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Abstract
We study two projection algorithms for solving the Variational

Inequality Problem (VIP) in Hilbert space. One algorithm is a mod-
i�ed subgradient extragradient method in which an additional pro-
jection onto the intersection of two half-spaces is employed. Another
algorithm is based on the shrinking projection method. We establish
strong convergence theorems for both algorithms.

1 Introduction

We are concerned with the Variational Inequality Problem (VIP) of �nding
a point x� such that

x� 2 C and hf(x�); x� x�i � 0 for all x 2 C; (1.1)
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where H is a real Hilbert space, f : H ! H is a given mapping, C � H is
nonempty, closed and convex and h�; �i denotes the inner product in H. This
problem, denoted by VIP(C; f), is a fundamental problem in Optimization
Theory. Many algorithms for solving the VIP are projection algorithms that
employ projections onto the feasible set C of the VIP, or onto some related
set, in order to iteratively reach a solution. In particular, Korpelevich [19]
proposed an algorithm for solving the VIP in Euclidean space, known as
the Extragradient Method; see also Facchinei and Pang [10, Chapter 12].
In each iteration of her algorithm, in order to get the next iterate xk+1;
two orthogonal projections onto C are calculated, according to the following
iterative step. Given the current iterate xk; calculate

yk = PC(x
k � �f(xk)); (1.2)

xk+1 = PC(x
k � �f(yk)); (1.3)

where � is some positive number and PC denotes the Euclidean least distance
projection onto C. Figure 1 illustrates the iterative step (1.2) and (1.3). The

Figure 1: Korpelevich�s iterative step.

literature on the VIP is vast and Korpelevich�s extragradient method has
received considerable attention by many authors who improved it in various
ways; see, e.g., [16, 17, 23] and references therein, to name but a few.
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Though convergence was proved in [19] under the assumptions of Lipschitz
continuity and pseudo-monotonicity, there is still the need to calculate two
projections onto C. If the set C is simple enough so that projections onto
it can be easily computed, then this method is particularly useful; but if C
is a general closed and convex set, a minimal distance problem has to be
solved twice in order to obtain the next iterate. This might seriously a¤ect
the e¢ ciency of the extragradient method.
As part of our continued e¤orts to circumvent the need to perform these

two projections onto C within the framework of the extragradient method, we
developed in [7] the subgradient extragradient algorithm in Euclidean space,
in which we replace the second projection (1.3) onto C by a speci�c subgra-
dient projection. A weak convergence theorem for this algorithm in Hilbert
space is presented in [8]. The question of also replacing in this algorithm the
�rst projection onto C with a step that will not involve a projection (onto
a nonlinear convex set) and will be easier to compute, remains, to the best
of our knowledge, open to this very day. We believe that our work in the
present paper will lead to further progress in this direction.
In this paper we study two modi�cations of the subgradient extragradi-

ent method for solving the Variational Inequality Problem (VIP) in Hilbert
space. These modi�cations originate in the work of Haugazeau [14], which
was successfully generalized and extended in recent papers by Combettes [9],
Solodov and Svaiter [24], Bauschke and Combettes [2, 3], and by Burachik,
Lopes and Svaiter [5]. In both modi�cations we are again able to replace
one of two projections onto a closed convex set by a speci�c subgradient pro-
jection. While our work is admittedly of a theoretical nature its potential
numerical advantages lie in this fact. Every projection onto a closed convex
set that can be replaced by a step that will not involve a projection (onto a
nonlinear convex set) and will be easier to compute constitutes a practical
saving in the overall algorithmic e¤ort.
Our paper is organized as follows. In Section 3 the �rst modi�ed subgra-

dient extragradient algorithm is presented. It is analyzed in Section 4. In
Section 5 we present another modi�cation of the subgradient extragradient
algorithm and then analyze it in Section 6.
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2 Preliminaries

Let H be a real Hilbert space with inner product h�; �i and the induced norm
k � k, and let D be a nonempty, closed and convex subset of H. We write
xk * x to indicate that the sequence

�
xk
	1
k=0

converges weakly to x and
xk ! x to indicate that the sequence

�
xk
	1
k=0

converges strongly to x: For
each point x 2 H; there exists a unique nearest point in D, denoted by
PD(x). That is,

kx� PD (x)k � kx� yk for all y 2 D: (2.1)

The mapping PD : H ! D is called the metric projection of H onto D. It is
well known that PD is a nonexpansive mapping of H onto D, i.e.,

kPD (x)� PD (y)k � kx� yk for all x; y 2 H: (2.2)

The metric projection PD is characterized [13, Section 3] by the following
two properties:

PD(x) 2 D (2.3)

and
hx� PD (x) ; PD (x)� yi � 0 for all x 2 H; y 2 D; (2.4)

and if D is a hyperplane, then (2.4) becomes an equality. It follows that

kx� yk2 � kx� PD (x)k2 + ky � PD (x)k2 for all x 2 H; y 2 D: (2.5)

We denote by ND (v) the normal cone of D at v 2 D, i.e.,

ND (v) := fd 2 H j hd; y � vi � 0 for all y 2 Dg: (2.6)

We also recall that in a real Hilbert space H;

k�x+ (1� �)yk2 = �kxk2 + (1� �)kyk2 � �(1� �)kx� yk2 (2.7)

for all x; y 2 H and � 2 [0; 1]:

De�nition 2.1 Let B : H� 2H be a point-to-set operator de�ned on a real
Hilbert space H. The operator B is called a maximal monotone operator if
B is monotone, i.e.,

hu� v; x� yi � 0 for all u 2 B(x) and v 2 B(y); (2.8)
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and the graph G(B) of B;

G(B) := f(x; u) 2 H �H j u 2 B(x)g ; (2.9)

is not properly contained in the graph of any other monotone operator.

