physics, mathematical algorithms,
and computer science.
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