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ABSTRACT

Radiation therapy concerns the delivery of a proper
dose of radiation to a tumor volume without causing
irreparable damage to healthy tissue and critical
organs. Radiation therapy treatment planning
(RTTP) involves a forvard problem and an inverse
problem. The first refers to calculating the dose

distribution delivered by a specified radiation
beam configuration to a measured patient cross
section. The inverse problem refers to calculating

and determining a radiation beam configuration that
will provide a specified dose distribution. Since
there exists no analytic closed-form mathematical
formulation of the forward operator, the inverse
problem actually calls for computerized inversion
of data. This is achievgg here by construction of
a fully discretized model leading to a system of

These inequalities are solved

linear inequalities.
either by (1) a row-action method or (2) a block-
Cimmino algorithm which allows the assignment of
veights within each block of inequalities. Conse-
quences and limitations of this new approach are
discussed.

1. INTRODUCTION

Radiation therapy treatment planning (RTTP) refers
to the process of specifying sufficient parameters
to achieve the goal of delivering a total radiation

dose such that it adequately controls the tumor
vhile sparing normal tissues and organs. These
parameters include precisely defining the position

of the tumor and other salient anatomic structures,

dose 1limits for the tumor and critical organs, and
radiation machine characteristics. Conceptually,
there are two separate problems. An  inverse

problem where the necessary beam configuration is
determined to deliver a specified dose to a
particular region and a forward problem of
calculating the dose distribution delivered to a
radiation field by a specific beam configuration.
Many clinical, physical, mathematical, radiation
beam computer simulation and radiobiological
considerations play a role in this process.
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Qur aim here is to construct a mathematical model
that will enable a computational solution to the

inverse problem involved in the treatment planning.
The novelty of our approach is that it aims at a
computational inversion of data for which mathemat-
ical inversion formulae cannot be satisfactorily
derived. Qur initial simulations show that this
method is capable of producing a clinically
acceptable treatment plan in an automated manner
[1-3]. The scope of this manuscript does not allow
a full exposition of every detail; such information
and pertinent references are available [1-4]}. Here
our discussion is restricted to the two-dimensional
(2D) case, 1i.e. the patient’s cross-section is
assumed planar and all radiation sources lie within
its plane. An important feature of our model and
method, however, is- its immediate conceptual
extension to three-dimensions (3D). The complexity
of parameters in 3D RTTP is markedly increased over
that in 2D RTTP. Whereas in 2D RTTP a ray is
specified by only two dimensions (gantry angle of
the source and angle relative to the central ray),
in 3D RTTP a ray requires four dimensions (the
gantry angle and patient transverse section for
source location, and two dimensions to locate the
ray in the beam window). Nevertheless, the same
model, which leads to a system of linear inequali-
ties, carries over exactly into 3D; only the
geometry involved in deriving the inequalities must
be modified. A systematic, rapid, accurate,
flexible, and - feasible simulation process has
obvious advantages against a tedious trial and
error method. By easing and improving the
application of RTTP, the potential rewards of more
precise 3D radiotherapy can be evaluated.

2. THE FORWARD AND INVERSE PROBLEMS

The empirical knowledge of the effects of
interaction between radiation and biological matter
can be symbolically represented by

D(r,8) = 8[p(u,vw)](r,0). ¢))

The
the

distribution
absorbed at

dose
dose

function D(r,8) represents
a point within a patient’s
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cross-section, whose polar coordinates are (r,©)
and p(u,w) is the radiation intensity distribution.
The latter function represents the radiation field
generated by fan-beam sources located at points of
a circle (the gantry circle) surrounding the cross-
section that has to be irradiated. In writing (1),
we implicitly assume the existence of an operator A

called the dose operator, which for any given
patient’s cross-section maps any given radiation
intensity distribution p(u,v) onto a uniquely

determined dose distribution D(r,©).

The forward problem of calculating D(r,6) for any
given p(u,w) cannot be described by a closed-form
mathematical expression. However, good experience

and partial formulas acquired over the years yield

today some widely wused software packages which
enable a computational solution of the forward
problem. Such computations are commonly referred

to as dosimetry.

We are interested in solving the inverse problem of
(1), i.e., to find a radiation intensity
distribution p(u,w) that, when applied to a given
cross-section, will deliver a prescribed dose
distribution D(r,6). The dose operator A cannot be
represented mathematically in a closed-form formula

without making many harsh assumptions which
idealize the description of the situation to an
extent that it becomes unrealistic. Therefore we

develop a model and a method that solve the inverse
problem computationally. This is well termed as
computational inversion of the data.

