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Hilbert C*-modules

Definition
Let .# be a C*-algebra. A Hilbert C*-module over ./ is a linear
space, which is a right .#Z-module E with a function
(-,"): Ex E — # (called a rigging), satisfying
Q ((,¢) >0, and equality holds iff { =0
@ (¢,-) is linear and (¢,na) = ((,n) a
@ (&, =10

that is complete with respect to the norm ||C]| := H(C, C>1/2H//[.
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Hilbert C*-modules

Q@ .# :=C and E := H is a Hilbert space.
@ E := ., with the rigging (a, b) := a*b. Denoted by .# 4.

© X is a locally compact Hausdorff space and H is a Hilbert
space. Take .#Z := Go(X) and E := Go(X, H).
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Hilbert C*-modules

Q@ .# :=C and E := H is a Hilbert space.
@ E := ., with the rigging (a, b) := a*b. Denoted by .# 4.

© X is a locally compact Hausdorff space and H is a Hilbert
space. Take .#Z := Go(X) and E := Go(X, H).

Direct sums

If (E;), is a family of Hilbert C*-modules over .Z, let @@, E; be the
Hilbert C*-module defined to be the set of all (¢;); € [], & such
that

|

Z (Ci,¢i) converges in ./ .

/

The rigging is defined “as usual™:
((€i)y > (mi)y) ZCH”I .
I
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Hilbert C*-modules

Definition (Adjointable operators)

Let E, F be Hilbert C*-modules over .#. We denote by L(E, F)
the Banach space of all adjointable operators from E to F; that is,
all functions T : E — F admitting a function T* : F — E satisfying

(VCGEWGF) (TC’U>F:<C7 T>k77>E

Such a function is necessarily a linear operator, an .Z-module map
(T(¢a) = (T(¢)a) and bounded with respect to the norms on E, F.
The space L(E) := L(E,E) is a C*-algebra.
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ooe
Hilbert C*-modules

Definition (Adjointable operators)

Let E, F be Hilbert C*-modules over .#. We denote by L(E, F)
the Banach space of all adjointable operators from E to F; that is,
all functions T : E — F admitting a function T* : F — E satisfying

(VCGEWGF) (TC’U>F:<C7 T*n>E

Such a function is necessarily a linear operator, an .Z-module map
(T(¢a) = (T(¢)a) and bounded with respect to the norms on E, F.
The space L(E) := L(E,E) is a C*-algebra.

Not all bounded module maps are adjointable

Take .# := C([0,1]), J :={f € # : f(0) =0} < .4 and
E:=#®7J. Then T : E — E defined by T(f,g) :=(g,0) is a
bounded module map, but it is not adjointable.
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C*-correspondences

Definition

A Hilbert C*-module E over .# is a C*-correspondence if it is also
a left .#-module, with multiplication on the left given by
adjointable operators.

That is: there exists a *~homomorphism ¢ : .# — L(E) such that
a- ( is defined to be p(a)( forae .# and ( € E.
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C*-correspondences

Definition

A Hilbert C*-module E over .# is a C*-correspondence if it is also
a left .#-module, with multiplication on the left given by
adjointable operators.

That is: there exists a *~homomorphism ¢ : .# — L(E) such that
a- ( is defined to be p(a)( forae .# and ( € E.

| A\

SEES
Q@ # =C, E=H and p(a)¢ = aC.
@ E = ./ and ¢ is an endomorphism of .Z .

A\
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C*-correspondences

Definition (Interior tensor product)

Suppose that:
© E,F are Hilbert C*-modules over .#, 4 respectively.
Q o:.# — L(F)is a *-homomorphism.

Denote by E ®,jg F the algebraic tensor product of E and F
balanced by o, that is: ((a) @ n = ( ® o(a)n. This is an
A -module. Give it the rigging

(GL®m, ®mn) = (m,o ({C1,02)) m)F -

The interior tensor product of E and F, denoted by E ®, F, is the
completion of this module. It is a Hilbert C*-module over 4.




Preliminaries
ooe

C*-correspondences

Two important examples

@ E,F are both C*-correspondences over .#. Take o = ¢f (the
implementation of left multiplication in F). Then E ®,, F is a
C*-correspondence over ./ .

