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1 Introduction

A new problem, called the Common Solutions to Variational Inequalities
Problem (CSVIP) has recently been introduced in [8, Subsection 7.2] and
further studied in [9]. In [8] it was considered as a special case of the Split
Variational Inequality Problem (SVIP) introduced therein. The CSVIP con-
sists of finding common solutions to unrelated variational inequalities. In the
present paper we propose a new algorithm for solving the two-set CSVIP,
which stems from the classical von Neumann alternating projections algo-
rithm [22]. We also extend this algorithm to two methods for solving the
general CSVIP, which concerns any finite number of sets.

We first recall the general form of the CSVIP (for single-valued operators).

Problem 1.1 Let H be a real Hilbert space. Let there be given, for each
i = 1, 2, . . . , N , an operator Ai : H → H and a nonempty, closed and convex
subset Ki ⊂ H, with

⋂N
i=1Ki 6= ∅. The CSVIP (for single-valued operators)

is to find a point x∗ ∈
⋂N
i=1Ki such that, for each i = 1, 2, . . . , N,

〈Ai(x∗), x− x∗〉 ≥ 0 for all x ∈ Ki, i = 1, 2, . . . , N. (1.1)

For simplicity, in this paper we mainly confine our attention to the case
where i = 2. Denoting A1 = f , A2 = g and the nonempty, closed and convex
subsets K1 and K2 by C and Q, respectively, we get the following two-set
CSVIP.

Problem 1.2 LetH be a real Hilbert space, and let C and Q be two nonempty
closed and convex subsets of H with C ∩Q 6= ∅. Given two operators f and
g from H into itself, the two-set CSVIP is to find a point x∗ ∈ C ∩ Q such
that

〈f(x∗), x− x∗〉 ≥ 0 for all x ∈ C (1.2)

and

〈g(x∗), y − x∗〉 ≥ 0 for all y ∈ Q. (1.3)

If we denote by SOL(C, f) and SOL(Q, g) the solution sets of (1.2) and
(1.3), respectively, then Problem 1.2 is to find a point x∗ ∈ SOL(C, f) ∩
SOL(Q, g).

Looking at (1.2) separately, we get the well-known Variational Inequal-
ity Problem (VIP), first introduced by Hartman and Stampacchia in 1966
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(see [15]). The importance of VIPs in Nonlinear Analysis and Optimiza-
tion Theory stems from the fact that several fundamental problems can be
formulated as VIPs, e.g., constrained and unconstrained minimization, find-
ing solutions to systems of equations, and saddle-point problems. See the
book by Kinderlehrer and Stampacchia [17] for a wide range of other appli-
cations of VIPs. For an excellent treatise on variational inequality problems
in finite-dimensional spaces, see the two-volume book by Facchinei and Pang
[12]. The books by Konnov [18] and Patriksson [24] contain extensive studies
of VIPs including applications, algorithms and numerical results.

Another motivation for defining and studying the CSVIP in [8, 9] origi-
nates in the simple observation that if we choose all Ai = 0, then the problem
reduces to that of finding a point x∗ ∈

⋂N
i=1Ki in the nonempty intersec-

tion of a finite family of closed and convex sets, which is the well-known
Convex Feasibility Problem (CFP). If the sets Ki are the fixed point sets
of a family of operators Ti : H → H, then the CFP is the Common Fixed
Point Problem (CFPP). These problems have been intensively studied over
the past decades both theoretically (existence, uniqueness, and properties of
solutions) and algorithmically (devising iterative procedures which generate
sequences that converge, finitely or asymptotically, to a solution).

Our alternating method for solving the two-set CSVIP is inspired by
von Neumann’s original alternating projections method. Von Neumann [22]
presented a method for calculating the orthogonal projection onto the inter-
section of two closed subspaces in Hilbert space. Let H be a real Hilbert
space, and let A and B be closed subspaces. Choose x ∈ H and construct
the sequences

{
ak
}∞
k=0

and
{
bk
}∞
k=0

by{
b0 = x,
ak = PA(bk−1) and bk = PB(ak), k = 1, 2, . . . ,

(1.4)

where PA and PB denote the orthogonal projection operators of H onto
A and B, respectively. Von Neumann showed [22, Lemma 22, page 475]
that both sequences