It is clear ([22, Theorem 3]) that a monotone mapping B is maximal if
and only if, for any (x; u) 2 H�H; if hu� v; x� yi � 0 for all (v; y) 2 G(B),
then it follows that u 2 B(x):
The next property is known as the Opial condition [21]. Every Hilbert

space has this property.

Condition 2.2 (Opial) For any sequence
�
xk
	1
k=0

in H that converges
weakly to x (xk * x),

lim inf
k!1

kxk � xk < lim inf
k!1

kxk � yk for all y 6= x: (2.10)

Any Hilbert space H has the Kadec-Klee property [12], that is, if
�
xk
	1
k=0

is a sequence in H with xk * x and kxkk ! kxk, then kxk � xk ! 0:

De�nition 2.3 A function g : H ! (�1;+1] is called (weak) lower
semi-continuous if

lim inf
n!1

g(xk) � g(x) (2.11)

for all sequences
�
xk
	1
k=0

such that (xk * x) xk ! x.

Notation 2.4 Any closed and convex set D � H can be represented as

D = fx 2 H j c(x) � 0g ; (2.12)

where c : H ! R is an appropriate convex and lower semi-continuous func-
tion. Take, for example, c(x) = dist(x;D); where dist is the distance func-
tion; see, e.g., [15, Chapter B, Subsection 1.3(c)].

We denote the subdi¤erential set of c at a point x by

@c(x) := f� 2 H j c(y) � c(x) + h�; y � xi for all y 2 Hg: (2.13)

For z 2 H; take any � 2 @c(z) and de�ne

T (z) := fw 2 H j c(z) + h�; w � zi � 0g : (2.14)

This is a half-space the bounding hyperplane of which separates the set D
from the point z if � 6= 0; otherwise T (z) = H; see, e.g., [1, Lemma 7.3].

5



3 The �rst modi�cation of the subgradient
extragradient algorithm

We assume the following conditions.

Condition 3.1 The solution set of (1.1), denoted by SOL(C; f); is non-
empty.

Condition 3.2 The mapping f is monotone on C, i.e.,

hf(x)� f(y); x� yi � 0 for all x; y 2 C: (3.1)

Condition 3.3 The mapping f is Lipschitz continuous on H with con-
stant L > 0; that is,

kf(x)� f(y)k � Lkx� yk for all x; y 2 H: (3.2)

Next, we present the subgradient extragradient algorithm [7].

Algorithm 3.4 The subgradient extragradient algorithm
Step 0: Select a starting point x0 2 H and � > 0; and set k = 0.
Step 1: Given the current iterate xk; compute

yk = PC(x
k � �f(xk)); (3.3)

construct the half-space Tk whose bounding hyperplane supports C at yk;

Tk := fw 2 H j

�
xk � �f(xk)

�
� yk; w � yk

�
� 0g (3.4)

and calculate the next iterate

xk+1 = PTk(x
k � �f(yk)): (3.5)

Step 2: If xk = yk; then stop. Otherwise, set k  (k + 1) and return to
Step 1.

Remark 3.5 Observe that if c is lower semi-continuous and Gâteaux di¤er-
entiable at yk; then f

�
xk � �f(xk)

�
� ykg = @c(yk) = frc(yk)g; otherwise�

xk � �f(xk)
�
� yk 2 @c(yk). See [1, Facts 7.2] and [11] for more details.
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Figure 2: xk+1 is a subgradient projection of the point xk � �f(yk) onto the
hyperplane Tk:

Figure 2 illustrates the iterative step of this algorithm.
Inspired by Takahashi and Nadezhkina [20], we now present our �rst

modi�cation of the subgradient extragradient algorithm.

Algorithm 3.6 The �rst modi�cation of the subgradient extragra-
dient algorithm
Step 0: Select an arbitrary starting point x0 2 H and � > 0; and set

k = 0.
Step 1: Given the current iterate xk; compute8>>>>>><>>>>>>:

yk = PC(x
k � �f(xk));

zk = �kx
k + (1� �k)PTk(xk � �f(yk));

Ck =
�
z 2 H j

zk � z � xk � z	 ;
Qk =

�
z 2 H j



xk � z; x0 � xk

�
� 0

	
;

xk+1 = PCk\Qk (x
0) ;

(3.6)

where Tk is as in (3.4) and f�kg1k=0 � [0; �] for some � 2 [0; 1).
Step 2: Set k  (k + 1) and return to Step 1.
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3.1 Connection with Haugazeau�s method