@ E is a Hilbert C*-module over .#, H is a Hilbert space, and o
is a (perhaps degenerate) C*-representation of .# on H.
Then E ®, H is a Hilbert space.
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Covariant representations

Fix a C*-correspondence E over ./ .

A pair (T,0) is called a covariant representation of E on H if:
© o is a nondegenerate C*-representation of .# on H.
@ T :E — B(H) is a linear mapping.
© T is a bimodule map with respect to o, that is:
T(a¢) =0(a)T(¢), T(¢a) = T(¢)o(a) for all ¢ € E and
ae M.
(T,0) is called completely contractive in case T is completely

contractive with respect to the structure of the “linking algebra” of
A and E.

(T,0) is called isometric if the following condition holds for all
¢,n € E:

T(C) T(n) = o ((¢;n)
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Covariant representations

© Take E = .# = C. There is a bijection between completely
contractive, covariant representations of £ on H and
contractions in B(#) given by (T,0) — T(1).
(T,o) is isometric <= T(1) is an isometry.
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Covariant representations

© Take E = .# = C. There is a bijection between completely
contractive, covariant representations of £ on H and
contractions in B(#) given by (T,0) — T(1).

(T,o) is isometric <= T(1) is an isometry.

Q@ Take .#Z = C and E = C9. There is a bijection between
completely contractive, covariant representations of £ on H
and row contractions of length d in B(#) given by
(T,o)— (T(e1),..., T(eq)).

(T,0) is isometric <= T(e1),..., T(eq) are all isometries.
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Two operator algebras

Definition (The Fock space)

FE)=PE"=M0EDE" ...

neZy

Definition
Given a € ./, define the operator v (a) € L(F(E)) of left
multiplication by a as follows:

0o(a) (DL BO®...) =alp®al1 Dal ...

Given ¢ € E, define the creation (shift) operator S(¢) € L(F(E))
by “left tensoring” with . That is, for all n € Z, and n € E®",

S(C)n=C¢®ne ES,
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Two operator algebras

The pair (S, o) is an isometric covariant representation of £ on
F(E):
Q ¢ : A — L(F(E)) is a *-homomorphism.
@ S:E— L(F(E)) is linear and S(a¢) = ¢oo(a)S(C),
5(¢a) = 5(Opeo(a)-
© 5(€)"5(n) = weol(Cm))-
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Two operator algebras

The pair (S, o) is an isometric covariant representation of £ on
F(E):
Q ¢ : A — L(F(E)) is a *-homomorphism.
@ S:E— L(F(E)) is linear and S(a¢) = ¢oo(a)S(C),
5(¢a) = 5(Opeo(a)-
© 5(€)"5(n) = weol(Cm))-

This is actually not accurate, as F(E) is not necessarily a Hilbert
space. To overcome this “obstacle”, let w denote a faithful
C*-representation of L(F(E)) on some Hilbert space . Now
consider the pair (7 0 S, 0 v ) instead of (S, poo)-
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Two operator algebras

Definitions

© The Toeplitz algebra, T(E), is the C*-subalgebra of L(F(E))
generated by {¢(a) :a € .#} and {S(¢) : ¢ € E}.

@ The tensor algebra, T, (E), is the non-selfadjoint subalgebra of
L(F(E)) generated by the same operators.
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Two operator algebras

© The Toeplitz algebra, T(E), is the C*-subalgebra of L(F(E))
generated by {¢(a) :a € .#} and {S(¢) : ¢ € E}.

@ The tensor algebra, T, (E), is the non-selfadjoint subalgebra of
L(F(E)) generated by the same operators.

SEE
Take E = .# = C. Then:




Product Systems
ocoeo

Two operator algebras

© The Toeplitz algebra, T(E), is the C*-subalgebra of L(F(E))
generated by {¢(a) :a € .#} and {S(¢) : ¢ € E}.

@ The tensor algebra, T, (E), is the non-selfadjoint subalgebra of
L(F(E)) generated by the same operators.

SEE
Take E = .# = C. Then:
o F(E) = ly(Zy) = H(T).
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Two operator algebras

© The Toeplitz algebra, T(E), is the C*-subalgebra of L(F(E))
generated by {¢(a) :a € .#} and {S(¢) : ¢ € E}.