{
ak
}∞
k=0

and
{
bk
}∞
k=0

converge strongly to PA∩B(x).
This algorithm is known as von Neumann’s alternating projections method.
Observe that not only the sequences converge strongly, but also that their
common limit is the nearest point to x in A ∩ B. For recent elementary
geometric proofs of von Neumann’s result, see [19, 20]. In 1965 Bregman [5]
established the weak convergence of the sequence of alternating nearest point
mappings between two closed and convex intersecting subsets of a Hilbert
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space. See also [1, 6]. In 2005 Bauschke, Combettes and Reich [2] studied
the alternating resolvents method for finding a common zero of two maximal
monotone mappings (see also the recent paper of Boikanyo and Moroşanu [4]).
We propose an alternating method which employs two averaged operators in
the sense of [1]. In this connection, we note that not all averaged operators
are resolvents (of monotone mappings).

Our paper is organized as follows. Section 2 contains some preliminaries.
In Section 3 we present our alternating method for solving the two-set CSVIP
and establish its convergence. In Section 4 we extend our algorithm to two
methods for solving the general CSVIP.

2 Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖·‖,
and let D be a nonempty, closed and convex subset of H. We write xk ⇀ x
to indicate that the sequence

{
xk
}∞
k=0

converges weakly to x, and xk → x to

indicate that the sequence
{
xk
}∞
k=0

converges strongly to x.
We now recall some definitions and properties of several classes of oper-

ators.

Definition 2.1 Let h : H → H be an operator and let D ⊂ H.
(i) The operator h is called Lipschitz continuous on D ⊂ H with

constant L > 0 if

‖h(x)− h(y)‖ ≤ L‖x− y‖ for all x, y ∈ D. (2.1)

(ii) The operator h is called nonexpansive on D if it is 1-Lipschitz con-
tinuous.

(iii) The operator h is called inverse strongly monotone with constant
β > 0 (β-ism) on D if

〈h(x)− h(y), x− y〉 ≥ β‖h(x)− h(y)‖2 for all x, y ∈ D. (2.2)

(iv) The operator h is called firmly nonexpansive [14] on D if

〈h(x)− h(y), x− y〉 ≥ ‖h(x)− h(y)‖2 for all x, y ∈ D,

in other words, h is 1-ism.
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(v) The operator h is called averaged [1] if there exists a nonexpansive
operator N : H → H and a number c ∈ (0, 1) such that

h = (1− c)I + cN. (2.3)

In this case, we say that h is c-av [7].
(vi) We say that a nonexpansive operator h satisfies Condition (W)

[11] if whenever {xk−yk}∞k=1 is bounded and ‖xk−yk‖−‖h(xk)−h(yk)‖ → 0,
it follows that (xk − yk)− (h(xk)− h(yk)) ⇀ 0.

(vii) The operator h is called strongly nonexpansive [6] if it is non-
expansive and whenever {xk − yk}∞k=1 is bounded and ‖xk − yk‖ − ‖h(xk) −
h(yk)‖ → 0, it follows that (xk − yk)− (h(xk)− h(yk))→ 0.

Definition 2.2 Let N be the set of natural numbers, {h1, h2, . . .} be a se-
quence of operators, and r : N→ N. An unrestricted (or random) product of
these operators is the sequence {Sn}n∈N defined by Sn = hr(n)hr(n−1) · · ·hr(1).

Note that inverse strong monotonicity is also known as the Dunn property

[10, 27]. It is easy to see that a β-ism operator is Lipschitz continuous with
constant 1/β. Some of the relations between these classes of operators are
given below. For more details, see Bruck and Reich [6], Baillon et al. [1],
Goebel and Reich [14], and Byrne [7].

Remark 2.3 (i) An operator h is averaged if and only if its complement
G := I − h is ν-ism for some ν > 1/2.

(ii) The operator h is firmly nonexpansive if and only if its complement
I − h is firmly nonexpansive.

(iii) The operator h is firmly nonexpansive if and only if it is 1/2-averaged.
(iv) If h1 and h2 are c1-av and c2-av, respectively, then their composition

S = h1h2 is (c1 + c2 − c1c2)-av.
(v) Every averaged operator is strongly nonexpansive and therefore satis-

fies condition (W).

Let D be a closed and convex subset of H. For every point x ∈ H, there
exists a unique nearest point in D, denoted by PD(x). This point satisfies

‖x− PD (x)‖ ≤ ‖x− y‖ for all y ∈ D. (2.4)
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The operator PD is called the metric projection or the nearest point mapping
of H onto D. The metric projection PD is characterized by the fact that
PD (x) ∈ D and

〈y − PD (x) , x− PD (x)〉 ≤ 0 for all x ∈ H, y ∈ D. (2.5)

It is also well known that the operator PD is averaged (see, e.g., [14, page
17]).