In this subsection we describe the connection between our Algorithm 3.6 and
the work of Haugazeau. Haugazeau presented an algorithm for solving the
Best Approximation Problem (BAP) of �nding the projection of a point onto
the intersection of m closed convex subsets fDigmi=1 � H. De�ning for any
pair x; y 2 H the set

H(x; y) := fu 2 H j hu� y; x� yi � 0g; (3.7)

and denoting by Q(x; y; z) the projection of x onto H(x; y)\H(y; z), namely,
Q(x; y; z) = PH(x;y)\H(y;z)(x); he showed, see [14], that for an arbitrary start-
ing point x0 2 H, any sequence fxkg1k=0 generated by the iterative step

xk+1 = Q(x0; xk; Pk(modm)+1(x
k)) (3.8)

converges strongly to the projection of x0 onto D = \mi=1Di. The operator Q
requires projecting onto the intersection of two constructible half-spaces; this
is not di¢ cult to implement. In [14] Haugazeau introduced the operator Q as
an explicit description of the projector onto the intersection of the two half-
spaces H(x; y) and H(y; z). So, following, e.g., [4, De�nition 3.1], denoting
� = hx� y; y � zi ; � = kx� yk2; � = ky � zk2 and � = �� � �2, we have

Q(x; y; z) =

8>><>>:
z; if � = 0 and � � 0;
x+

�
1 + �

�

�
(z � y); if � > 0 and �� � �;

y + �
�
(�(x� y) + �(z � y)); if � > 0 and �� < �:

(3.9)

In our Algorithm 3.6 we may write

Ck =
�
z 2 H j

zk � z � xk � z	
=
�
z 2 H j



xk � (1=2)(xk + zk); z � (1=2)(xk + zk)

�
� 0

	
= H(xk; (1=2)(xk + zk)) (3.10)

and
Qk =

�
z 2 H j



xk � z; x0 � xk

�
� 0

	
= H(x0; xk): (3.11)

This leads to the following alternative phrasing of the iterative step of Algo-
rithm 3.6: 8><>:

yk = PC(x
k � �f(xk));

zk = �kx
k + (1� �k)PTk(xk � �f(yk));

xk+1 = Q(x0; xk; (1=2)(xk + zk)):

(3.12)
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Observe that using the explicit description (3.9) of the operator Q and the
projector onto Tk; the iterative step (3.6) of Algorithm 3.6 can be rewritten
even more explicitly as follows.8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

yk = PC(x
k � �f(xk));

denote ak := xk � �f(xk)� yk and wk := xk � �f(yk);

PTk(w
k) := tk =

8<: wk �max
�
0;
hak;wk�yki

kakk2

�
ak; if ak 6= 0;

wk; if ak = 0.

zk = �kx
k + (1� �k)tk;

denote �k :=


x0 � xk; (1=2)(xk � zk)

�
; �k := kx0 � xkk2;

�k := k(1=2)(xk � zk)k2 and �k := �k�k � (�k)2:

Then,

xk+1 =

8>>>><>>>>:
(1=2)(xk + zk); if �k = 0 and �k � 0;

x0 +
�
1 + �k

�k

�
(1=2)(zk � xk); if �k > 0 and �k�k � �k;

yk + �k
�k
(�k

�
x0 � xk

�
+ �k

2
(zk � xk)); if �k > 0 and �k�k < �k:

(3.13)

4 Convergence of the �rst modi�cation of the
subgradient extragradient algorithm

In this section we establish a strong convergence theorem for Algorithm 3.6.
The outline of its proof is similar to that of [20, Theorem 3.1].

Theorem 4.1 Assume that Conditions 3.1�3.3 hold and � 2 (0; 1=L): Then
any sequences

�
xk
	1
k=0

and
�
yk
	1
k=0

generated by Algorithm 3.6 strongly con-
verge to the same point u� 2 SOL(C; f) and furthermore,

u� = PSOL(C;f)(x
0): (4.1)
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Proof. First observe that for all k � 0; Qk is closed and convex. The set
Ck is also closed and convex because

Ck =
n
z 2 H :

zk � z2 � xk � z2o
=
n
z 2 H :

zk � xk2 + 2 
zk � xk; xk � z� � 0o : (4.2)

By the de�nition of Qk and (2.4), we have

xk = PQk(x
0): (4.3)

Denote tk := PTk(x
k � �f(yk)) for all k � 0: Let u 2 SOL(C; f). Applying

(2.5) with D = Tk, x = xk � �f(yk) and y = u, we obtaintk � u2 � xk � �f(yk)� u2 � xk � �f(yk)� tk2
= kxk � uk2 � kxk � tkk2 + 2�



f(yk); u� tk

�
= kxk � uk2 � kxk � tkk2

+ 2�
�

f(yk)� f(u); u� yk

�
+


f(u); u� yk

�
+


f(yk); yk � tk

��
:

(4.4)

By Condition 3.2, 

f(yk)� f(u); u� yk

�
� 0; (4.5)

and since u 2 SOL(C; f); 

f(u); u� yk

�
� 0: (4.6)