@ The tensor algebra, T, (E), is the non-selfadjoint subalgebra of
L(F(E)) generated by the same operators.

SEE
Take E = .# = C. Then:
o F(E) = ly(Zy) = H(T).
e 7. (E) is the non-selfadjoint algebra generated by the
unilateral shift taking e, to eny1. Therefore T (E) = A(D),

the disc algebra (consisting of all functions in C(DD) that are
analytic on ).
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Two operator algebras

© The Toeplitz algebra, T(E), is the C*-subalgebra of L(F(E))
generated by {¢(a) :a € .#} and {S(¢) : ¢ € E}.

@ The tensor algebra, T, (E), is the non-selfadjoint subalgebra of
L(F(E)) generated by the same operators.

SEE
Take E = .# = C. Then:

o F(E) = ly(Zy) = H(T).

e 7. (E) is the non-selfadjoint algebra generated by the
unilateral shift taking e, to eny1. Therefore T (E) = A(D),
the disc algebra (consisting of all functions in C(ID) that are
analytic on ).

o T(E) is the C*-algebra generated by the unilateral shift. It
equals the subalgebra {T7 : f € C(T)} + K of B(H?(T)).
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Two operator algebras

Take .# = C and E = C?. Then:
Q@ F(E)=CoCip(CH*?g...
@ 7.(E) is Popescu’s non-commutative, multidimensional disc
algebra 27.

@ T (E) is the Toeplitz extension of the Cuntz algebra Oy.

Take E = ./ and let ¢ be an automorphism of .Z.
@ T(E) is the Toeplitz extension of .# x, Z.
@ TL(E) is the “analytic crossed product” of .# by Z determined
by .
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Universality

Theorem (Pimsner, 1997)

If (T,o) is an isometric covariant representation of E on H, then
there exists a C*-representation m of T(E) on H, such that

m(5(C)) = T(C) and m(poo(a)) = o(a)-
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Universality

Theorem (Pimsner, 1997)

If (T,o) is an isometric covariant representation of E on H, then
there exists a C*-representation m of T(E) on H, such that

m(5(C)) = T(C) and m(poo(a)) = o(a)-

In other words: there is a bijection between isometric covariant
representations of E and C*-representations of T (E).
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Universality

Theorem (Pimsner, 1997)

If (T,o) is an isometric covariant representation of E on H, then
there exists a C*-representation m of T(E) on H, such that

m(5(C)) = T(C) and m(poo(a)) = o(a)-

In other words: there is a bijection between isometric covariant
representations of E and C*-representations of T (E).

In other words (2): the Toeplitz algebra is the universal C*-algebra
generated by an isometric covariant representation of E.
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Universality

Theorem (Muhly and Solel, 1998)

If (T,o) is a completely contractive, covariant representation of E
on H, then there exists a (completely contractive) representation m
of TH(E) on H, such that m(S(¢)) = T(¢) and w(po(a)) = o(a).
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Universality

Theorem (Muhly and Solel, 1998)

If (T,o) is a completely contractive, covariant representation of E
on H, then there exists a (completely contractive) representation m

of TH(E) on H, such that m(S(¢)) = T(¢) and w(po(a)) = o(a).

In other words: there is a bijection between completely contractive,
covariant representations of E and completely contractive
representations of T (E).




Product Systems
oce

Universality

Theorem (Muhly and Solel, 1998)

If (T,o) is a completely contractive, covariant representation of E
on H, then there exists a (completely contractive) representation m

of TH(E) on H, such that m(S(¢)) = T(¢) and w(po(a)) = o(a).

In other words: there is a bijection between completely contractive,
covariant representations of E and completely contractive
representations of T (E).

In other words (2): the tensor algebra is the universal
non-selfadjoint algebra generated by a completely contractive,
covariant representation of E.
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The Wold decomposition

Theorem (Wold decomposition for isometries)

Every isometry V. may be written as the direct sum
V =(5® Ip) ® U where:

@ S is the unilateral shift.
@ D is some Hilbert space.

© U is unitary.
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The Wold decomposition

Theorem (Wold decomposition for isometries)

Every isometry V. may be written as the direct sum
V =(5® Ip) ® U where:

@ S is the unilateral shift.
@ D is some Hilbert space.
© U is unitary.