Definition 2.4 A sequence
{
xk
}∞
k=0
⊂ H is called Fejér-monotone with

respect to D if for every u ∈ D

‖xk+1 − u‖ ≤ ‖xk − u‖ for all k ≥ 0. (2.6)

Next we recall the definition of a maximal monotone mapping.

Definition 2.5 Let M : H → 2H be a set-valued mapping defined on a real
Hilbert space H.

(i) The resolvent of M with parameter λ is the operator JMλ := (I + λM)−1,
where I is the identity operator.

(ii) M is called a maximal monotone mapping if M is monotone, i.e.,

〈u− v, x− y〉 ≥ 0, for all u ∈M(x) and v ∈M(y), (2.7)

and the graph G(M) of M ,

G(M) := {(x, u) ∈ H ×H | u ∈M(x)} , (2.8)

is not properly contained in the graph of any other monotone mapping.

Definition 2.6 Let C be a nonempty, closed and convex subset of H. Denote
by NC (v) the normal cone of C at v ∈ C, i.e.,

NC (v) := {z ∈ H | 〈z, y − v〉 ≤ 0 for all y ∈ C} . (2.9)

Consider now the variational inequality with respect to the set D and the
operator h:

〈h(x∗), x− x∗〉 ≥ 0 for all x ∈ D. (2.10)

Define the mapping M as follows:

M(v) :=

{
h(v) +ND (v) , v ∈ D,

∅, otherwise.
(2.11)

Under a certain continuity assumption on h (which every ism operator sat-
isfies), Rockafellar [28, Theorem 5, p. 85] showed that M is a maximal
monotone mapping and M−1 (0) = SOL(D, h).
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Remark 2.7 It is well known that for λ > 0,
(i) M is monotone if and only if the resolvent JMλ of M is single-valued

and firmly nonexpansive.
(ii) M is maximal monotone if and only if JMλ is single-valued, firmly

nonexpansive and its domain is all of H, where

dom(JMλ ) :=
{
x ∈ H | JMλ (x) 6= ∅

}
. (2.12)

(iii)
0 ∈M(x∗)⇔ x∗ ∈ Fix(JMλ ), (2.13)

where Fix(JMλ ) denotes the fixed point set of JMλ .

It is known that the metric projection operator coincides with the resol-
vent of the normal cone.

Now we recall the following lemma [8].

Lemma 2.8 Let H be a real Hilbert space and let D ⊂ H be nonempty,
closed and convex. Let h : H → H be an α-ism operator. If D ∩ {x ∈ H |
h(x) = 0} 6= ∅, then x∗ ∈ SOL(D, h) if and only if h(x∗) = 0.

Using the characterization of the metric projection (2.5), we get another
connection between the solution set of a variational inequality problem and
the fixed point set of a certain operator, namely, for any λ > 0,

SOL(D, h) = Fix (PD(I − λh)) . (2.14)

Indeed,
x∗ ∈ Fix (PD (I − λh))⇔ PD (x∗ − λh(x∗)) = x∗ (2.15)

and by (2.5), we have for all x ∈ D and λ > 0,

0 ≤ 〈x∗ − λh(x∗)− PD (x∗ − λh(x∗)) , PD (x∗ − λh(x∗))− x〉
= 〈x∗ − λh(x∗)− x∗, x∗ − x〉 = 〈−λh(x∗), x∗ − x〉
= λ 〈h(x∗), x− x∗〉 . (2.16)

Next we present another useful property of the operator PD (I − λh) (cf.
[21]).

Lemma 2.9 Let H be a real Hilbert space and let D ⊂ H be nonempty,
closed and convex. Let h : H → H be a β-ism operator on H. If λ ∈ (0, 2β),
then the operator PD (I − λh) is averaged.
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Proof. We first prove that the operator I − λh is averaged. More pre-
cisely, we claim that if h is β-ism, then the operator I − λh is averaged for
λ ∈ (0, 2β). Indeed, take c ∈ (0, 1) such that c ≥ λ/(2β) and set N := I− λ

c
h.

