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Abstract

Three-dimensional electron microscopy (3D-EM) is a powerful tool for

visualizing complex biological systems. As any other imaging device, the

electron microscope introduces a transfer function (called in this field the

Contrast Transfer Function, CTF) into the image acquisition process that

modulates the various frequencies of the signal. Thus, the 3D reconstruc-

tions performed with these CTF-affected projections are also affected by an

implicit 3D transfer function. For high resolution electron microscopy, the

effect of the CTF is quite dramatic and limits severely the achievable res-

olution. In this work we make use of the Iterative Data Refinement (IDR)

technique to ameliorate the effect of the CTF. It is demonstrated that the

approach can be successfully applied to noisy data.

1 Introduction

The analysis of macromolecular complexes and their dynamics is one of the most

interesting challenges in molecular biology. A promising future is awaiting the

electron microscopist due to the possibilities of visualizing molecular machines,

reconstructing unique (as opposed to averaged) objects, and imaging dynamic pro-

cesses. The road to achieving these possibilities is via three-dimensional recon-

struction from electron-microscopic images of the macromolecular complexes.

There are many methods for reconstructing a three-dimensional object from

its line integrals (Herman, 1980; Natterer and Wübbeling, 2001). Typically, the

line integrals are estimated for a set of parallel lines from a projection image that
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is obtained by some instrument. A difficulty that arises in electron microscopy is

that the image that is produced by the instrument corresponds to the convolution

of the ideal projection image with a Point Spread Function (PSF). The PSF is

usually described by its Fourier transform that is commonly called the Contrast

Transfer Function (CTF); for examples see Figures 1 and 2.

The CTF severely limits the achievable resolution in the three-dimensional

reconstruction. In particular, it filters both the high and the low frequencies, in-

troduces zones of alternate contrast and eliminates all information at certain fre-

quencies. It is, therefore, desirable to replace the reconstruction obtained by a

“real” microscope by a reconstruction that would be obtained from images that

would be produced by an ideal, aberration-free microscope. In order to achieve

this goal several methods have been proposed: Frank and Penczek (1995) ap-

plied Wiener filtering in the three-dimensional space to the reconstructed volume;

Zhu et al. (1997) incorporated a three-dimensional PSF into the data model and

used a regularized steepest-descent technique; Stark et al. (1997) applied inverse

CTF filtering to the reconstructed volume; Skoglund et al. (1996) incorporated a

two-dimensional CTF, particular to each projection to the projection, model in a

maximum-entropy reconstruction algorithm; Grigorieff (1998) provided a Fourier

reconstruction algorithm in which the CTF for each projection is considered in

a Wiener-like fashion; Ludtke et al. (1999) proposed a CTF correction applied

to the individual projections with a weighting function in the Fourier space com-

puted from a set of images sharing a common CTF; Ludtke et al. (2001) added a

Wiener filter to the weighting function defined in Ludtke et al. (1999). An alterna-
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tive is to explicitly introduce the effect of the CTF in the reconstruction equations;

this was done by Zubelli et al. (2003), who then reformulated the problem so that

Chahine’s method became applicable to it. The existence of these multiple ap-

proaches is indicative of the fact that there is no agreed standard technique for the

correction of CTF effects in 3D-EM of single particles and the search for superior

methods is still active.

In this work we apply the technique of Iterative Data Refinement (IDR) �
introduced in Censor et al. (1985) and further studied in Herman (1989), Herman

and Ro (1990), Losada and Navarro (1998) and Ro et al. (1989) � to reduce

the effect of the CTF and, thus, to obtain high-resolution structural information

about the macromolecules under study. As opposed to many of the approaches

discussed in the previous paragraph, our proposed algorithm can handle the case

of differing CTFs in the projections and does not require estimation of the Signal-

to-Noise Ratio (SNR). The potential benefit of the method is illustrated by an

experiment that involves realistic simulation of the electron microscopic imaging

of a biological macromolecule.

2 Mathematical Background

Contrast Transfer Function

Image formation by an electron microscope is due to several physical processes of

electron interaction with the specimen. These effects combine to produce a single

CTF, see Frank (1996, Chapter 2.II). A parametric model of this transfer function
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has been used in the simulations presented in this work. This parametric model

accounts for the various effects involved in the CTF (Zhu et al. (1997) and Frank

(1996, Chapter 2.II)) and was also used in Zhou et al. (1996).