Theorem (Muhly and Solel, 1999)

Every isometric covariant representation V of E on H may be
written as the direct sum V(¢) = (S(¢) ® Ip) ® V(¢), where?:

© D is a subspace of H.

Q V! is a fully coisometric, isometric, covariant representation of
E.

?S(+) ® Ip is the induced representation of S(-) on F(E) ®, D
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Basics

Definition

A subproduct system? is a family X = (X(n)),cz, of

C*-correspondences over the C*-algebra .# := X(0), such that
X(n+m) € X(n) ® X(m),

and moreover, X(n + m) is orthogonally complementable in
X(n) ® X(m), for all n,m e Z.

?in the “standard” form
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Basics

Definition
A subproduct system? is a family X = (X(n)),cz, of
C*-correspondences over the C*-algebra .# := X(0), such that

X(n+m) € X(n) ® X(m),

and moreover, X(n + m) is orthogonally complementable in
X(n) ® X(m), for all n,m e Z.

?in the “standard” form

Setting E := X(1), we have X(n) C E®". Denote by p, € L(E®")
the orthogonal projection of E®" on X(n).
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Basics

Definition (The X-Fock space)

Fx =P X(n)=s dEDXQ2)®X(3)D... C F(E)

neZ
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Basics

Definition (The X-Fock space)

Fx =P X(n)=# oEdXQ2)®X(3)... C F(E)

neZ

Definition (The creation operators (X-shifts))
Given n € Z, and ¢ € X(n), define an operator SX(¢) € L(Fx) by

Sa ()0 = Po+m(C ® )

for m € Z4 and n € X(m).
That is, upon writing P := D, pn € L(F(E)), we have

Sx(6) = PSa(Q)yzx-
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Basics

@ The C*-subalgebra of L(Fx) generated by
{SX(¢):n€Zy,( € X(n)} is called the Toeplitz algebra of
X. It is denoted by T(X).

@ The non-selfadjoint subalgebra of £(Fx) generated by the
same operators is called the tensor algebra of X. It is denoted

by T+ (X).

SEPE

Fix a C*-algebra .#, and take X(n) := E®", n € Z,. This
subproduct system is called a product system. We have:

o Fx = F(E).
° 5¢(a) = poo(a) and S{(C) = S(C).
o T(X)=T(E)and T(X) = T;(E).
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Covariant representations of subproduct systems

Let X = (X(n)),cz, be a fixed subproduct system.

Definition
A family T = (Tp),cz, is called a covariant representation of X if
the following conditions hold with o := Ty:

© For every n € Z., (Tph,0) is a covariant representation of the
C*-correspondence X(n).

@ For every n,me Z4, ¢ € X(n) and n € X(m),

Tn+m(pn+m(C & 77)) = Tn(C) Tm(n)

The covariant representation is called completely contractive if T,
is completely contractive for all n.
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Covariant representations of subproduct systems

If X is a product system, there is a bijection between completely
contractive, covariant representations of X on H

and

completely contractive, covariant representations of £ on H, given
by

T (Tl, TO)
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Universality, C*-representability

Definition

A completely contractive, covariant representation T of a
subproduct system X on H extends to a C*-representation if there
exists a C*-representation 7 of 7(X) on H such that

m(Sx(€)) = Ta(Q)-




Subproduct systems
®00

Universality, C*-representability

Definition

A completely contractive, covariant representation T of a
subproduct system X on H extends to a C*-representation if there
exists a C*-representation 7 of 7(X) on H such that

m(Sx(€)) = Ta(Q)-

As we have seen, if X is a product system, then

T extends to a C*-representation <= T is isometric.
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Universality, C*-representability

Definition

A completely contractive, covariant representation T of a
subproduct system X on H extends to a C*-representation if there
exists a C*-representation 7 of 7(X) on H such that

m(Sx(€)) = Ta(Q)-

As we have seen, if X is a product system, then

T extends to a C*-representation <= T is isometric.

This is not true for general subproduct systems. In fact, even in the
simplest examples, there is not “convenient” relation describing
compositions such as SX(¢)*SX(n) and SX(¢)SX(n)*.
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Universality, C*-representability

@ Are the algebras 7(X), T;-(X) universal in some sense?