So, tk � u2 � kxk � uk2 � kxk � tkk2 + 2� 
f(yk); yk � tk�
= kxk � uk2 � kxk � ykk2 � 2



xk � yk; yk � tk

�
� kyk � tkk2 + 2�



f(yk); yk � tk

�
= kxk � uk2 � kxk � ykk2 � kyk � tkk2

+ 2


xk � �f(yk)� yk; tk � yk

�
: (4.7)

By the de�nition of Tk;
�
xk � �f(xk)

�
� yk; tk � yk

�
� 0; (4.8)
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so 

xk � �f(yk)� yk; tk � yk

�
=


xk � �f(xk)� yk; tk � yk

�
+


�f(xk)� �f(yk); tk � yk

�
�


�f(xk)� �f(yk); tk � yk

�
� �kf(xk)� f(yk)kktk � ykk

� �Lkxk � ykkktk � ykk; (4.9)

where the last two inequalities follow from the Cauchy�Schwarz inequality
and Condition 3.3. Thereforetk � u2 � kxk�uk2�kxk�ykk2�kyk�tkk2+2�Lkxk�ykkktk�ykk: (4.10)
Observe that

0 �
�
ktk � ykk � �Lkxk � ykk

�2
= ktk � ykk2 � 2�Lkxk � ykkktk � ykk+ � 2L2kxk � ykk2; (4.11)

so,
2�Lkxk � ykkktk � ykk � ktk � ykk2 + � 2L2kxk � ykk2: (4.12)

Thus tk � u2 � kxk � uk2 � kxk � ykk2 � kyk � tkk2
+ ktk � ykk2 + � 2L2kxk � ykk2

= kxk � uk2 � kxk � ykk2 + � 2L2kxk � ykk2

= kxk � uk2 + (� 2L2 � 1)kxk � ykk2

� kxk � uk2; (4.13)

where the last inequality follows from the fact that � 2 (0; 1=L). Now by the
de�nition of zk and (2.7), we get

kzk � uk2 = k�kxk + (1� �k)tk � uk2

= k�k
�
xk � u

�
+ (1� �k)

�
tk � u

�
k2

= �kkxk � uk2 + (1� �k)ktk � uk2

� �k(1� �k)k
�
xk � u

�
�
�
tk � u

�
k2

� �kkxk � uk2 + (1� �k)ktk � uk2

� �kkxk � uk2 + (1� �k)
�
kxk � uk2 + (� 2L2 � 1)kxk � ykk2

�
= kxk � uk2 + (1� �k)(� 2L2 � 1)kxk � ykk2

� kxk � uk2; (4.14)
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so u 2 Ck and therefore SOL(C; f) � Ck for all k � 0: Now we show,
by induction, that the sequence

�
xk
	1
k=0

is well-de�ned and SOL(C; f) �
Ck \ Qk for all k � 0. For k = 0 we have Q0 = H; so it follows that
SOL(C; f) � C0 \ Q0 and therefore x1 = PC0\Q0(x

0) is well-de�ned. Now
suppose that xk is given and SOL(C; f) � Ck \Qk for some k. By Condition
3.1, Ck\Qk is nonempty, closed and convex, and therefore xk+1 = PCk\Qk(x0)
is well-de�ned. By (2.4), we have


z � xk+1; x0 � xk+1
�
� 0 for all z 2 Ck \Qk: (4.15)

Since SOL(C; f) � Ck \Qk;

u� xk+1; x0 � xk+1

�
� 0 for all u 2 SOL(C; f); (4.16)

which implies that u 2 Qk+1. Thus SOL(C; f) � Ck+1 \ Qk+1; as re-
quired. Denote u� = PSOL(C;f)(x

0). It is clear that u� 2 SOL(C; f). Since
SOL(C; f) � Ck \Qk, u� 2 SOL(C; f) and xk+1 = PCk\Qk (x0) ; we have

kxk+1 � x0k � ku� � x0k for all k � 0: (4.17)

This implies, in particular, that
�
xk
	1
k=0

is bounded, and it follows from
(4.13) and (4.14) that so are

�
tk
	1
k=0

and
�
zk
	1
k=0
. By the de�nition of xk+1;

we have xk+1 2 Qk and by the de�nition of Qk; xk = PQk(x0), so

kxk � x0k � kxk+1 � x0k for all k � 0: (4.18)

Hence there exists
lim
k!1
kxk � x0k: (4.19)

Applying (2.5) with D = Qk, x = x0 and y = xk+1, we obtain

kxk+1 � xkk2 � kxk+1 � x0k2 � kxk � x0k2 for all k � 0 (4.20)

and so,
lim
k!1
kxk+1 � xkk = 0: (4.21)

Since xk+1 2 Ck, kzk � xk+1k � kxk � xk+1k; and therefore by the triangle
inequality,

kxk � zkk � kxk � xk+1k+ kxk+1 � zkk � 2kxk � xk+1k; (4.22)
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and so,
lim
k!1
kxk � zkk = 0: (4.23)