Basically, the microscope transfer function is a real-valued function in Fourier

space formed by a damped harmonic function. The “sine” part of this function

comes from the phase change that electrons undergo when interacting with the

sample specimen. A detailed study of the electronic interaction in the image for-

mation plane shows that the transfer function of an electron microscope can be

usefully approximated by

CTF�ω� � E�ω�
�

sin�π∆ f �ω�2��Q0cos�π∆ f �ω�2�
�

� (1)

where ω is the spatial frequency, ∆ f is the defocus, and Q0 is a factor accounting

for the loss of electrons during the image formation process. Usually Q0 is a small

number, which implies that the DC component of the projection Fourier transform

is nearly removed and, thus, the absolute density values in the projections are

not meaningful. For this reason, usually only the relative values are taken into

consideration when interpreting a 3D-EM reconstruction. The damping envelope,

E�ω�, models microscope imperfections such as chromatic aberration, spherical

aberration, current and voltage instabilities, angular aperture, etc.; see, e.g., Zhou

et al. (1996) or Frank (1996, Chapter 2.II).

The model explained so far defines the shape of the profile of the CTF (for a

typical example see Figure 1). Many studies assume that this profile is radially
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symmetric, although this is not necessarily true. Astigmatism is a well-known

effect which turns the circles produced by the radial symmetrization of the CTF

profile into ellipses (see Figure 2). This results in a different defocus along every

radial line of the Fourier space.

Phase Flipping

Notice (in Figure 1) that the sign changes at the zero-crossings result in a contrast

inversion in the projection image and cause the complete elimination of the infor-

mation at certain frequencies. This is a very limiting factor in electron microscopy,

since without CTF correction all reconstructions are unreliable at frequencies be-

yond the one where the CTF first becomes zero. Nevertheless, biologically useful

results can sometimes be obtained even without CTF correction (Bárcena et al.,

2001; Sorzano et al., 2001). However, this can only be the case if the important bi-

ological information is not in the high-frequency part of the reconstruction, since

(as illustrated in our experiment reported below) in a reconstruction without CTF

correction, the information regarding frequencies beyond the first zero-crossing

of the CTF is incorrect.

A simple method to alleviate this problem consists of multiplying the pro-

jection Fourier transform by the sign of the CTF (this approach is named phase

flipping (Frank, 1996, page 45)) to produce the corrected projection data to which

the reconstruction algorithm is then applied. Thus the correction of the CTF sign

is simple, as it only needs to adjust the sign at those frequencies where it is flipped.

However, amplitude correction is more difficult, as it requires either dividing by
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the transfer function (avoiding zeroes by using, for instance, a Wiener filter) or

the incorporation of the CTF operator into the reconstruction algorithm, allowing

each projection to have its own CTF. The IDR approach of this paper addresses

this more difficult problem. It will be set up based on the assumption that the data

had been already corrected by phase flipping.

Computational Representation of Volumes and Projections

For the computational procedures of this paper we need to establish conventions

for representing volumes and projections by finite sets of numbers. In this subsec-

tion we present our conventions and explain the operators which are incorporated

into our algorithms.

We approximate arbitrary volumes by finite series expansions of the general

form
J

∑
j�1

c jb�r� r j�� (2)

In this formula r is the point at which the volume is being approximated, the r j

are fixed points in space, b is a function of three variables, and the c j are the co-

efficients of the expansion. In any application, b and the r j are fixed, it is the

c j that distinguish one volume from another. Following Lewitt (1990, 1992) and

Matej and Lewitt (1995, 1996), we use a generalized Kaiser-Bessel window func-

tion (also called a blob) for b and a finite subset of the Body Centered Cubic grid

for the points r j. Such a representation was found useful in electron microscopy

applications; see Bárcena et al. (2001); Marabini et al. (1997); Marabini et al.
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(1998); Sorzano et al. (2001). The specific choice that we adopt for the blob and

the grid is the one referred to as the “standard blob” in Matej and Lewitt (1996).

We approximate a projection by a two-dimensional array of numbers, each

representing a projection value at a point of a square grid. To bring this into the

electron microscopy context, we think of the square grid as lying on a projection

plane that is perpendicular to the direction of the electrons. Assuming that we

have m different projection planes, we use gi (1 � i � m) to denote the array of

numbers associated with the ith projection. We use g to denote the complete set

of the m projections, meaning that g is the concatenated vector of all the gis.