@ When does a (completely contractive) covariant representation
extend to a C*-representation?
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Universality, C*-representability

Theorem (V., 2009)

If T is a completely contractive, covariant representation of X on
‘H, then there exists a (completely contractive) representation w of
T+ (X) on H, such that 7(SX(C)) = Ta(¢) for all n € Z.,,

¢ € X(n).
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Universality, C*-representability

Theorem (V., 2009)

If T is a completely contractive, covariant representation of X on
‘H, then there exists a (completely contractive) representation w of
T+ (X) on H, such that 7(SX(C)) = Ta(¢) for all n € Z.,,

¢ € X(n).

In other words: there is a bijection between completely contractive,
covariant representations of X and completely contractive
representations of T, (X).
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Universality, C*-representability

Theorem (V., 2009)

If T is a completely contractive, covariant representation of X on
‘H, then there exists a (completely contractive) representation w of
T+ (X) on H, such that 7(SX(C)) = Ta(¢) for all n € Z.,,

¢ € X(n).

In other words: there is a bijection between completely contractive,
covariant representations of X and completely contractive
representations of T, (X).

In other words (2): the tensor algebra is the universal
non-selfadjoint algebra generated by a completely contractive,
covariant representation of X.
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An important example: the symmetric subproduct system

Fix d € N. The symmetric tensor product ((Cd)©n is defined to be
the subspace of ((Cd)®" spanned by {z R --Qz:z€ (Cd}.
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An important example: the symmetric subproduct system

Definition

O|
3

Fix d € N. The symmetric tensor product (Cd)

is defined to be

the subspace of ((Cd)®" spanned by {z R --Qz:z€ (Cd}.
The projection p, of ((Cd)®n on ((Cd)©n is defined by

pr(z1® - @ z,) = ,Zzw(1)®

7 ranging over all permutations of {1,2,..., n}.

Zn(n)s
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An important example: the symmetric subproduct system

Definition

Fix d € N. The symmetric tensor product ((Cd)©n is defined to be
the subspace of ((Cd)®" spanned by {z R --Qz:z€ (Cd}.
The projection p, of ((Cd)®n on ((Cd)©n is defined by

Pn(zl ¥ ® Zn - | Z (1) & - 7r(n)a

7 ranging over all permutations of {1,2,..., n}.

Example

Take d = 2. Then ((C2)®2 is spanned by €1 ® €1, & ® e and
€1 Qe+ e ®er. In particular, g ® & — e ® €1 does not belong

to (C2)®?
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An important example: the symmetric subproduct system

Definition

The subproduct system defined by SSP, := ((Cd)®”)nez+ is called

the symmetric subproduct system.
Particularly, #Z = C and E = (oL

There is a bijection between the completely contractive, covariant
representations of SSP4 on ‘H

and

commuting row contractions of length d on H, given by
T — (Tl(el), e T1(ed)).
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An important example: the symmetric subproduct system

When does a completely contractive, covariant representations of
SSP, extend to a C*-representation?
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An important example: the symmetric subproduct system

When does a completely contractive, covariant representations of
SSP, extend to a C*-representation?

Definition
A d-tuple of operators (T(1),..., T(d)) over H is spherical if
T(1),..., T(d) are commuting normal operators satisfying

T)T(L)*+...+ T(d)T(d)* = Iy.
This is a d-dimensional “counterpart” of unitary operators.

A completely contractive, covariant representation Z of SSP if
called spherical if (Z1(e1),...,Z1(eq)) is spherical.
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An important example: the symmetric subproduct system

When does a completely contractive, covariant representations of
SSP, extend to a C*-representation?

Definition
A d-tuple of operators (T(1),..., T(d)) over H is spherical if
T(1),..., T(d) are commuting normal operators satisfying

T)T(L)*+...+ T(d)T(d)* = Iy.
This is a d-dimensional “counterpart” of unitary operators.

A completely contractive, covariant representation Z of SSP if
called spherical if (Z1(e1),...,Z1(eq)) is spherical.

