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Abstract. Problems in signal detection and image recovery can sometimes be formulated as a convex
feasibility problem (CFP) of finding a vector in the intersection of a finite family of closed convex sets.
Algorithms for this purpose typically employ orthogonal or generalized projections onto the individual
convex sets. The simultaneous multiprojection algorithm of Censor and Elfving for solving the CFP, in
which different generalized projections may be used at the same time, has been shown to converge for the
case of nonempty intersection; still open is the question of its convergence when the intersection of the
closed convex sets is empty.

Motivated by the geometric alternating minimization approach of Csiszár and Tusnády and the product
space formulation of Pierra, we derive a new simultaneous multiprojection algorithm that employs general-
ized projections of Bregman to solve the convex feasibility problem or, in the inconsistent case, to minimize
a proximity function that measures the average distance from a point to all convex sets. We assume that
the Bregman distances involved are jointly convex, so that the proximity function itself is convex. When
the intersection of the convex sets is empty, but the closure of the proximity function has a unique global
minimizer, the sequence of iterates converges to this unique minimizer. Special cases of this algorithm
include the “Expectation Maximization Maximum Likelihood” (EMML) method in emission tomography
and a new convergence result for an algorithm that solves the split feasibility problem.

Keywords: Bregman projections, convex feasibility problem, product space, Kullback–Leibler distance,
proximity function

1. Introduction

Let Ci , i = 1, 2, . . . , I , be closed convex sets in the J -dimensional Euclidean space
R

J and let C be their intersection. In many applications such convex sets represent con-
straints that we wish to impose on the solution and the algorithms employ projections
onto these individual sets. For examples see Youla [53], Combettes [30], Byrne [16] and
the recent books by Stark and Yang [50] and Censor and Zenios [29].

Typically, the projections of a point onto the individual sets Ci are more easily cal-
culated than the projection onto the intersection C, therefore iterative methods whereby
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the latter can be obtained from repeated use of the former are desirable. There are three
cases to be considered:

(1) the intersection C is nonempty, but “small” in the sense that all members of C are
quite similar;

(2) the intersection C is nonempty and “large”, that is, the members of C are quite
varied; and

(3) the set C is empty, meaning that the constraints we impose are mutually contradic-
tory.

When we say that the members of C are “quite similar” or “quite varied”, we mean that
the real-world objects that they represent (e.g., the images in an image reconstruction
task) are “similar” or “varied” according to some criteria appropriate for the task.

Case (1) usually occurs if I is large and/or the individual sets Ci are “small”. In
this case an algorithm that simply solves the convex feasibility problem (CFP), that is,
one that finds some member of C, is useful. Case (2) occurs if there are few convex sets
and/or they all are quite “large”. In this case just obtaining some member of C may not
be helpful; we want to get a member of C near to some prior estimate of the solution.
The orthogonal projection onto C, or a generalized projection of the type to be discussed
here, might be more helpful in this case; see, e.g., Dykstra [34,35], Censor and Reich
[28], Bregman, Censor and Reich [6] and references therein. A more general approach
is to optimize a cost function, such as entropy, over the set C. Recent related work on
this topic is in Byrne [17]. Case (3) is dealt with by finding a point that is, in some
sense, close to all the individual sets Ci . One way to achieve this is to set up a proximity
function that measures the average distance to all the convex sets and then to minimize
it. Case (3) is our main focus in the present paper.

These issues can be considered in a general context, involving Bregman distances
and projections. Let S be an open convex subset of R

J and f a Bregman function from
the closure S of S into R; see, e.g., Censor and Lent [25], Censor and Zenios [29,
chapter 2] and the appendix at the end of this paper. For a Bregman function f (x), the
Bregman distance Df is defined by

Df (z, x) � f (z) − f (x) − 〈∇f (x), z − x
〉
, (1.1)

where 〈·, ·〉 is the standard inner product in R
J and ∇f (x) is the gradient of f at x.

When the function f has the form f (x) = ∑J
j=1 gj (xj ), with the gj scalar Bregman

functions, we say that f and the associated Df (z, x) are separable. With gj (t) = t2,
for all j , the function f (x) = ∑J

j=1 gj (xj ) = ∑J
j=1 x

2
j is a separable Bregman function

and Df (z, x) is the squared Euclidean distance between z and x.
For each i, denote by P

f

Ci
(x) the Bregman projection of x ∈ S onto the set Ci with

respect to the Bregman function f ; that is, for any x ∈ S we have Df (P
f

Ci
(x), x) �

Df (z, x), for all z ∈ Ci ∩ S. If C �
⋂I

i=1 Ci is nonempty then the sequential iterative
algorithm of successive projections, whose iterative step is given by xk+1 = P

f

Ci(k)
(xk),
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converges to a member of C. This was shown by Bregman [5] for the cyclic control
defined by i(k) = k (mod I ) + 1, for all k � 0, and by Censor and Reich [27] and
Bauschke and Borwein [4] for the more general repetitive control. If the set C is empty
then this scheme does not converge. In such a case it has been shown by Gubin, Polyak
and Raik [37] that, for orthogonal projections in Hilbert space, the sequential iterative
scheme exhibits cyclic convergence, i.e., convergence of the cyclic subsequences.

In this paper we investigate iterative methods of the simultaneous type. In the past
such methods were proposed with arithmetic averaging for orthogonal projections, see,
e.g., Auslender [2], Aharoni and Censor [1], Bauschke and Borwein [3], Butnariu and
Censor [8,9], Censor [19,20], Combettes [30,31], Iusem and De Pierro [40], Kiwiel [41]
and references therein. See also the recent book by Butnariu, Censor and Reich [11].
Recently, Censor and Elfving [21] proposed and studied a simultaneous projections al-
gorithm for the convex feasibility problem that employs Bregman projections. However,
the averaging of the simultaneous projections there is not arithmetic, but depends on the
choice of the Bregman function (or functions).