Then I − λh = (1− c)I + cN and N is nonexpansive:

‖x− y‖2 − ‖N(x)−N(y)‖2

= ‖x− y‖2 −

(
‖x− y‖2 − 2

λ

c
〈h(x)− h(y), x− y〉+

(
λ

c

)2

‖h(x)− h(y)‖2

)

= 2
λ

c
〈h(x)− h(y), x− y〉 −

(
λ

c

)2

‖h(x)− h(y)‖2

≥ λ

c

(
2β‖h(x)− h(y)‖2 − λ

c
‖h(x)− h(y)‖2

)
=
λ

c

(
2β − λ

c

)
‖h(x)− h(y)‖2 ≥ 0. (2.17)

Now, since the metric projection PD is averaged, so is the composition
PD (I − λh) (see Remark 2.3(iii)).

While the metric projection operator is the resolvent operator of the nor-
mal cone operator, the composed operator PD (I − λh) need not be a resol-
vent of a monotone mapping.

Lemma 2.10 [6, 7] If U : H → H an V : H → H are averaged operators
and Fix (U) ∩ Fix (V ) 6= ∅, then Fix (U) ∩ Fix (V ) = Fix (UV ) = Fix (V U) .

The next lemma was proved by Takahashi and Toyoda [29, Lemma 3.2].
In this connection, see also [25, Proposition 2.1].

Lemma 2.11 Let H be a real Hilbert space and let D ⊂ H be nonempty,
closed and convex. Let the sequence

{
xk
}∞
k=0
⊂ H be Fejér-monotone with

respect to D. Then the sequence
{
PD
(
xk
)}∞

k=0
converges strongly to some

z ∈ D.

Next we recall a theorem of Opial’s [23], which is also known in the
literature as the Krasnosel’skĭı-Mann theorem.

Theorem 2.12 Let H be a real Hilbert space and let D ⊂ H be nonempty,
closed and convex. Assume that h : D → D is an averaged operator with
Fix(h) 6= ∅. Then, for an arbitrary x0 ∈ D, the sequence

{
xk+1 = h(xk)

}∞
k=0

converges weakly to z ∈ Fix(h).
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Remark 2.13 The convergence obtained in Theorem 2.12 is not strong in
general [13, 3].

3 The Algorithm

In this section we introduce our modified von Neumann alternating method
for solving the two-set CSVIP (1.2) and (1.3). Let Γ := Γ(C,Q, f, g) :=
SOL(C, f) ∩ SOL(Q, g).

The following conditions are needed for our convergence theorem.

Condition 3.1 The operators f : H → H and g : H → H are α1-ism and
α2-ism, respectively.

Condition 3.2 λ ∈ (0, 2α), where α := min{α1, α2}.

Condition 3.3 Γ 6= ∅.

Algorithm 3.4
Initialization: Select an arbitrary starting point x0 ∈ H.
Iterative step: Given the current iterate xk, compute

yk = (PQ(I − λg))
(
xk
)

and xk+1 = (PC(I − λf))
(
yk
)
. (3.1)

Note that (3.1) is actually an alternating method, that is,

xk+1 = (PC(I − λf)) (PQ(I − λg))
(
xk
)

= PC
(
PQ
(
xk − λg

(
xk
))
− λf

(
PQ
(
xk − λg

(
xk
))))

. (3.2)

An illustration of the iterative step of Algorithm 3.4 is presented in Figure
1.

Theorem 3.5 Let H be a real Hilbert space, and let C, Q be two nonempty
closed and convex subsets of H. Assume that Conditions 3.1-3.3 hold and set
α := min{α1, α2}. Then any sequence

{
xk
}∞
k=0

generated by Algorithm 3.4
converges weakly to a point x∗ ∈ Γ, and furthermore,

x∗ = lim
k→∞

PΓ(xk). (3.3)
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Figure 1: Illustration of the iterative step of Algorithm 3.4.

Proof. Let λ ∈ (0, 2α). By Lemma 2.9, the operators PC(I − λf) and
PQ(I−λg) are averaged and so is their composition (PC(I − λf)) (PQ(I−λg))
(Remark 2.3). Since Γ 6= ∅, Opial’s theorem (Theorem 2.12) guarantees
that any sequence

{
xk
}∞
k=0

generated by Algorithm 3.4 converges weakly to
a point x∗ ∈ Fix ((PC(I − λf)) (PQ(I − λg))) . Combining the assumption
Γ 6= ∅ with Lemma 2.10, we obtain

Fix(PC(I − λf)) ∩ Fix(PQ(I − λg)) = Fix ((PC(I − λf)) (PQ(I − λg)))