If By denotes the unit ball of C%, then the tuple (My,, ..., M,,) is
spherical in L2(0By).
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An important example: the symmetric subproduct system

Theorem (Arveson, 1998)

Let T be a completely contractive, covariant representations of
SSPy. Then T extends to a C*-representation <= there exist a
Hilbert space D and a spherical covariant representation Z of SSPy
such that

Ti(ex) = (57574 (er) ® Ip) @ Z1(ex)
forall1 < k <d.
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An important example: the symmetric subproduct system

Theorem (Arveson, 1998)

Let T be a completely contractive, covariant representations of
SSPy. Then T extends to a C*-representation <= there exist a
Hilbert space D and a spherical covariant representation Z of SSPy
such that

Ti(ex) = (57574 (er) ® Ip) @ Z1(ex)
forall1 < k <d.

The proof:
Relies on the fine structure of T(SSPy):

T(SSP4)/K = C(9By).

It is thus not reproducible in the general case.
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Background: covariant representations of a (single) C*-correspondence

Let E be a C*-correspondence over a C*-algebra .Z.

Definition

Given a covariant representation (T,0) of E on H, define an
operator T : E ®, H — H by

T(C® h) == T(¢)h.

T is convenient to use since it is an operator between two Hilbert
spaces.

Proposition

© T is completely contractive <= T is a well-defined
contraction.

@ T is isometric < T is an isometry.
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Background: covariant representations of a (single) C*-correspondence

The following are equivalent:

O T extends to a C*-representation.
© T is an isometric covariant representation.

© Tisan isometry.
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Pure and fully coisometric covariant representations

Suppose that X = (X(n))

T = (Tn)n€Z+
of X on H.

nez, 1S 2 subproduct system and
is a completely contractive, covariant representation
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Pure and fully coisometric covariant representations

Suppose that X = (X(n))
T = (Tn)n€Z+
of X on H.
Q@ ForneZy, Tp: X(n) — B(H) is a completely contractive,
covariant representation of X(n) on H. Hence
Th: X(n) ®; H — H is a well-defined contraction.

nez, 1S 2 subproduct system and
is a completely contractive, covariant representation
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Pure and fully coisometric covariant representations

Suppose that X = (X(n)),c, is a subproduct system and
T = (Tn)pez, is @ completely contractive, covariant representation

of X on H.
Q@ ForneZy, Tp: X(n) — B(H) is a completely contractive,
covariant representation of X(n) on H. Hence
Th: X(n) ®; H — H is a well-defined contraction.
@ The sequence ?n?;nem is a decreasing sequence of positive
contractions in B(H). It thus possesses a strong limit, Q. T is
called pure if @ = 0.
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Pure and fully coisometric covariant representations

Suppose that X = (X(n))
T = (Tn)n€Z+
of X on H.
Q@ ForneZy, Tp: X(n) — B(H) is a completely contractive,
covariant representation of X(n) on H. Hence
Th: X(n) ®; H — H is a well-defined contraction.
@ The sequence ?n?;nem is a decreasing sequence of positive

contractions in B(H). It thus possesses a strong limit, Q. T is
called pure if @ = 0.

nez, 1S 2 subproduct system and
is a completely contractive, covariant representation

© T is said to be fully coisometric in case T 7',;* = Iy for all
ne Z+. o
(It is enough to check for n = 1: i.e,, that T1 T = Iy.)
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Pure and fully coisometric covariant representations

O If X = (X(n))pez, is a subproduct system and D is a Hilbert
space, then the induced covariant representation
(SX() @ Ip) nez, 1S pUre.

Q If (T(1),...,T(d)) is a spherical tuple (of commuting
operators), then the matching covariant representation of
SSP, is fully coisometric.
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Pure and fully coisometric covariant representations

The C*-representability question

Pimsner’s proof is not applicable in the subproduct systems
case, even to predict which covariant representations extend to
C*-representations.
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Pure and fully coisometric covariant representations

The C*-representability question

Pimsner’s proof is not applicable in the subproduct systems
case, even to predict which covariant representations extend to
C*-representations.