Given a volume representation as in (2) it is easy to calculate the ideal projec-

tion (line integrals along lines perpendicular to the projection plane and passing

through the points of the square grid). This is so because the integration can be

brought inside the summation and can be analytically evaluated for the known

blob b and grid point r j. For 1 � i � m, we define an ideal projection operator

Pi that associates with the J-dimensional vector c (whose jth component is c j)

the vector representing the ideal projection of the volume onto the ith projection

plane. Note that, in practice, Pi is a matrix of J columns and as many rows as the

number of grid points in the ith projection plane.

Each projection also has its own CTF operator that we denote by Hi. In prac-

tice, given the projection gi, Higi is computed by taking the discrete Fourier trans-

form of gi, multiplying it point-wise by the phase-flipped CTF associated with the

ith projection, and then taking the inverse discrete Fourier transform.
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Iterative Data Refinement

The measuring device (the electron microscope) provides data that only approxi-

mate what we intend to measure. The discrepancy between the actual data (under

our assumptions, corrupted by the phase-flipped CTF) and data that are idealized

(uncorrupted by the CTF, henceforth called ideal data) can be estimated from the

actual data and knowledge of the measuring process, leading to a better approx-

imation of the ideal data. This new approximation can then be used to estimate

the new discrepancy, and the process can be repeated. Our knowledge of the mea-

surement process is insufficient to obtain the ideal data exactly, but the original

discrepancy is significantly reduced by just a few of such iterative steps. This

process is accomplished by the iterative data refinement (IDR) methodology of

Censor et al. (1985). Here we briefly review the fundamentals of IDR and de-

scribe our specific implementation of it for the CTF removal problem. We then

supply a short discussion that puts the approach in perspective and relates it to

current literature.

In the following we use R to denote a recovery operator (in our case a three-

dimensional reconstruction algorithm) that produces, for a complete set of projec-

tions g, a vector c that represents a volume using (2). For now it is not important

to specify our choice of R, we will do so below. An important assumption about

R (well-justified by the known behavior of reconstruction algorithms (Herman,

1980)) is that if it is applied to the ideal data ĝ (that is, the concatenated vector

of all the Pics), then ĉ � Rĝ is an acceptable approximation to c. The problem

is that, in practice, the actual data g̃ is corrupted by the CTF and so Rg̃ is not a
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satisfactory approximation to c. The IDR approach aims at estimating the ideal

data ĝ from the actual data g̃, assuming knowledge of the CTFs.

IDR produces a sequence of vectors gk (k � 0�1�2� � � �); the aim is that they

should be improving estimates of the ideal data. We denote by gk
i the part of gk

that is associated with the ith projection. With this notation, our version of the

IDR algorithm is formulated as the following iterative process. (Figure 3 depicts

a block diagram of the algorithm.)

Algorithm: Iterative Data Refinement (IDR) for 3D Electron Microscopy

Initialization: Take g0 � g̃, the actual data (i.e., the experimentally measured

data corrected by phase flipping).

Iterative Step: Given the current iterate gk � �gk
i �

m
i�1� calculate the next iterate

gk�1 � �gk�1
i �mi�1 by using, for all i� 1�2� � � � �m� the formula

gk�1
i � µkg

0
i ��Pi�µkHiPi�Rgk� (3)

where �µk�∞
k�0 is a sequence of so-called relaxation parameters.

This algorithm generates an iterative sequence �gk�∞
k�0 which is guaranteed

to converge to the ideal data ĝ under some stringent conditions, see Censor and

Zenios (1997, Proposition 10.5.8). However, in practice, it has been shown (see

Censor et al. (1985) and references therein) that, even when convergence cannot

be guaranteed, the early iterates produced by the IDR algorithm are closer to the

ideal data vector ĝ than g0 is. This property of IDR is the basis of the present

study.
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The underlying idea of IDR is to refine the data iteratively in a way that bridges

the gap between an accurate model of data collection (but one for which we do

not have a reconstruction algorithm) and an approximate model that leads to a

reconstruction algorithm (which would work if the model were correct). This is

quite different from just being another reconstruction method, since it iterates on

the data rather then on the unknowns of the reconstruction problem. The IDR

method is a member of the family of “iterative defect-correction methods” much

used in the field of differential equations, see, e.g., Böhmer et al. (1984); Stet-

ter (1978). For additional applications of the IDR approach, consult Section 2

of Censor et al. (1985), where beam hardening correction in x-ray computerized

tomography, attenuation correction in single photon emission computed tomogra-

phy (SPECT), and image reconstruction with incomplete data are described along

with references to the original studies. See also Herman and Ro (1990) for a study

of the connection between IDR and phase retrieval algorithms.