Byrne and Censor studied in [18] simultaneous methods with arithmetic averaging
for Bregman projections that are not necessarily orthogonal. Such a possibility was men-
tioned, in passing, by Censor and Herman [23, section 4.4], and was recently studied for
the special case of entropic projections in Butnariu, Censor and Reich [10]; the results
in [10] deal only with the consistent case C 
= ∅. The focus in [18] was on the behavior,
in the inconsistent case C = ∅, of simultaneous methods with arithmetic averaging of
Bregman projections based on a Bregman distance Df that is both separable and jointly
convex. Recent work by Butnariu, Iusem and Burachik [12] on stochastic convex feasi-
bility problems contains a similar proximity function minimization algorithm and notes
the importance of joint convexity of the distance.

In contrast with these efforts, we are concerned here with proximity functions F(x)

of the multiprojection type; that is, functions of the form

F(x) =
I∑

i=1

Dfi

(
P

fi
Ci
(x), x

)
, (1.2)

where the Dfi are Bregman distances derived from possibly distinct, possibly nonsep-
arable Bregman functions fi having zones Sfi . The function F is defined, for all x in
the open convex set U = ⋂I

i=1 Sfi , which is assumed nonempty. We shall assume that
each distance Dfi (x, z) is jointly convex, i.e., is convex with respect to the vector formed
by concatenating the vectors x and z. The usefulness of joint convexity has been noted
in several recent publications, see, e.g., Butnariu, Iusem and Burachik [12], and exam-
ples of jointly convex distances are well-known. The joint convexity of these distances
implies that F(x) is convex, as well.

Our main use of convex analysis will be to apply the closure operation to the prox-
imity function F(x) in order to provide finite-valued extension to at least part of the
boundary of U . In the standard presentation of Bregman functions and distances the
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zone S is an open convex set with closure S. The Bregman distance Df (x, z) is defined
for x ∈ S and z ∈ S and the Bregman projections are defined for x ∈ S. In Byrne
and Censor [18] the definition of the distance Df (x, z), the Bregman projections and,
thereby, the proximity function F(x) are extended to include x ∈ S, but only for the sep-
arable case. Such extension permits the treatment of the fairly common case in which
the proximity function has no minimizer within S, but does have a minimizer when ex-
tended to S. Similar extensions appear in Kiwiel [42] and in Censor and Zenios [29,
section 6.8]. Our approach here is to extend only F(x), not the Bregman projections
themselves, using the concept of closure of a proper convex function, as discussed in
Rockafellar [48, section 7].

We first extend the proximity function F(x) of (1.2) to all of R
J by defining

F(x) = +∞, for all x not in U . The closure of the function F is the function clF
defined, for all x in R

J , by

clF(x) = lim inf
y→x

F (y). (1.3)

The functions F and clF agree on U but clF can differ from F by taking finite values
at certain points on the boundary of U at which F takes the value +∞. We shall prove
convergence of our iterative method whenever clF has a unique minimizer or when
the set C ∩ U is nonempty. In the next section we show a motivating example of the
closure of a proximity function when we consider the likelihood maximization problem
for independent Poisson random variables.

In designing our iterative algorithm we are influenced by the reformulation of the
CFP in a product space, as suggested by Pierra [47], and the concepts of Bregman dis-
tances and Bregman projections as introduced by Censor and Lent [25] based on the
work of Bregman in [5] and studied extensively, see, e.g., [29] and references therein.
The third ingredient used here is the framework of alternating minimization of a func-
tional of two vectors, proposed by Csiszár and Tusnády [32]. The first two of these
concepts were used by Censor and Elfving [21], but, because they were concerned only
with the consistent case, they used Bregman’s successive projections approach, not the
alternating minimization method of [32]. The proximity function minimization algo-
rithm developed by us in [18] can also be recast in terms of Pierra’s product space and
the alternating minimization approach of Csiszár and Tusnády, but neither of these no-
tions was explicitly used there. In recent work Eggermont and LaRiccia [36] make use
of alternating minimization and prove that jointly convex Bregman distances enjoy the
“four-point property” of [32]. As we shall see, this is an important aid in the present
work.

We draw the reader’s attention to the “Note added in proof”, at the end of the paper,
in which we add some important remarks about the validity or validation of the technical
assumptions A1, A2 and A3 made in our analysis.
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2. A motivating example: The expectation maximization maximum likelihood
algorithm

The “Expectation Maximization Maximum Likelihood” (EMML) algorithm, as it is used
in emission tomography (see, e.g., Vardi, Shepp and Kaufman [52], Lange and Carson
[44], Tanaka [51], Byrne [13–15]) is a special case of the more general EM algorithm of
Dempster, Laird and Rubin [33] for computing maximum likelihood estimators, see also
McLachlan and Krishnan [46]. The EMML algorithm in this case provides a nonnegative
minimizer of the Kullback–Leibler distance, which is a function of the type given in (1.2)
that can be extended continuously to its closure.

Shannon’s entropy function maps the nonnegative orthant R
J+ into R according to

ent x � −
J∑

j=1

xj log xj , (2.1)

where “log” denotes the natural logarithms and, by definition, 0 log 0 = 0. Its nega-
tive, f (x) � − ent x, is a Bregman function and the Bregman distance associated with
it is the Kullback–Leibler (KL) distance (see Kullback and Leibler [43], see also [29,
example 2.1.2 and lemma 2.1.3]), given by

Df (x, z) = KL(x, z) =
J∑

j=1

(
xj log

(
xj

zj

)
+ zj − xj

)
. (2.2)

For positive scalars a, b, define KL(a, b) = a log(a/b) + b − a, KL(0, b) = b and
KL(a, 0) = +∞. For a given positive vector y ∈ R

I and a given nonnegative matrix
A = (aij ) ∈ R

I×J , all of whose column-sums are equal to one, and with no zero rows,
denote by ai the ith column of the transpose matrix AT (so that aij = aij ) and consider
the distance

KL(y,Ax) � Df (y,Ax) =
I∑

i=1

(
yi log

yi

〈ai, x〉 + 〈
ai, x

〉− yi

)
. (2.3)

We see that the function KL(y,Ax) is a proper convex function and can be extended
continuously to a function that takes finite values at all points x of the boundary of the
positive orthant for which the vector Ax has only positive entries. This extension is its
closure function. If there is no nonnegative vector x such that y = Ax, then the minimum
of the closure of KL(y,Ax) over the nonnegative orthant occurs on the boundary of the
nonnegative orthant, not in the interior.