By (4.14),

kzk � uk2 � kxk � uk2 + (1� �k)(� 2L2 � 1)kxk � ykk2; (4.24)

or

kxk � ykk2 � kx
k � uk2 � kzk � uk2
(1� �k)(1� � 2L2)

=
1

(1� �k)(1� � 2L2)
�
kxk � uk � kzk � uk

� �
kxk � uk+ kzk � uk

�
� 1

(1� �k)(1� � 2L2)
�
kxk � uk+ kzk � uk

�
kxk � zkk: (4.25)

By (4.23) and the boundedness of
�
xk
	1
k=0

and
�
zk
	1
k=0

; we obtain

lim
k!1
kxk � ykk = 0: (4.26)

By Condition 3.3,
lim
k!1
kf(xk)� f(yk)k = 0: (4.27)

Using a similar argument to the one following (4.10),tk � u2 � kxk � uk2 � kxk � ykk2 � kyk � tkk2 + 2�Lkxk � ykkktk � ykk
� kxk � uk2 � kxk � ykk2 � kyk � tkk2 + kxk � ykk2 + � 2L2kyk � tkk2

� kxk � uk2 + (� 2L2 � 1)kyk � tkk2: (4.28)

Now by (4.14),

kzk � uk2 � �kkxk � uk2 + (1� �k)ktk � uk2; (4.29)

and by the last inequalities,

kzk � uk2 � �kkxk � uk2 + (1� �k)
�
kxk � uk2 + (� 2L2 � 1)kyk � tkk2

�
= kxk � uk2 + (1� �k)(� 2L2 � 1)kyk � tkk2 � kxk � uk2: (4.30)
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Thus

kyk � tkk2 � kx
k � uk2 � kzk � uk2
(1� �k)(1� � 2L2)

=
1

(1� �k)(1� � 2L2)
�
kxk � uk � kzk � uk

� �
kxk � uk+ kzk � uk

�
� 1

(1� �k)(1� � 2L2)
�
kxk � uk+ kzk � uk

�
kxk � zkk: (4.31)

By (4.23) and the boundedness of
�
xk
	1
k=0

and
�
zk
	1
k=0

; we obtain

lim
k!1
kyk � tkk = 0: (4.32)

By the triangle inequality, we also have

kxk � tkk � kxk � ykk+ kyk � tkk; (4.33)

and therefore
lim
k!1
kxk � tkk = 0: (4.34)

Since
�
xk
	1
k=0

is bounded, there exists a subsequence
�
xkj
	1
j=0

of
�
xk
	1
k=0

which converges weakly to some x 2 H: We claim that x 2 SOL(C; f):
Indeed, let

A(v) =

�
f(v) +NC (v) ; v 2 C;

;; v =2 C, (4.35)

whereNC (v) is the normal cone of C at v 2 C (2.6). It is known [22, Theorem
3] that A is a maximal monotone operator and A�1 (0) = SOL(f; C). If
(v; w) 2 G(A), then w 2 A(v) = f(v)+NC (v), or w� f(v) 2 NC (v). Hence

hw � f(v); v � yi � 0 for all y 2 C: (4.36)

On the other hand, by the de�nition of yk and (2.4),

xk � �f(xk)� yk; yk � v

�
� 0; (4.37)

or ��
yk � xk
�

�
+ f(xk); v � yk

�
� 0 (4.38)

14



for all k � 0: Applying (4.36) with
�
ykj
	1
j=0
; we get


w � f(v); v � ykj
�
� 0: (4.39)

Hence,

w; v � ykj

�
�


f(v); v � ykj

�
�


f(v); v � ykj

�
�
��

ykj � xkj
�

�
+ f(xkj); v � ykj

�
=


f(v)� f(ykj); v � ykj

�
+


f(ykj)� f(xkj); v � ykj

�
�
��

ykj � xkj
�

�
; v � ykj

�
�


f(ykj)� f(xkj); v � ykj

�
�
��

ykj � xkj
�

�
; v � ykj

�
(4.40)

and

w; v � ykj

�
�


f(ykj)� f(xkj); v � ykj

�
�
��

ykj � xkj
�

�
; v � ykj

�
:

(4.41)
Since ykj * x by (4.26), taking the limit as j ! 1 and using (4.26), we
obtain

hw; v � �xi � 0; (4.42)

and since A is a maximal monotone operator, it follows that �x 2 A�1 (0) =
SOL(f; C) ; as claimed. From u� = PSOL(C;f)(x0), �x 2 SOL(f; C), (4.17) and
the weak lower semi-continuity of the norm it follows that

ku� � x0k � k�x� x0k � lim inf
j!1

kxkj � x0k

� lim sup
j!1

kxkj � x0k � ku� � x0k; (4.43)

so
lim
j!1
kxkj � x0k = k�x� x0k: (4.44)

Hence we have xkj � x0 * �x� x0 and kxkj � x0k ! k�x� x0k, and so by the
Kadec-Klee property of H we obtain kxkj � �xk ! 0: Since xkj = PQkj (x

0)
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and u� 2 Qkj ; we see that

�ku� � xkjk2 =


u� � xkj ; xkj � x0

�
+


u� � xkj ; x0 � u�

�
�


u� � xkj ; x0 � u�

�
: (4.45)

Taking the limit as j !1, we obtain

�ku� � �xk2 �


u� � �x; x0 � u�

�
� 0; (4.46)

and therefore
lim
k!1

xkj = �x = u�: (4.47)

Since
�
xkj
	1
j=0

is an arbitrary weakly convergent subsequence of
�
xk
	1
k=0
,

we conclude that
�
xk
	1
k=0

converges strongly to u�, i.e., limk!1 x
k = u� =

PSOL(C;f)(x
0); as asserted.