Reconstruction Algorithm

We now return to the choice of the recovery operator R that was left unspecified in

the previous subsection. We emphasize that the basic approach of IDR is indepen-

dent of this choice, any good reconstruction algorithm could be used. In our study

we used for the recovery operator R the reconstruction algorithm called block-

ART with blobs in which each block corresponds to one projection. We note that

this algorithm has been found efficacious for 3D reconstruction from electron mi-

croscopic data (Bárcena et al., 2001; Marabini et al., 1998; Marabini et al., 1997;
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Sorzano et al., 2001).

Block-ART with blobs is an iterative algorithm. Given a data vector g, it

produces a sequence of iterates �ck�∞
k�0, each of which defines a volume using

(2).

Algorithm: Iterative Block-ART for Volume Recovery

Initialization: Take c�0� � 0, the zero vector.

Iterative Step: Given the current iterate ck, calculate the next iterate ck�1 by

the formula

ck�1 � ck �PT
i Σk�gi�Pick�� (4)

where i=k mod m + 1.

Here PT
i is the transpose of the ideal projection operator Pi, and each Σk is

a relaxation matrix whose exact nature is explained by Eggermont et al. (1981),

who also provide convergence results for the Iterative Block-ART algorithm (their

Theorem 1.3). In the experiments, reported below, we do not run the algorithm to

convergence, but use only one full cycle of it; i.e., we define Rg to be cm. (This

is justified by previous experience in this application area; see, e.g., Marabini

et al. (1998).) Also, we selected each Σk to be a diagonal matrix, the value of

each entry on the diagonal is a constant λ divided by the square of the norm of

the corresponding row of Pi; see (2.18) in Eggermont et al. (1981). (This is also

justified by previous experience. It was also found that for the data collection that

we used for the experiments reported below, λ � 0�05 is a good choice.)
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The recovery operator R is used not only in the IDR process, but also to pro-

duce the final reconstruction from the (possibly corrected) projection data. For

this purpose, it needs to be extended by an additional step, since further analysis

of the reconstructions requires that they should be evaluated at the points of a cu-

bic grid. Such an evaluation is done using (2), yielding a three-dimensional array

of numbers that we consider to be the reconstruction.

There is an interesting alternative to be considered here: why not incorporate

the effect of the CTF into the model and then use Iterative Block-Art for Volume

Recovery directly on the actual data? (In practice this means that in (4) Pi has to

be replaced by HiPi in both places where it occurs, with corresponding changes

in the calculations of the entries of the diagonal matrix Σk. Computationally this

is some additional burden, but not too much: since Hi is symmetric, HT
i � Hi

and the computation can be carried out by the method described at the end of

the Subsection on Computational Representation of Volumes and Projections.) In

the current paper the choice of the recovery operator is not essential: it can be

replaced in the IDR process by any good reconstruction algorithm. We leave to

the future the investigation of the efficacy of IDR relative to applying directly to

the actual data either Iterative Block-Art for Volume Recovery or the alternative

algebraic approach proposed by Zubelli et al. (2003).
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3 Evaluation Methodology

To compare the performance of IDR with no CTF correction and with phase flip-

ping, we adapted the methodology proposed in Furuie et al. (1994) and previ-

ously applied to electron microscopy in Marabini et al. (1998); Marabini et al.

(1997); Sorzano et al. (2001). In the experiments described below, many sets of

simulated electron microscopy projections of a particular molecule are taken and

reconstructions are produced from each of these sets using the approaches to be

compared. The success of the approaches are determined by the use of figures of

merit (FOMs). We now provide details of this outline.

Projection Data Generation

The volume used in our tests was created from an atomic structure deposited in

the Protein Data Bank (PDB), see Berman et al. (2000), namely the Halobac-

terium halobium bacteriorhodopsin (PDB id: 1BRD, Henderson et al. (1990)).

For comparison purposes this volume was evaluated for points of a 64� 64� 64

cubic grid, with distance 3.5 Å between neighboring grid points. We refer to the

resulting three-dimensional array as the phantom.