Define the sets Ci as

Ci �
{
x ∈ R

J | x � 0,
〈
ai, x

〉 = yi
}
, (2.4)
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and let wi
j � aij , for all 1 � i � I and 1 � j � J . The Bregman functions fi(x) are

defined, for i = 1, 2, . . . , I , as

fi(x) �
J∑

j=1

aij (xj log xj − xj ), (2.5)

and the Bregman projection P
fi
Ci
(x) of a point x ∈ R

J+ onto Ci , is a member of Ci which
minimizes the distance

Dfi (z, x) =
J∑

j=1

wi
jKL(zj , xj ), (2.6)

over all z ∈ Ci ∩ R
J+. It is not difficult to verify that, in this case, Pfi

Ci
has the explicit

form (
P

fi
Ci
(x)
)
j

= xj
yi

〈ai , x〉 , 1 � j � J. (2.7)

If wi
j = 0, for some values of j , then there will be other members of Ci that also

minimize the distance given by (2.6).
It is important to note that if there is an index j for which xj = 0 but zj 
= 0 then

KL(z, x) = +∞. Therefore, when we seek the Bregman projection of x onto a closed
convex set Ci we must allow for the possibility that the Bregman distance from x to each
member of Ci is infinite and then we do not define the Bregman projection of x onto this
set. In our case, however, we see from (2.7) that (P fi

Ci
(x))j = 0 if and only if xj = 0, so

the Bregman distance from x to such Ci is always finite and the Bregman projection is
always defined.

The proximity function F of (1.2) is defined, in this case, as

F(x)�
I∑

i=1

Dfi

(
P

fi
Ci
(x), x

) =
I∑

i=1

J∑
j=1

aijKL
((
P

fi
Ci
(x)
)
j
, xj

)

=
I∑

i=1

J∑
j=1

aijKL

(
xj

yi

〈ai, x〉 , xj
)

= KL(y,Ax). (2.8)

The iterative step of the EMML algorithm is given by

xk+1
j =

I∑
i=1

wi
j

(
P

fi
Ci

(
xk
))

j
=

I∑
i=1

aij
xk
j yi

〈ai , xk〉 = xk
j

I∑
i=1

aij yi

〈ai, xk〉 , (2.9)

for all 1 � j � J . It is instructive to note that, for k = 1, 2, . . . , we have
∑J

j=1 x
k
j =∑I

i=1 yi and, therefore, the sequence {xk} is bounded. The F(x) of (2.8) clearly has
nonnegative minimizers and the following result holds (see Iusem [38,39], Vardi, Shepp
and Kaufman [52]).
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Theorem 2.1. Let the entries of x0 be positive. Any sequence {xk}k�0, generated by the
EMML algorithm (2.9), converges to a nonnegative vector that minimizes KL(y,Ax).

In the inconsistent case {x ∈ R
J | x � 0, Ax = y} = ∅ the nonnegative minimizer

of KL(y,Ax) is almost always unique, regardless of the values of I and J .

Definition 2.1. We say that a matrix A = (aij ) ∈ R
I×J has the full rank property (FRP)

if A and every submatrix obtained from A by deleting columns have full rank.

The following result can be found in Byrne [13, proposition 1].

Theorem 2.2. If A has the FRP and if y = Ax has no nonnegative solutions then there is
a subset L ⊆ {1, 2, . . . , J }, having at most I −1 elements, such that, for all nonnegative
minimizers x̂ � 0 of KL(y,Ax), x̂j > 0 only if j ∈ L. Consequently, there can be only
one such x̂.

According to this theorem, the minimizer of the proximity function exists only if
the function F(x) is extended, via the closure operation, to the boundary of the region
within which it is originally defined.

In [13,15] we compared the EMML algorithm to the closely related “Simultaneous
Multiplicative Algebraic Reconstruction Technique” (SMART). The iterative step of the
SMART algorithm is given by

xk+1
j = xk

j exp

(
I∑

i=1

aij log

(
yi

〈ai, xk〉
))

, (2.10)

for all j = 1, 2, . . . , J . The SMART minimizes the function KL(Ax, y) over the non-
negative orthant. While in the consistent case, C 
= ∅, the EMML algorithm converges
to some member of C, the SMART, in contrast, converges to that member of C for
which the cross-entropy (Kullback–Leibler) distance to the initial vector, KL(x, x0), is
minimized. When the entries of the initial vector x0 are all equal, the SMART converges
to the solution for which the Shannon entropy, ent x, is maximized.

There is no loss of generality in considering here only systems of linear equations
Ax = y in which all entries of the matrix A = (aij ) are nonnegative. This is so because
given an arbitrary matrix and rescaling if necessary, we may assume that, for each j , the
column sum

∑I
i=1 aij is nonzero. Now redefine A and x without changing the notation

as follows: replace akj by akj /
∑I

i=1 aij and xj by xj
∑I

i=1 aij . This leaves the product
Ax unchanged but the new A has all its column sums equal to one. The equality Ax = y

still holds, but now we know that y+ �
∑I

i=1 yi = ∑J
j=1 xj � x+. Let E be the matrix

whose entries are all one and let γ � 0 be a large enough scalar so that Anew = A+ γE

has all nonnegative entries. Then Anewx = Ax + (γ x+)e, where e is the vector whose
entries are all one. So the new system of equations to solve is Anewx = y + (γy+)e =
ynew.