5 The second modi�cation of the subgradient
extragradient algorithm

Takahashi, Takeuchi and Kubota [26] presented an algorithm for �nding a
�xed point of a nonexpansive mapping S in Hilbert space. Let C � H be
a closed and convex subset, and S be a nonexpansive mapping of C into
itself such that Fix(S) 6= ;. Their iterative method, known as the shrinking
projection method, is presented next.

Algorithm 5.1
Step 0: Select an arbitrary starting point x0 2 H; C1 = C, x1 = PC1(x0);

and set k = 1.
Step 1: Given the current iterate xk; compute8><>:

yk = �kx
k + (1� �k)S(xk);

Ck+1 =
�
z 2 Ck j

yk � z � xk � z	 ;
xk+1 = PCk+1 (x

0) ;

(5.1)

where f�kg1k=1 � [0; �] for some � 2 [0; 1).
Step 2: Set k  (k + 1) and return to Step 1.
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They proved that any sequence
�
xk
	1
k=0

generated by Algorithm 5.1 con-
verges strongly to

u� = PFix(S)(x
0): (5.2)

A comment on implementability is in order here. Observe that in the
Takahashi-Takeuchi-Kubota algorithm, the sets Ck+1 become increasingly
complicated because at every iteration another half-space is used to cut
the set. This may render the algorithm unimplementable, unless one uses
an inner-loop for calculating an approximation of the projection xk+1 =
PCk+1 (x

0) at each iterative step. Such an inner-loop can indeed be con-
structed from an iterative projection method that solves the Best Approxi-
mation Problem (BAP); see, e.g., [6] and the many references therein. These
considerations also apply to our next algorithm.
Inspired by Algorithm 5.1 and a recent development of Sudsukh [25], we

now present the following algorithm for solving variational inequalities.

Algorithm 5.2 The second modi�cation of the subgradient extra-
gradient algorithm
Step 0: Select an arbitrary starting point x0 2 H; a constant � > 0,

C1 = C, x1 = PC1(x
0); and set k = 1.

Step 1: Given the current iterate xk; compute8>>><>>>:
yk = PC(x

k � �f(xk));
zk = �kx

k + (1� �k)PTk(xk � �f(yk));
Ck+1 =

�
z 2 Ck j

zk � z � xk � z	 ;
xk+1 = PCk+1 (x

0) ;

(5.3)

where f�kg1k=1 � [0; �] for some � 2 (0; 1) and Tk is as in (3.4).
Step 2: Set k  (k + 1) and return to Step 1.

We now prove a convergence theorem for this algorithm by using argu-
ments which are quite similar to those we employed in the proof of Theorem
4.1.

6 Convergence of the second modi�cation of
the subgradient extragradient algorithm

Theorem 6.1 Assume that Conditions 3.1�3.3 hold and � 2 (0; 1=L): Then
any sequences

�
xk
	1
k=0

and
�
yk
	1
k=0

generated by Algorithm 5.2 strongly con-
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verge to the same point u� 2 SOL(C; f) and furthermore,

u� = PSOL(C;f)(x
0): (6.1)

Proof. First we show that Ck is closed and convex for all k � 1. C1 = C
is clearly closed and convex by assumption. Now assume that Ck is closed
and convex. Then Ck+1 is closed and convex as an intersection of Ck and a
half-space. Now we prove, using induction, that the sequence

�
xk
	1
k=0

is well-
de�ned, by showing that SOL(C; f) � Ck for all k � 1: For C1 = C this is
clear. Now assume that SOL(C; f) � Ck. Denote tk := PTk(xk � �f(yk)) for
all k � 0: Let u 2 SOL(C; f). Applying (2.5) with D = Tk, x = xk � �f(yk)
and y = u, we obtaintk � u2 � xk � �f(yk)� u2 � xk � �f(yk)� tk2

= kxk � uk2 � kxk � tkk2 + 2�


f(yk); u� tk

�
= kxk � uk2 � kxk � tkk2

+ 2�
�

f(yk)� f(u); u� yk

�
+


f(u); u� yk

�
+


f(yk); yk � tk

��
:

(6.2)

By Condition 3.2, 

f(yk)� f(u); u� yk

�
� 0; (6.3)

and since u 2 SOL(C; f); 

f(u); u� yk

�
� 0: (6.4)

So, tk � u2 � kxk � uk2 � kxk � tkk2 + 2� 
f(yk); yk � tk�
= kxk � uk2 � kxk � ykk2 � 2



xk � yk; yk � tk

�
� kyk � tkk2 + 2�



f(yk); yk � tk

�
= kxk � uk2 � kxk � ykk2 � kyk � tkk2

+ 2


xk � �f(yk)� yk; tk � yk

�
: (6.5)