Several sets of 2,000 projections were created with signal-to-noise ratio 1/3,

this resembles cryomicroscopy conditions. This noise in the measurements was

combined with other sources of inconsistency in the form of random translations

(by moving the projection plane parallel to itself by a distance randomly selected

from a zero-mean Gaussian distribution with standard deviation 7 Å) and random
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rotations (by adding a zero-mean 5 degrees standard deviation Gaussian noise to

each of the Euler angles that defined the orientation of the projection planes).

In addition to noise, the projections were convolved with a CTF. The parame-

ters for a circularly-symmetric simulated CTF, see (1), were given values typically

found in experimental conditions: Q0 � �0�06 and ∆ f � �20�000 Å, and the

factors that influence the damping envelope E�ω� were selected as acceleration

voltage = 100 kV, spherical aberration = 5.5 mm, chromatic aberration = 6 mm,

energy loss = 9.9 eV, convergence cone = 0.2 mrad, longitudinal displacement =

80 Å (see Velázquez-Muriel et al. (2003) for a description of these parameters).

The radial profile of this CTF is shown in Figure 1. The same CTF was used in

all projections, since this is the worst case that can occur because it makes it dif-

ficult to compensate for missing information in one projection by data from other

projections.

A surface rendering of the ideal volume and a selection of projections are

shown in Figure 4 and 5, respectively.

Figures of Merit

Figures of merit (FOMs) are numerical measures of the reconstruction quality that

are based on specific aspects. A simple but often used measure is the sum of the

squares of the differences between the individual values in the reconstructions and

the corresponding values in the phantom. In Sorzano et al. (2001) this measure

was divided by the number of points in the cubic grid and the result was called the

FOM scL2.
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More sophisticated measures are provided by the Fourier Shell Correlation

(FSC), as described in Equation (3.65) of Frank (1996) with F1 the phantom and F2

the reconstruction. The FSC indicates, for every shell of frequencies (determined

by a frequency k and a shell-thickness ∆k), how well the reconstruction correlates

with the phantom for all frequencies within that shell. Thus the FSC provides a

separate FOM for every shell. The FSC can also be used to provide the additional

single FOM of resolution by defining it as the frequency at which the FSC falls

below 0.5.

The presence of many reasonable FOMs (Sorzano et al. (2001) lists 24 of

them) makes exhaustive comparisons difficult. We have developed a methodol-

ogy that applies multivariate statistics to obtain a single FOM that in some senses

captures the essence of what is provided by the full set of FOMs; it is described in

detail in the doctoral dissertation of Sorzano (2002). Here we give a brief descrip-

tion of the use of this methodology for selecting an optimal range for a parameter

µ, such as one of the relaxation parameters µk in (3). To do this, a number of

training data sets are created and each one of them is processed using a number of

values of the parameter µ. Then the method for producing a single representative

FOM proceeds in five steps: first, each of the FOMs that we wish to consider in

producing the single FOM is normalized to have mean 0 and standard deviation 1;

second, those FOMs that show no dependency (as indicated by a 1-way Analysis

of Variance, ANOVA for short) with µ are removed; third, all FOMs showing a

similar dependency with µ are clustered by a hierarchical classification; fourth,

the dimensionality of the clusters is reduced using a Principal Component Anal-
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ysis (PCA) and a single representative is selected for each cluster; and fifth, the

cluster representatives are combined into a single FOM. We refer to it in this pa-

per as the training FOM. The optimal range for µ is considered to be the maximal

range within which the performance (as measured by the training FOM applied

to the results obtained from the training data sets) is not statistically significantly

different from the optimal performance.

Training

We first give the details of the training methodology for selecting the optimal

range of µ0. Preliminary tests indicated that we should not be looking outside the

range [1.4, 2.4]. Within this range we investigated values of µ0 at 0.1 increments.

For each of this 11 values, ten complete actual (noisy) data sets were generated by

the method described above and a training FOM was produced based on these 110

reconstructions. We found that the corresponding optimal range for µ0 is [1.7,1.9].

To select µ1, we essentially repeat this process, but now the evaluation is based

on the reconstructions produced from g2. (For each of the 110 data sets, µ0 was

randomly selected from its optimal range.) The results were similar, namely the

optimal range for µ1 turned out to be the same as for µ0. In fact, repeating this

process for µk, for 2 � k � 15, the same optimal range was found each time.