84 BYRNE AND CENSOR

3. Preliminaries: Csiszár and Tusnády’s alternating minimization algorithm
and the lemma of Eggermont and LaRiccia

Our new fully simultaneous algorithm employs Bregman projections onto the convex
sets {Ci}Ii=1 in R

J . As will be seen below, the main algorithmic difference between
this algorithm and the multiprojections method of Censor and Elfving [21] (see also
[29, section 5.9]) is that here we use alternating minimizations, instead of successive
projections. For symmetric distances the two approaches coincide, as in the case of the
split feasibility problem discussed later. So far, convergence of the multiprojections
algorithm of Censor and Elfving has been shown only in the consistent case C 
= ∅; the
convergence results in this paper apply to both the consistent and inconsistent situations.
In the inconsistent case our algorithm becomes a minimization tool for the closure of the
proximity function F(x) defined originally for x ∈ U = ⋂I

i=1 Sfi by (1.2).
As we saw in the previous section, in the case of the EMML algorithm, the prox-

imity function F(x) may not have a minimizer within the open set U . In this case the
function F(x) was easily extended, from the positive orthant to portions of the boundary,
within which we are able to locate minimizers of KL(y,Ax). Following this example,
we shall consider, for the general case, minimizers of the closure of the proximity func-
tion F .

Csiszár and Tusnády describe in [32] an alternating minimization algorithm for
solving a proximity function minimization problem. Their problem involves only two
convex sets. However, using Pierra’s [47] product space reformulation of the CFP, the
alternating minimization algorithm can be applied to obtain simultaneous algorithms for
the general CFP. The alternating minimization algorithm derives its strength from two
important geometric properties, called the Three Point Property (3PP) and the Four Point
Property (4PP) in [32], of which we also make use here.

Given closed convex subsets Ci , i = 1, 2, . . . , I , with (possibly empty) intersec-
tion C �

⋂I
i=1 Ci , we reformulate the CFP in a product space framework. Following

Pierra [47], we let V be the product of I copies of the Euclidean space R
J , so that a

typical element v = (v1, v2, . . . , vI ) of V is such that vi ∈ R
J , i = 1, 2, . . . , I . We

define C = ∏I
i=1 Ci to be the product of all sets Ci , i.e., the subset of V consisting of

all v such that vi ∈ Ci , i = 1, 2, . . . , I , and we let D be the (“diagonal”) subspace of V
consisting of all v such that vi = x, i = 1, 2, . . . , I , where x ∈ R

J , and express this by
writing v = d(x). It is easy to verify that an element d(x∗) belongs to D ∩ C if and only
if x∗ ∈ ⋂I

i=1 Ci and, therefore, finding a solution of the two-sets feasibility problem in
V yields a solution of the original CFP in R

J .
In [21] Censor and Elfving obtain an iterative algorithm for solving the CFP by

performing successive Bregman projections onto C and D with respect to a Bregman
distance in V , given by,

Dλ(v,w) �
I∑

i=1

λiDfi (vi, wi), (3.1)
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where λ = (λi) ∈ R
I is a fixed vector such that all λi are positive and

∑I
i=1 λi = 1.

A different distance DF (v,w) between v ∈ S and w ∈ S , where S �
∏I

i=1 Si , is given
by

DF (v,w) =
I∑

i=1

Dfi (vi, wi), (3.2)

and it can be shown, along the same lines of proof of [21, lemma 3.1] (or see [29,
lemma 5.9.1]), that this is a Bregman distance in the product space V , induced by the
Bregman function F(v) �

∑I
i=1 fi(vi). With this distance at hand we propose to solve

the CFP by a simultaneous iterative algorithm that minimizes DF (α, β), over α ∈ C,
β ∈ D. If the CFP has a solution, then the minimum value will be zero. This approach
involves the alternating minimization method of Csiszár and Tusnády [32] which we
present now in a slightly simplified version.

Suppose that P and Q are two convex sets in the n-dimensional Euclidean
space R

n. Let &(p, q) be a real-valued function defined for all p ∈ P, q ∈ Q.

Algorithm 3.1 (The alternating minimization algorithm).
Initialization: q0 ∈ Q is arbitrary.
Iterative step: Given qk find pk+1 by solving

pk+1 = argmin
{
&
(
p, qk

) | p ∈ P
}
, (3.3)

then calculate qk+1 by solving

qk+1 = argmin
{
&
(
pk+1, q

) | q ∈ Q
}
. (3.4)

Assuming that all the minima exist, the pair of sequences {pk}, {qk} is obtained
and we then have the following monotonicity result.

Lemma 3.1. If all the minima in (3.3) and (3.4) exist then, for any pair of sequences
{pk}, {qk}, generated by algorithm 3.1, the sequence {&(pk, qk)} is decreasing.

Proof. For all k � 0, we have

&
(
pk, qk

)
� &

(
pk+1, qk

)
� &

(
pk+1, qk+1). (3.5)

�

To obtain further results Csiszár and Tusnády introduce two geometric axioms, the
Three Point Property (3PP) and the Four Point Property (4PP), which we discuss now.

Definition 3.1 (The three point property). The function &(p, q) has the 3PP if there
is a nonnegative-valued function )(p, p′), defined for all p, p′ ∈ P, such that, for
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every p ∈ P and for every pair of iterative sequences, generated by algorithm 3.1, the
inequality

&
(
p, qk

)
� )

(
p, pk+1)+ &

(
pk+1, qk

)
(3.6)

holds, for all k � 0.
In many applications &(p, q) � 0 and )(p, p′) = &(p, p′). As we shall see, this

holds for the distance function defined in (3.2).

Lemma 3.2. If all minima in (3.3) and (3.4) exist, if &(p, q) has the 3PP and if the
sequence {&(pk, qk)} is bounded below then the sequence {)(pk, pk+1)} converges to
zero.

Proof. Using the 3PP and the definitions of pk and qk , we have, for all k � 0,

&
(
pk, qk

)
� )

(
pk, pk+1)+ &

(
pk+1, qk

)
� )

(
pk, pk+1)+ &

(
pk+1, qk+1). (3.7)

Since {&(pk, qk)} is bounded below, the sequence {&(pk, qk) − &(pk+1, qk+1)} con-
verges to zero and the result follows. �

Suppose now that there exist p̂ ∈ P and q̂ ∈ Q for which &(p, q) is minimized
over all p ∈ P and q ∈ Q. From the 3PP we have

&
(
p̂, qk

)
� )

(
p̂, pk+1)+ &

(
pk+1, qk

)
, (3.8)

and we also have

&
(
p̂, qk

) = &
(
p̂, qk

)− &(p̂, q̂) + &(p̂, q̂). (3.9)

It follows then that

&
(
p̂, qk

)− &(p̂, q̂) � )
(
p̂, pk+1). (3.10)

We would like to have the related inequality

)
(
p̂, pk+1) � &

(
p̂, qk+1)− &(p̂, q̂), (3.11)

in order to establish the double inequality

&
(
p̂, qk

)
� )

(
p̂, pk+1

)+ &(p̂, q̂) � &
(
p̂, qk+1

)
, (3.12)

from which it would follow that the sequences {&(p̂, qk)} and (by rewriting (3.12) with
k + 1 instead of k) {)(p̂, pk)} are decreasing. The 4PP is precisely what we need to
establish the second part of the double inequality (3.12).