3. THE FEASIBILITY APPROACH AND FULL DISCRETIZATION

Our process for solving computationally the inverse

problem can be broken into twvo main phases which
are described schematically in Figures 2 and 3.
Two principal decisions lead to this method. The

first decision is to aim at a feasible solution
rather than aim at rigorous inversion at all. By
this ve mean that the physician treatment
prescriptions are assumed to be given in the form
of upper and lower bounds D(r,8) and D(r,®),
respectively, for the required and permitted doses
everyvherer within the patient’s cross-section.
This leads to the problem of finding a radiation
intensity distribution p(u,w) which will satisfy

D(r,8) < 8[p(u,w)](r,0) < D(r,0), (2)

for all (r,8) in the patient's cross—-section.

The second decision is to fully discretize the
model before hand. The patient's cross—section is
discretized into a finite fine grid of points given
by {(rj,ej)} ,3=1,2, 000,30, This 1is a standard

procedure which 1is commonly used. But, in addi-~
tion, we also discretize the parameter space of the
radiation beam sources via {(ui,wi)},i=1,2,...,1.

This process of full discretization leads to the
following system of linear interval inequalities,
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D, <D djs <Dy, 3eL,2,000,0,
i=1
3)
x, 20, i=1,2,...,I.

Here Bj = Q(rj,ej), Dj

= B(ri,GJ) are given
by the physician. The unknowns {xi}, i=1,2,...,I,

are the ray weights of the individual rays into
which the fan-beam sources of radiation have been
discretized, and dij 1s the dose deposited at the

point (rj,ej) due to a unit intensity of radiation’

along the i-th ray. The fully discretized model is
described in Figure 1 where the grid points in the

cross-section are represented by square pixels
numbered consecutively from 1 to J.- T represents
a target for which a dose is prescribed. - Organs

Bl’ BZ’ and B3, are 'critical', with upper limits

imposed on permitted dose. C is the complimentary
part of the cross-section, the normal tissue back-
ground, which also has a bound to the dose it can
tolerate. The ray weights, indexed with pairs of
indices in Figure 1, are to be identified with the

xi's‘in the text.

4. ITERATIVE ALGORITHMS

In [1] we applied to the system (3) the relaxation
method of Agmon, Motzkin, and Schoenberg (AMS).
This 1s a row-action method in the terminology of
[5], where details and references may be found. At
present [4], we use another iterative algorithm
which performs projections simultaneousl
halfspaces determined by tHE*§§§E55_1§T? This is
our newly developed block-Cimmino algorithm [4]
which is a block version of the Cimmino's algorithm
for linear inequalities discussed in [6-7]. This
algorithm allows us to lump inequalities related to
all pixels of the same organ into blocks and
process them simultaneously. Within each block we
may assign weights to inequalities, thereby biasing
the resulting solution towards additional
information given by the physician regarding the
relative importance of various regions within each
organ. Another advantage of Cimmino's algorithm
over the AMS-algorithm 1is that 1t produces a
convergent sequence of iterates even if the system
(3) is inconsistent, i.e., has no solution.

When the iterative algorithm is applied to the
system (3), the computations are stopped after a

finite number of iterations. The current iterate
k

k
X = (xi)§=1, which i1s an I-dimensional vector, is

taken as an approximate solution to the system (3).
This 1is called the basic solution and its
components are the individual ray weights
i=1,2,...,I.

Xi,

onto the



5. DERIVATION OF A BASIC SOLUTION AND A CLINICAL

‘TREATMENT PLAN

We conclude by briefly discussing several further
details as depicted in Figures 2 and 3. All blocks
in these diagrams are numbered consecutively for
easy reference. Block 3 represents and assumes the
availability of a state-of-the-art computer program
for forward calculation. Given discretization data
for pixels, beams, and rays (block 1), and data
about the patient's cross—section and.the treatment
machine parameters (block 2), it calculates the
numbers {Dsj}’ s=1,2,¢44,5; j=1,2,...,J. Each Dsj

is the dose absorbed at location j of the cross-—
section (i.e., (rj,Gj)) due to a unit intensity of

radiation from source s
The apportionment scheme of block 4 distributes
these values among individual rays. The resulting

dij'S are the coefficients of the system (3) which

needs also the physician requirements from block 5.
An iterative algorithm in block 7 produces then an
approximate basic solution of ray weights.

on the gantry circle.

If a treatment machine existed which could deliver
pencil thin single rays of controlled intensity,
then the basic solution could have been implemented
clinically. Since this is not the case, we use
this solution as input to the process described in
Figure 3 which first employs a beam reduction
scheme which extracts from the basic individual ray
solution a «clinically acceptable treatment plan.

After reducing the number of beams, we correct the
plan to incorporate the effect of scattered
radiation. Initially the calculations in the
system of Figure 2 wvere for primary dose only.

More details are included in [4].
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