By the de�nition of Tk;
�
xk � �f(xk)

�
� yk; tk � yk

�
� 0; (6.6)
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so 

xk � �f(yk)� yk; tk � yk

�
=


xk � �f(xk)� yk; tk � yk

�
+


�f(xk)� �f(yk); tk � yk

�
�


�f(xk)� �f(yk); tk � yk

�
� �kf(xk)� f(yk)kktk � ykk

� �Lkxk � ykkktk � ykk; (6.7)

where the last two inequalities follow from the Cauchy�Schwarz inequality
and Condition 3.3. Thereforetk � u2 � kxk�uk2�kxk�ykk2�kyk�tkk2+2�Lkxk�ykkktk�ykk: (6.8)
Observe that

0 �
�
ktk � ykk � �Lkxk � ykk

�2
= ktk � ykk2 � 2�Lkxk � ykkktk � ykk+ � 2L2kxk � ykk2; (6.9)

so,
2�Lkxk � ykkktk � ykk � ktk � ykk2 + � 2L2kxk � ykk2: (6.10)

Thus tk � u2 � kxk � uk2 � kxk � ykk2 � kyk � tkk2
+ ktk � ykk2 + � 2L2kxk � ykk2

= kxk � uk2 � kxk � ykk2 + � 2L2kxk � ykk2

= kxk � uk2 + (� 2L2 � 1)kxk � ykk2

� kxk � uk2; (6.11)

where the last inequality follows from the fact that � 2 (0; 1=L). Now by the
de�nition of zk and (2.7), we get

kzk � uk2 = k�kxk + (1� �k)tk � uk2

= k�k
�
xk � u

�
+ (1� �k)

�
tk � u

�
k2

= �kkxk � uk2 + (1� �k)ktk � uk2

� �k(1� �k)k
�
xk � u

�
�
�
tk � u

�
k2

� �kkxk � uk2 + (1� �k)ktk � uk2

� �kkxk � uk2 + (1� �k)
�
kxk � uk2 + (� 2L2 � 1)kxk � ykk2

�
= kxk � uk2 + (1� �k)(� 2L2 � 1)kxk � ykk2

� kxk � uk2; (6.12)
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so u 2 Ck+1 and therefore SOL(C; f) � Ck+1: Denote u� = PSOL(C;f)(x0). It
is clear that u� 2 SOL(C; f). Since SOL(C; f) � Ck+1, u� 2 SOL(C; f) and
xk+1 = PCk+1 (x

0) ; we have

kxk+1 � x0k � ku� � x0k for all k � 0: (6.13)

This implies, in particular, that
�
xk
	1
k=0

is bounded, and it follows from
(6.11) and (6.12) that so are

�
tk
	1
k=0

and
�
zk
	1
k=0
. By the de�nition of the

iterative step, xk = PCk(x
0); so by (2.4) we have


xk � x0; z � xk
�
� 0 for all z 2 Ck: (6.14)

Since SOL(C; f) � Ck; we have

xk � x0; u� xk

�
� 0 for all u 2 SOL(C; f): (6.15)

So by the Cauchy�Schwarz inequality,

0 �


xk � x0; u� xk

�
=


xk � x0; u� x0 + x0 � xk

�
= �kxk � x0k2 +



xk � x0; u� x0

�
� �kxk � x0k2 + kxk � x0kku� x0k (6.16)

and therefore

kxk � x0k � ku� x0k for all u 2 SOL(C; f): (6.17)

Now by the de�nition of our algorithm, xk = PCk(x
0), xk+1 = PCk+1(x

0) 2
Ck+1 � Ck and (2.4), we have


x0 � xk; xk � xk+1
�
� 0 for all k � 0: (6.18)

Now by (6.18),xk � xk+12 = xk � x0 + x0 � xk+12
=
xk � x02 + 2 
xk � x0; x0 � xk+1�+ x0 � xk+12

=
xk � x02 + 2 
xk � x0; x0 � xk + xk � xk+1�+ x0 � xk+12

=
xk � x02 � 2xk � x02 + 2 
xk � x0; xk � xk+1�+ x0 � xk+12

� �
xk � x02 + x0 � xk+12 : (6.19)
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Thus,
kxk � x0k � kx0 � xk+1k for all k � 0; (6.20)

and therefore the sequence
�
kxk � x0k

	1
k=0

is increasing and since it is also
bounded, it converges to some l 2 R, i.e.,

lim
k!1
kxk � x0k = l: (6.21)

Apply (6.21) to (6.19), to obtain

lim
k!1
kxk+1 � xkk = 0: (6.22)

In addition, since xk+1 2 Ck+1 � Ck;

kzk � xk+1k2 � kxk � xk+1k2; (6.23)

and by the triangle inequality,

kxk � zkk � kxk � xk+1k+ kxk+1 � zkk � 2kxk � xk+1k; (6.24)

so
lim
k!1
kxk � zkk = 0: (6.25)