Definition 3.2 (The four point property). The function &(p, q) has the 4PP if there is
a nonnegative-valued function )(p, p′), defined for all p, p′ ∈ P, such that, for any
p ∈ P and q ∈ Q and for every pair of iterative sequences, generated by algorithm 3.1,
the following inequality holds,

)
(
p, pk

)+ &(p, q) � &
(
p, qk

)
. (3.13)
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Special cases of the double inequality (3.12) have appeared in the literature, al-
though it does not appear in [32] itself; see, e.g., Byrne [15], where it is used in the
proof of convergence of the EMML algorithm, and also in Matúš [45], in connection
with entropic projections. If there exist p̂ ∈ P and q̂ ∈ Q for which &(p, q) is mini-
mized over all p ∈ P and q ∈ Q, then we can conclude that the sequences {&(p̂, qk)}
and {)(p̂, pk)} are decreasing, but without further assumptions we cannot conclude that
{qk} is convergent.

We now apply the alternating minimization method of Csiszár and Tusnády and the
results given above, for &(p, q) in R

n, to the distance DF , defined by (3.2) in the product
space V . To do this we let n = I ×J , P = S ∩ C and Q = S and identify &(p, q) with
DF (v,w) (and in doing so we also take the freedom to use interchangeably (p, q) and
(v,w)). An assumption of “zone consistency” must be made that will guarantee that the
sequences {pk} and {qk} remain in S and S , respectively, throughout the iterations. The
3PP then follows from a basic inequality in the theory of Bregman distances, as will be
seen below.

In order to have the 4PP for DF we shall assume that each of the Bregman distances
Dfi (x, z) involved is jointly convex, that is, convex as a function of the concatenated
vector u = (x, z), so that DF in (3.2) is also a jointly convex Bregman distance. We
then invoke the following lemma, due to Eggermont and LaRiccia [36, lemma 2.11].

Lemma 3.3. A jointly convex Bregman distance DF has the 4PP with ) = DF , that
is, for any pair of sequences {pk}, {qk}, generated by algorithm 3.1, and any p ∈ P and
q ∈ Q, we have, for all k � 0,

DF
(
p, pk

)+ DF(p, q) � DF
(
p, qk

)
. (3.14)

Proof. By joint convexity we have the inequality

DF (p, q) � DF
(
pk, qk

)+ 〈∇1DF
(
pk, qk

)
, p−pk

〉+ 〈∇2DF
(
pk, qk

)
, q −qk

〉
, (3.15)

where, for i = 1, 2, ∇iDF (p, q) denotes the partial gradient of DF , with respect to the
ith vector variable, evaluated at (p, q). Since qk minimizes DF (pk, q) over q ∈ Q, we
have 〈∇2DF

(
pk, qk

)
, q − qk

〉
� 0. (3.16)

Using the definition of DF (see (1.1)), we obtain〈∇1DF
(
pk, qk

)
, p − pk

〉 = 〈∇F
(
pk
)− ∇F

(
qk
)
, p − pk

〉
. (3.17)

It follows then that

DF
(
p, qk

)− DF
(
p, pk

)=DF
(
pk, qk

)+ 〈∇1DF
(
pk, qk

)
, p − pk

〉
(3.18)

�DF (p, q) − 〈∇2DF
(
pk, qk

)
, q − qk

〉
� DF (p, q), (3.19)

from which the 4PP follows. �
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Since the set Q = S is not closed, it is unlikely that minimizers p̂ and q̂ exist.
As we saw in our discussion of the EMML algorithm, it is usually necessary to extend
the proximity function to a portion of the boundary of its original domain of definition.
Because the distances Dfi are jointly convex, the proximity function F of (1.2) that
we are trying to minimize is a proper convex function and its closure clF provides the
necessary finite extension to (part of) the boundary.

4. The new algorithm and its convergence theory

We turn now to our new iterative algorithm.

Algorithm 4.1.
Initialization: x0 ∈ U is arbitrary.
Iterative step: Given xk find, for all i = 1, 2, . . . , I , the projections P

fi
Ci
(xk) and calcu-

late xk+1 from
I∑

i=1

∇2fi
(
xk+1)xk+1 =

I∑
i=1

∇2fi
(
xk+1)Pfi

Ci

(
xk
)
, (4.1)

where ∇2fi(x
k+1) denotes the Hessian matrix (of second partial derivatives) of the func-

tion fi at xk+1.

As we shall see below, each xk+1 is obtained in this algorithm by minimizing the
function

Fk(x) �
I∑

i=1

Dfi

(
P

fi
Ci

(
xk
)
, x
)
, (4.2)

over all x ∈ U . For algorithm 4.1 to be well-defined we must, therefore, make the
following assumptions.

Assumption A1 (Zone consistency). For every i = 1, 2, . . . , I , if xk ∈ Sfi then
P

fi
Ci
(xk) ∈ Sfi .

Assumption A2. For every k = 1, 2, . . . , the function Fk(x) has a unique minimizer
within U .

Clearly, implementation of our algorithm requires solving a series of minimization
problems involving Bregman functions and Bregman projections. For particular Breg-
man functions and convex sets we can solve these problems in closed-form, as the exam-
ples in this paper illustrate. However, in most cases approximate techniques, such as the
“cyclic subgradient projection” method, see, e.g., Censor and Lent [26], are required.