To determine the stopping criterion, 30 new complete actual data sets were

generated and the IDR algorithm was run for 15 iterations. For each of the 30

actual data sets g̃, reconstructions were produced from gk, for 0 � k � 15. The

FOM scL2 was calculated for each reconstruction and, for 1 � k � 15, the differ-
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ence between scL2 values for that iteration and the previous iteration (from the

same data set) was calculated. The results, plotted in Figure 6, show that there ap-

pear to be no significant changes produced by the IDR iterations beyond the sixth

one. In this case, the scL2 value to which the algorithm converged was 0.998.

4 Results

Figure 7 illustrates our results: four central slices of the phantom and of recon-

structions (from a new data set generated by the previously described rules) are

shown. In Figure 8 we plot the associated Fourier Shell Correlations (see Sec-

tion 3) for assessing the reconstruction quality. The improvement by any of the

corrections over the uncorrected reconstruction is highly noticeable, even in the

case of only phase flipping. Note that using only the FOM “resolution” (as de-

fined in Section 3) there is not a significant difference between phase flipping and

IDR (regardless of the number of iterations), since all the CTF corrected recon-

structions have a resolution at around 0.06 Å�1 (as opposed to the resolution of

the reconstruction from uncorrected data that is around 0.035 Å�1). However,

examining the full FSC curves instead of concentrating only on resolution reveals

a clear improvement in the IDR-corrected reconstructions over the phase-flipped

reconstruction in the range in which the CTF is inverted (between 0.037 Å�1 and

0.052 Å�1). Furthermore, we can see the improvements produced by additional

IDR iterations. All this is visually confirmed in Figure 7.

The discussion in the previous paragraph is anecdotal: it is based on recon-
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structions from a single data set. To be able to assign statistical significance to

our claim of superiority of the IDR reconstruction over the phase-flipped recon-

struction we generated thirty additional actual data sets (using the same rules as

before) and compared the phase-flipped reconstructions with the reconstructions

after the sixth iteration of the IDR algorithm. The results are summarized in Fig-

ure 9, which plots for nineteen shells the average (over the thirty data sets) of

the FSC value for IDR after six iterations less the FSC value for phase flipping.

Standard deviations of these differences over the thirty experimental outcomes are

also indicated. The standard deviation of the average difference is 1�
�

30 times

the standard deviation indicated in the figure. Hence it is clear that, for every one

of the nineteen shells, one can extremely confidently reject the null hypothesis

that the expected value of the FSC for the IDR reconstruction after six iteration

is the same as the expected value of the FSC for the phase-flipped reconstruction

in favor of the alternative hypothesis that the expected value of the FSC is higher

for the IDR reconstruction. In fact, for each of the nineteen shells, the value of

the average difference is more than ten times the standard deviation of the average

difference (thus providing us with a P value less than 10�23).

IDR’s ability of removing the effect of an instrumental transfer function was

first demonstrated by Ro et al. (1989) for magnetic resonance imaging. We have

shown here that IDR is also efficacious in electron microscopy, which presents

much nastier transfer functions and extremely noisy images. Our results demon-

strate that it is possible to recover much of the information that is lost near the

zeros of the CTF and that the quality of the reconstruction from electron micro-
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scopic data can be significantly improved by iterative data refinement.
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Figure 1: Radial profile of the CTF used in the cryomicroscopy simulations.
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Figure 2: Amplitude of a typical astigmatic CTF.
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Figure 3: Block diagram for the IDR algorithm (based on the one originally pub-
lished by Censor et al. (1985)).
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Figure 4: Side and top view of the isosurface of the bacteriorhodopsin phantom.

Figure 5: A selection of projections simulating cryomicroscopy images from the
bacteriorhodopsin phantom.
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Figure 6: Difference in the scL2 FOM between the reconstruction after kth and
�k�1�st IDR iterations for 30 tests.
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Figure 7: From top to bottom, slices corresponding to central sections of: bacteri-
orhodopsin phantom, reconstruction without CTF correction, reconstruction with
phase flipping, reconstruction with IDR after 1 and 6 iterations.
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Figure 8: Fourier Shell Correlation curves for the reconstructions without CTF
correction, with phase flipping and IDR after 1 and 6 iterations.
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Figure 9: Plot of the values for 19 shells of the average over 30 actual data sets
(plus and minus one standard deviation) of the FSC for IDR after 6 iterations less
the FSC for phase flipping.
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