= Fix ((PQ(I − λg)) (PC(I − λf))) ,
(3.4)

which means that x∗ ∈ Fix(PC(I − λf))) and x∗ ∈ Fix(PQ(I − λg)), and
therefore by (2.14) x∗ ∈ Γ. Finally, let z ∈ Γ, i.e., z ∈ SOL(C, f)∩SOL(Q, g).
Then PQ(z − λg(z)) = PC(z − λf(z)) = z. Since the operators PC(I − λf)
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and PQ(I − λg) are averaged, they are also nonexpansive. Thus∥∥xk+1 − z
∥∥2

=
∥∥(PC(I − λf)) (PQ(I − λg))(xk)− z

∥∥2

=
∥∥(PC(I − λf)) (PQ(I − λg))(xk)− PC(I − λf)(z)

∥∥2

≤
∥∥PQ(xk − λg(xk))− z

∥∥2

=
∥∥PQ(xk − λg(xk))− PQ(z − λg(z))

∥∥2

≤
∥∥xk − z∥∥2

. (3.5)

So ∥∥xk+1 − z
∥∥2 ≤

∥∥xk − z∥∥2
, (3.6)

which means that the sequence
{
xk
}∞
k=0

is Fejér-monotone with respect to
Γ. Now, put

uk = PΓ(xk). (3.7)

Since the operators PC(I − λf) and PQ(I − λg) are nonexpansive, it follows
from (2.14) that the sets SOL(C, f) and SOL(Q, g) are nonempty, closed
and convex (see [14, Proposition 5.3, page 25]). In addition, since Γ 6= ∅,
each uk is well defined. So, applying (2.5) with D = Γ and x = xk, we get〈

y − PΓ

(
xk
)
, xk − PΓ

(
xk
)〉
≤ 0 for all k ≥ 0 and y ∈ Γ. (3.8)

Taking, in particular, y = x∗ ∈ Γ, we obtain〈
x∗ − uk, xk − uk

〉
≤ 0. (3.9)

By Lemma 2.11,
{
uk
}∞
k=0

converges strongly to some u∗ ∈ Γ. Therefore

〈x∗ − u∗, x∗ − u∗〉 ≤ 0 (3.10)

and hence u∗ = x∗, as asserted.

Remark 3.6 1. The sequence
{
yk
}∞
k=0

also converges weakly to x∗ ∈ Γ.
2. Under the additional assumptions that C and Q are symmetric, and

f and g are odd, that is, f(−x) = −f(x) and g(−x) = −g(x) for all x ∈
H, we get from [1, Corollary 2.1] that any sequence

{
xk
}∞
k=0

, generated by
Algorithm 3.4, converges strongly to a point x∗ ∈ Γ.

3. Strong convergence also occurs when either C or Q is compact.
4. According to [1, Corollary 2.2], if Γ = ∅, then lim

k→∞

∥∥xk∥∥ =∞.
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5.When C and Q are closed subspaces and f = g = 0 in the two-set
CSVIP (1.2) and (1.3), we get von Neumann’s original problem and then
Algorithm 3.4 is the classical alternating projections method (1.4).

6. In [9, Algorithm 3.1] we presented an algorithm which can be applied
to the solution of (1.2) and (1.3). The structure of this algorithm is quite
different from that of Algorithm 3.4 in the sense that at each step there is the
need to calculate the projection of the current iterate onto the intersection of
three half-spaces. Although the latter calculation complicates the process, the
sequence generated in this way converges strongly to a solution.

Following [26] and [11], we now present two more algorithms for solving
the two-set CSVIP (1.2) and (1.3). Let H be a real Hilbert space, and let C
and Q be two nonempty, closed and convex subsets of H.

Recall the following two lemmata [26, Lemmata 1.3 and 1.4].

Lemma 3.7 A convex combination of strongly nonexpansive operators is
also strongly nonexpansive.

Lemma 3.8 Let T be a convex combination of the strongly nonexpansive
mappings {Tk | 1 ≤ k ≤ m}. If the set ∩{Fix (Tk) | 1 ≤ k ≤ m} is not empty,
then it equals Fix (T ).

Now we can propose the following parallel algorithm.