The following propositions lead to our convergence theorem of algorithm 4.1. First
we use the lemma of Eggermont and LaRiccia.
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Proposition 4.1. In addition to assumptions A1 and A2, assume that each Bregman
distance Dfi is jointly convex. Let {xk} be any sequence generated by algorithm 4.1 and
let x, z ∈ U be arbitrary. Then we have the following inequality:

I∑
i=1

Dfi

(
P

fi
Ci
(x), P

fi
Ci

(
xk
))

�
I∑

i=1

Dfi

(
P

fi
Ci
(x), xk+1)−

I∑
i=1

Dfi

(
P

fi
Ci
(x), z

)
. (4.3)

Proof. In the product space V we construct from the distances Dfi the Bregman dis-
tance DF according to (3.2). The joint convexity of all Dfi ’s implies the joint convexity
of DF and lemma 3.3 applies. The vectors p, q, pk and qk of lemma 3.3 are all in the
product space V now and we identify pi with P

fi
Ci
(x), q with d(z), (pk)i with P

fi
Ci
(xk),

and qk with d(xk+1), respectively, and the result follows. �

Proposition 4.2. Under the assumptions of proposition 4.1, the sequence {F(xk)},
where {xk} is any sequence generated by algorithm 4.1, is decreasing.

Proof. From the definitions of F , Fk(x
k) and xk+1 in (1.2), (4.2) and (4.1), respectively,

we have

F
(
xk
) = Fk

(
xk
)

� Fk

(
xk+1

)
. (4.4)

The last inequality holds because xk+1 is, by assumption A2, by straightforward differen-
tiation of (4.2) and by (4.1), the minimizer of Fk(x) over U . Next we use a well-known
inequality in the theory of Bregman projections, see, e.g., [29, theorem 2.4.1], which
we quote in the appendix as theorem 6.1 for the reader’s convenience. Applying this
inequality for each Dfi separately (identifying xk+1, Pfi

Ci
and P

fi
Ci
(xk) here with y, P+

and z, in theorem 6.1, respectively) and summing up all inequalities over i = 1, 2, . . . , I ,
we then obtain

Fk

(
xk+1

)
� F

(
xk+1

)+
I∑

i=1

Dfi

(
P

fi
Ci

(
xk
)
, P

fi
Ci

(
xk+1

))
. (4.5)

Combining (4.4), (4.5) and the nonnegativity of the Dfi ’s – the result follows. �

Proposition 4.3. Under the assumptions of proposition 4.1 we have, for any sequence
{xk} generated by algorithm 4.1,

lim
k→∞F

(
xk
) = inf

{
clF(x) | x ∈ R

J
}
. (4.6)

Proof. Since {F(xk)} is a real nonnegative decreasing sequence it converges to a non-
negative limit, which we denote by φ. Clearly, we have φ � inf{clF(x) | x ∈ R

J }; to
prove equality we denote - = inf{clF(x) | x ∈ R

J } and assume, by way of negation,
that φ − - = δ > 0.

Select a v ∈ U such that F(xk) − F(v) � δ/2, for all k � 0. This is always
possible since there exists a sequence {ul} with F(ul) → -, as l → ∞ and, without
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loss of generality, we may assume that F(ul) � - + δ/2, for all l � 0. Therefore,
F(xk)−F(ul) � δ/2, for all k � 0 and all l � 0, and we can pick v = ul for some fixed
l � 0.

Using again the basic inequality in the theory of Bregman projections that we used
in the previous proposition, applying it for each Dfi separately (this time, identifying xk ,
P

fi
Ci

and P
fi
Ci
(v) here with y, P+ and z, in theorem 6.1, respectively) and summing up all

inequalities over i = 1, 2, . . . , I , we obtain, using also (1.2), that, for all k � 0,

I∑
i=1

Dfi

(
P

fi
Ci
(v), xk

)
�

I∑
i=1

Dfi

(
P

fi
Ci
(v), P

fi
Ci

(
xk
))+ F

(
xk
)
. (4.7)

In order to use the 4PP we apply lemma 3.3 in a way similar to how it was applied in the
proof of proposition 4.1. But we now identify p, q, pk and qk of lemma 3.3 as follows:
pi with P

fi
Ci
(v), q with d(v), (pk)i with P

fi
Ci
(xk), and qk with d(xk+1), respectively, and

get

I∑
i=1

Dfi

(
P

fi
Ci
(v), P

fi
Ci

(
xk
))

�
I∑

i=1

Dfi

(
P

fi
Ci
(v), xk+1

)−
I∑

i=1

Dfi

(
P

fi
Ci
(v), v

)
. (4.8)

From (4.7) and (4.8) we conclude that, for all k � 0,

I∑
i=1

Dfi

(
P

fi
Ci
(v), xk

)
�

I∑
i=1

Dfi

(
P

fi
Ci
(v), xk+1

)+ δ

2
. (4.9)

But since Bregman distances are always nonnegative and a decreasing sequence of non-
negative terms has successive differences that converge to zero, we get δ = 0, which is
a contradiction and the proof of the proposition is complete. �

Our convergence theorem for algorithm 4.1 now follows. Let F(x) be defined for
x ∈ U by (1.2) and for other x ∈ R

J let it be equal to +∞ and let the set of minimizers
of clF over R

J be denoted by 0. We also keep the notation - = inf{clF(x) | x ∈ R
J }.

There is a subtle point we must discuss before proceeding with the statement and
proof of our convergence theorem. It may seem obvious that if clF(x) = 0 for some
x then x is in the intersection C = ⋂I

i=1 Ci , so that C is not empty. We have been
unable to prove this, however. The problem reduces to showing that xk → x and
Dfi (P

fi
Ci
(xk), xk) → 0 imply P

fi
Ci
(xk) → x, for each i. This is true for separable Breg-

man functions fi , which are those most often employed in practice (see the remarks
following B5 in the appendix), and may be true more generally. We therefore make the
following assumption (see, however, also the “Note added in proof” at the end of the
paper):

Assumption A3. If clF(x) = 0 for some x then x is in C ∩ U .
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Theorem 4.1. Let assumptions A1, A2 and A3 hold and assume that the distances Dfi

are jointly convex, for all i = 1, 2, . . . , I . In addition, assume that the set 0 is nonempty.
If clF has a unique minimizer then any sequence {xk}, generated by algorithm 4.1,
converges to this minimizer. If 0 is not a singleton but - = 0, then the intersection C of
the sets Ci is nonempty and {xk} converges to a solution of the CFP.