By (6.12),

kzk � uk2 � kxk � uk2 + (1� �k)(� 2L2 � 1)kxk � ykk2; (6.26)

or

kxk � ykk2 � kx
k � uk2 � kzk � uk2
(1� �k)(1� � 2L2)

=
1

(1� �k)(1� � 2L2)
�
kxk � uk � kzk � uk

� �
kxk � uk+ kzk � uk

�
� 1

(1� �k)(1� � 2L2)
�
kxk � uk+ kzk � uk

�
kxk � zkk: (6.27)

By (6.25) and the boundedness of
�
xk
	1
k=0

and
�
zk
	1
k=0

; we get

lim
k!1
kxk � ykk = 0: (6.28)
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By Condition 3.3,
lim
k!1
kf(xk)� f(yk)k = 0: (6.29)

Since
�
xk
	1
k=0

is bounded, there exists a subsequence
�
xkj
	1
j=0

of
�
xk
	1
k=0

which converges weakly to some x 2 H: We claim that x 2 SOL(C; f):
Indeed, let

A(v) =

�
f(v) +NC (v) ; v 2 C;

;; v =2 C, (6.30)

whereNC (v) is the normal cone of C at v 2 C (2.6). It is known [22, Theorem
3] that A is a maximal monotone operator and A�1 (0) = SOL(f; C). If
(v; w) 2 G(A), then w 2 A(v) = f(v)+NC (v), or w� f(v) 2 NC (v). Hence

hw � f(v); v � yi � 0 for all y 2 C: (6.31)

On the other hand, by the de�nition of yk and (2.4),

xk � �f(xk)� yk; yk � v

�
� 0; (6.32)

or ��
yk � xk
�

�
+ f(xk); v � yk

�
� 0 (6.33)

for all k � 0: Applying (6.31) with
�
ykj
	1
j=0
; we get


w � f(v); v � ykj
�
� 0: (6.34)

Hence,

w; v � ykj

�
�


f(v); v � ykj

�
�


f(v); v � ykj

�
�
��

ykj � xkj
�

�
+ f(xkj); v � ykj

�
=


f(v)� f(ykj); v � ykj

�
+


f(ykj)� f(xkj); v � ykj

�
�
��

ykj � xkj
�

�
; v � ykj

�
�


f(ykj)� f(xkj); v � ykj

�
�
��

ykj � xkj
�

�
; v � ykj

�
(6.35)
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and

w; v � ykj

�
�


f(ykj)� f(xkj); v � ykj

�
�
��

ykj � xkj
�

�
; v � ykj

�
:

(6.36)
Since ykj * x by (6.28), taking the limit as j ! 1 and using (6.28), we
obtain

hw; v � �xi � 0; (6.37)

and since A is a maximal monotone operator, it follows that �x 2 A�1 (0) =
SOL(f; C) ; as claimed. From u� = PSOL(C;f)(x0), �x 2 SOL(f; C), (6.13) and
the weak lower semi-continuity of the norm, it follows that

ku� � x0k � k�x� x0k � lim inf
j!1

kxkj � x0k

� lim sup
j!1

kxkj � x0k � ku� � x0k; (6.38)

so
lim
j!1
kxkj � x0k = k�x� x0k: (6.39)

Hence we have xkj � x0 * �x� x0 and kxkj � x0k ! k�x� x0k, and so by the
Kadec-Klee property of H we obtain kxkj � �xk ! 0: Since xkj = PCkj+1 (x

0)

and u� 2 Ckj+1; we see that

�ku� � xkjk2 =


u� � xkj ; xkj � x0

�
+


u� � xkj ; x0 � u�

�
�


u� � xkj ; x0 � u�

�
: (6.40)

Taking the limit as j !1, we obtain

�ku� � �xk2 �


u� � �x; x0 � u�

�
� 0; (6.41)

and therefore
lim
k!1

xkj = �x = u�: (6.42)

Since
�
xkj
	1
j=0

is an arbitrary weakly convergent subsequence of
�
xk
	1
k=0
,

we conclude that
�
xk
	1
k=0

converges strongly to u�, i.e., limk!1 x
k = u� =

PSOL(C;f)(x
0); as asserted.

Remark 6.2 In Theorems 4.1 and 6.1 we assume that f is Lipschitz con-
tinuous on H with constant L > 0 (Condition 3.3). If we assume that f is
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Lipschitz continuous only on C with constant L > 0; we can use a Lipschitz
extension of f to H in order to evaluate the function at xk. Such an ex-
tension exists by Kirszbraun�s theorem [18], which states that there exists a
Lipschitz continuous function ~f : H ! H that extends f and has the same
Lipschitz constant L as f . Alternatively, we can take ~f = fPC : In any case,
the extension is not necessarily monotone on H but preserves monotonicity
on C; which is all that we need in the proofs.

Remark 6.3 Note that in the proofs of Theorems 4.1 and 6.1, once the fact
that the weak cluster points are solutions is established, it is possible to refer
to [9, Proposition 3.1(vi)] or to [2, Theorem 3.5 (iv)] and deduce the strong
convergence to the projection onto the solution set of the initial point.
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