Algorithm 3.9
Initialization: Select an arbitrary starting point x0 ∈ H, and let the

numbers w1 and w2 be such that w1, w2 ≥ 0 and w1 + w2 = 1.
Iterative step: Given the current iterate xk, compute

xk+1 = w1PC
(
xk − λf

(
xk
))

+ w2PQ
(
xk − λg

(
xk
))
. (3.11)

Theorem 3.10 Let H be a real Hilbert space, and let C and Q be two
nonempty, closed and convex subsets of H. Assume that Conditions 3.1-
3.3 hold. Then any sequence

{
xk
}∞
k=0

generated by Algorithm 3.9 converges
weakly to a point x∗ ∈ Γ, and furthermore,

x∗ = lim
k→∞

PΓ(xk). (3.12)
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Proof. By Lemma 2.9, the operators PC(I −λf) and PQ(I −λg) are av-
eraged, hence strongly nonexpansive (see Remark 2.3). According to Lemma
3.7, any convex combination of strongly nonexpansive mappings is also strongly
nonexpansive. So the sequence

{
xk
}∞
k=0

generated by Algorithm 3.9 is, in
fact, an iteration of a strongly nonexpansive operator and therefore the de-
sired result is obtained by [6] and Lemma 3.8.

Remark 3.11 The convergence obtained in Theorem 3.9 is not strong in
general [3].

Finally, we recall the following theorem [11, Theorem 1].

Theorem 3.12 Let T1 : H → H and T2 : H → H be two nonexpansive
operators which satisfy Condition (W), the fixed point sets of which have
a nonempty intersection. Then any unrestricted product from T1 and T2

converges weakly to a common fixed point.

Since every averaged operator is strongly nonexpansive and therefore sat-
isfies Condition (W), we can apply the above theorem to obtain an algo-
rithm for solving the two-set CSVIP by using any unrestricted product from
PC(I−λf) and PQ(I−λg). Any such unrestricted product converges weakly
to a point in Γ.

4 The general CSVIP

In this section we extend our algorithm to two methods for solving the general
CSVIP with single-valued operators. LetH be a real Hilbert space. Let there
be given, for each i = 1, 2, . . . , N , an operator fi : H → H and a nonempty,
closed and convex subset Ci ⊂ H, with

⋂N
i=1 Ci 6= ∅. The CSVIP is to find a

point x∗ ∈
⋂N
i=1Ci such that, for each i = 1, 2, . . . , N,

〈fi(x∗), x− x∗〉 ≥ 0 for all x ∈ Ci, i = 1, 2, . . . , N. (4.1)

Denote Ψ :=
⋂N
i=1 SOL(Ci, fi).

Algorithm 4.1
Initialization: Select an arbitrary starting point x0 ∈ H.
Iterative step: Given the current iterate xk, compute the product

xk+1 =
N∏
i=1

(PCi
(I − λfi)) (xk). (4.2)
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Theorem 4.2 Let H be a real Hilbert space. For each i = 1, 2, . . . , N , let
an operator fi : H → H and a nonempty, closed and convex subset Ci ⊂ H
be given. Assume that

⋂N
i=1 Ci 6= ∅, Ψ 6= ∅ and that for i = 1, 2, . . . , N,

fi is αi-ism. Set α := mini{αi} and take λ ∈ (0, 2α). Then any sequence{
xk
}∞
k=0

generated by Algorithm 4.1 converges weakly to a point x∗ ∈ Ψ, and
furthermore,

x∗ = lim
k→∞

PΨ(xk). (4.3)

Algorithm 4.3
Initialization: Select an arbitrary starting point x0 ∈ H and a nonneg-

ative finite sequence {wi}Ni=1 such that
N∑
i=1

wi = 1.

Iterative step: Given the current iterate xk, compute

xk+1 =
N∑
i=1

wi (PCi
(I − λfi)) (xk). (4.4)

Theorem 4.4 Let H be a real Hilbert space. For each i = 1, 2, . . . , N , let
an operator fi : H → H and a nonempty, closed and convex subset Ci ⊂ H
be given. Assume that

⋂N
i=1Ci 6= ∅, Ψ 6= ∅, and that for i = 1, 2, . . . , N,

fi is αi-ism. Set α := mini{αi} and take λ ∈ (0, 2α). Then any sequence{
xk
}∞
k=0

generated by Algorithm 4.3 converges weakly to a point x∗ ∈ Ψ, and
furthermore,

x∗ = lim
k→∞

PΨ(xk). (4.5)

The proofs of Theorem 4.2 and 4.4 are analogous to those of Theorems
3.5 and 3.10, respectively, and therefore are omitted.
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