Proof. Let {xk} be any sequence generated by algorithm 4.1. Assume first that clF
has a unique minimizer. From proposition 4.2 there is a β > 0 such that F(xk) =
clF(xk) � β, for all k � 0. We recall the useful result, see, e.g., Rockafellar [48,
corollary 8.7.1], which states that if the level set Lα = {x | G(x) � α} of a closed
proper convex function G is nonempty and bounded for a single value of α, then it
is bounded for every α. Therefore, if the set 0 of minimizers of clF is nonempty and
bounded then L- is nonempty and bounded, for G = clF . Consequently, Lβ is bounded,
implying that {xk} is bounded. In particular, if clF has a unique minimizer, then {xk}
is bounded. Let x∗ be any cluster point of {xk}. By the lower semi-continuity (see, e.g.,
Rockafellar [48, section 7]) of clF we know that clF(x∗) = -, so x∗ is unique and thus
limk→∞ xk = x∗.

Now suppose that 0 contains more then one element but - = 0, so that, by as-
sumption A3, the intersection C = ⋂I

i=1 Ci is nonempty. We take x̂ ∈ C ∩ U so that
clF(x̂) = 0. For this case we show now:

(i) that any sequence {xk}, generated by algorithm 4.1, is bounded;

(ii) that every cluster point of it x∗ is in the set C; and

(iii) that the sequence {xk} converges to x∗.

(i) Using once more the basic inequality in the theory of Bregman projections that
we used in previous propositions, applying it for each Dfi separately (this time, identi-
fying xk , Pfi

Ci
and x̂ here with y, P+ and z, in theorem 6.1, respectively) and summing

up all inequalities over i = 1, 2, . . . , I , we obtain

I∑
i=1

Dfi

(
x̂, xk

)
�

I∑
i=1

Dfi

(
P

fi
Ci

(
xk
)
, xk

)+
I∑

i=1

Dfi

(
x̂, P

fi
Ci

(
xk
))
. (4.10)

From the 4PP (3.14) we have

I∑
i=1

Dfi

(
x̂, P

fi
Ci

(
xk
))

�
I∑

i=1

Dfi

(
x̂, xk+1)−

I∑
i=1

Dfi (x̂, z), (4.11)

for any z ∈ U . This is obtained by identifying p with d(x̂), q with d(z), (pk)i with P
fi
Ci

and qk with d(xk), in lemma 3.3 and here, respectively. Therefore, combining (4.10)
and (4.11),

I∑
i=1

Dfi

(
x̂, xk

)
� - +

I∑
i=1

Dfi

(
x̂, xk+1

)−
I∑

i=1

Dfi (x̂, z). (4.12)
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Selecting now z ∈ U close enough to x̂ and using - = 0, it follows that, for all k � 0,

I∑
i=1

Dfi

(
x̂, xk

)
�

I∑
i=1

Dfi

(
x̂, xk+1

)
. (4.13)

This shows that the sequence {∑I
i=1 Dfi (x̂, x

k)} is decreasing, thus bounded and, since
the distance functions Dfi are always nonnegative, each {Dfi(x̂, x

k)} must be bounded.
Therefore, it follows from condition B3 in the definition of Bregman functions (consult
the appendix) that the sequence {xk} is bounded.

(ii) Let x∗ be any cluster point of {xk}. Since clF(x∗) = 0 it follows from assump-
tion A3 that x∗ is in the intersection of the sets Ci .

(iii) Using now x∗ in place of x̂ in the calculations above, we conclude that
{∑I

i=1 Dfi (x
∗, xk)} is decreasing and nonnegative, thus convergent. Since x∗ is a

cluster point of {xk} we use condition B4 in the definition of Bregman functions
(see the appendix) and obtain that for the subsequence of which x∗ is a limit
limk→∞

∑I
i=1 Dfi (x

∗, xk) = 0. Therefore, the entire sequence converges to zero and
it follows from condition B5 in the definition of Bregman functions (see the appendix)
that the sequence {xk} converges to x∗. �

A special case of algorithm 4.1 is the iterative method that we presented in [18].
There the functions fi are of the form

fi(x) =
J∑

j=1

w
j

i gj (xj ), (4.14)

where {wi
j } are nonnegative weights such that, for every j = 1, 2, . . . , J ,

∑I
i=1 w

i
j = 1,

and each gj (xj ) is a scalar Bregman function with associated Bregman distance (prime
denotes derivative):

dj (xj , zj ) = gj (xj ) − gj (zj ) − g′
j (zj )(xj − zj ). (4.15)

Then each Dfi has the form

Dfi (x, z) =
J∑

j=1

wi
jdj (xj , zj ). (4.16)

Equation (4.1) then simplifies and becomes (double prime denotes second derivative):

g′′
j

(
xk+1
j

)
xk+1
j

(
I∑

i=1

wi
j

)
= g′′

j

(
xk+1
j

) I∑
i=1

wi
j

(
P

fi
Ci

(
xk
))

j
, (4.17)

for all j = 1, 2, . . . , J , and algorithm 4.1 takes the following form.

Algorithm 4.2.
Initialization: x0 ∈ U is arbitrary.
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Iterative step: Given xk find, for all i = 1, 2, . . . , I , the projections P
fi
Ci
(xk) and calcu-

late xk+1 from

xk+1
j =

I∑
i=1

wi
j

(
P

fi
Ci

(
xk
))

j
. (4.18)

As noted in [18], special cases include Combettes’ iterative algorithm for
the Euclidean case [31] and the “Expectation Maximization Maximum Likelihood”
(EMML) method, as it occurs in emission tomography, presented in section 2. Algo-
rithm 4.2 was used by Censor, Gordon and Gordon in [22] to obtain a fast image recon-
struction method for sparse problems.

5. The split feasibility problem

Next we show how to apply algorithm 4.1 to another interesting problem discussed in
[21] by Censor and Elfving.

Problem 5.1 (The split feasibility problem). Given two closed convex sets C, Q in R
J

and an invertible matrix A, find x ∈ C such that Ax ∈ Q.

For the consistent case, in which there are such x that solve the problem, one can,
in principle, use the sequential projection method, projecting orthogonally successively
onto the two sets A(C) and Q, where A(C) is the image set of C under the mapping A.
However, the set A(C) may not be simple to describe and computing the orthogonal
projection onto it may not be easy since this orthogonal projection is equivalent to an
oblique projection onto C, followed by A (see [21, section 6.1]). Censor and Elfving
were motivated to consider multiprojection algorithms by the desire to replace the or-
thogonal projection onto A(C) by the orthogonal projection onto C.

The iterative step of their algorithm is the following

xk+1 = A−1(I + AAT)−1(
APC

(
xk
)+ AATPQ

(
Axk

))
, (5.1)

where A−1 and AT are the inverse and the transpose of A, respectively, and PC and
PQ are the orthogonal projections onto C and Q, respectively. In the consistent case, it
follows from [21] that any sequence {xk}, generated by (5.1), converges to x∗ ∈ C, such
that Ax∗ ∈ Q.

We put this algorithm into the framework discussed above and prove convergence
for the inconsistent case. Let f1(x) = 〈Ax,Ax〉 = ||Ax||2 and f2(x) = ||x||2, with
associated Bregman distances D1(x, z) = ||x − z||2

ATA
and D2(x, z) = ||x − z||2, where

||x||H = 〈x,Hx〉 is the “ellipsoidal norm”, for any given square symmetric positive
definite matrix H .
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Applying algorithm 4.1 yields the iterative procedure of (5.1) and now we con-
clude from theorem 4.1 that the iterative sequence converges in the inconsistent case to
a minimizer of the proximity function

F(x) = clF(x) = D1
(
P

f1
A(C)(x), x

) + D2
(
P

f2
Q (x), x

)
,

whenever such minimizers exist.

6. Summary

There are a number of iterative methods involving generalized Bregman projections onto
convex sets that can be used to solve the convex feasibility problem (CFP). Except for
the simultaneous multiprojection method of Censor and Elfving [21] these methods em-
ploy a single Bregman distance, with respect to which the projections are defined. Typ-
ically, these algorithms converge to a member of the intersection of the convex sets,
provided that intersection is nonempty. In this paper we have presented a simultaneous
multiprojection algorithm for the CFP, involving several distinct Bregman distances. We
assumed that these distances are jointly convex, so that the proximity function itself is
convex. When the intersection of the convex sets is nonempty, this algorithm converges
to a solution of the CFP. When the intersection of the convex sets is empty, the algo-
rithm converges to a minimizer of the closure of a proximity function that measures the
average distance to all convex sets, provided such a minimizer exists and is unique.

Note added in proof

The technical conditions appearing in assumptions A1–A3 are not expressed as condi-
tions on the problem parameters directly and, thus, the convergence of the algorithms
cannot be determined with certainty by examining these parameters before running the
algorithms.

We add to this observation two notes. First, zone consistency, appearing in assump-
tion A1, can be guaranteed if the functions fi are assumed to be Legendre functions, see
Bauschke and Borwein [4, theorem 3.14], where more details about the verifiability of
zone consistency can be found. Secondly, in a forthcoming paper, by Butnariu, Byrne
and Censor [7], we show that assumption A3 always holds.

Appendix: Bregman functions, distances and projections

Let S be a nonempty open convex set in R
J with closure S. Let f : S → R be differen-

tiable and define Df (x, z) : S × S → R by

Df (x, z) = f (x) − f (z) − 〈∇f (z), x − z
〉
. (6.1)

Following Censor, Iusem and Zenios [24], we say that f is a Bregman function with
zone S if the following conditions are satisfied.
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B1. f is continuous and strictly convex on S;

B2. f is twice continuously differentiable on S and its Hessian matrix ∇2f (x) is
positive-definite, for all x ∈ S;

B3. for any fixed x ∈ S the level sets {z | Df (x, z) � α} are bounded;

B4. if yk ∈ S and {yk} → y∗ then Df (y
∗, yk) → 0;

B5. if xk ∈ S and yk ∈ S, with {xk} bounded, {yk} → y∗ and Df (x
k, yk) → 0, then

{xk} → y∗.

Remarks.

(i) It can be shown that, if the Bregman function f is separable, then the condition
in B5 that {xk} be bounded is redundant.

(ii) As noted by Bauschke and Borwein [4, remark 4.2], conditions B1–B5 imply that
for any fixed z ∈ S the level sets {x | Df (x, z) � α} are also bounded.

(iii) If f is a Bregman function then Df is the Bregman distance associated with it. The
set S is referred to as the zone of f .

(iv) Condition B2 is often replaced with the weaker condition that f be continuously
differentiable on S.

(v) Solodov and Svaiter [49] showed recently that condition B5 is redundant.

Let C be a closed convex set in R
J and z ∈ S a given point. The Bregman projec-

tion of z onto C is the point Pf

C (z) ∈ C which minimizes Df (x, z) over all x ∈ C ∩ S.
Bregman projections exist and are unique provided that the set C is closed and convex
and that C ∩ S is nonempty (see, e.g., [29, lemma 2.1.2].) Furthermore, we assume that
P

f

C (z) ∈ S whenever z ∈ S (this is commonly called zone consistency.) The basic (and
useful) inequality expressed in the next theorem then holds, see, e.g., [29, theorem 2.4.1].

Theorem 6.1. Let f be a Bregman function with zone S and let + ⊆ R
J be a closed

convex set such that +∩ S 
= ∅. Assume that y ∈ S, implies P+(y) ∈ S. Let z ∈ +∩ S,
then for any y ∈ S the inequality

Df

(
P+(y), y

)
� Df (z, y) − Df

(
z, P+(y)

)
, (6.2)

holds.

In [4] Bauschke and Borwein introduced the class of Bregman/Legendre functions
and demonstrated that this class provides a suitable framework within which to treat
Bregman projections. The Bregman/Legendre functions include most of the common
Bregman functions, but the two classes are not identical.
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