Motivated by a Wold decomposition-like dilation theorem, we
divide first the problem to two cases: the pure and the fully
coisometric.
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The pure case

A completely contractive, covariant representation T of a
subproduct system X on H is called relatively isometric if:

© The maps 7',,, n € Zy, are all partig/ Lsometries.
Denote by A, the projection Iy — T1 T

@ Forall n€Z, and ¢ € X(n),

A, TH(C)* Tn(C)A* =0 (<Cv C>) A,

Theorem (V., 2010)

The following are equivalent:

O T is relatively isometric.

@ There exist Hilbert spaces U, D and a fully coisometric,
covariant representation Z of X on U such that

Ta(C) = (55(¢) ® Ip) ® Za(€).
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The pure case

If T is relatively isometric and pure, then Tp(() = S,f(({) Q Ip, e,

T is an induced representation. It therefore extends to a
C*-representation (m : T(X) — L(Fx ®, D) is defined by
7T(A) =A®Ip).
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The pure case

The corollary gives only sufficiency. What about necessity?
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The pure case

The corollary gives only sufficiency. What about necessity?

Proposition

If X is a product system and T is a pure completely contractive,
covariant representation of X, then the following are equivalent:

© T isisometric (<= T extends to a C*-representation).

@ T is relatively isometric.
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The pure case

The corollary gives only sufficiency. What about necessity?

If X is a product system and T is a pure completely contractive,
covariant representation of X, then the following are equivalent:

© T isisometric (<= T extends to a C*-representation).
@ T is relatively isometric.

Proposition

If X is a subproduct system such that £ = X(1) is a finite
dimensional Hilbert space and T is a pure completely contractive,
covariant representation of X, then the following are equivalent:

O T extends to a C*-representation.
@ T is relatively isometric.
Example: X = SSPy.




C *-representability
oooe

The pure case

X = (X(n))pez, is a subproduct system satisfying X(n) = {0} for
all n > ng.

Fix a completely contractive, covariant representation T of X on H.
Recall that T, : X(n) ®; H — H is defined by
Ta(C® h) == T,(¢)h. Hence T, =0 for all n > np, and thus

Q =slimp00 ToT; =0, thatis, T is automatically pure. Thus T
extends to a C*-representation if it is relatively isometric.
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The fully coisometric case

Theorem (V., 2010)

Let T be a fully coisometric, covariant representation of the
subproduct system X on H that satisfies

Jim [|(pe ® ho)(n @ ?Z*fmh)HX(Z)@)aH = ITm(mhlly, (1)

for all m € N, n € X(m) and h € H. Then T extends to a
C*-representation.
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The fully coisometric case

Theorem (V., 2010)

Let T be a fully coisometric, covariant representation of the
subproduct system X on H that satisfies

Jim [|(pe ® ho)(n @ ?Z*fmh)HX(Z)@)aH = ITm(mhlly, (1)

for all m € N, n € X(m) and h € H. Then T extends to a
C*-representation.

The sequence {||(pr ® hy)(n ® Ték*mh)”X(g)@g’H}EZm is decreasing,
so that the its limit always exists, and it is greater than or equal to

I Tm(1)hll3-
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The fully coisometric case

What about necessity?
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The fully coisometric case

What about necessity?

Proposition

If X is a product system and T is a fully coisometric, covariant
representation of X, then the following are equivalent:

Q@ T is isometric (<= T extends to a C*-representation).
@ Condition (1) holds.
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The fully coisometric case

And if E = X(1) is a finite dimensional Hilbert space?
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The fully coisometric case

And if E = X(1) is a finite dimensional Hilbert space?

Nothing to which we can compare Condition (1)—aside from the
symmetric product system, no other case has yet been studied
individually.
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The fully coisometric case

And if E = X(1) is a finite dimensional Hilbert space?

Nothing to which we can compare Condition (1)—aside from the
symmetric product system, no other case has yet been studied
individually.

Theorem

Let T be a fully coisometric, covariant representation of SSP 4.
Then the following are equivalent:
Q T is spherical (< T extends to a C*-representation)
@ T satisties Condition (1).
Being more specific, we prove that the limit in (1) equals
|| Tm(n)*h||. Therefore (1) holds if and only if

| Tm(n)*h|| = || Tm(n)hl|, that is, Tm(n) is normal for all m,n, as
desired.
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General covariant representations

Recall the definition @ := s-lim,_o 7',77',’,‘

If T is a completely contractive, covariant representation of X on
H, such that

@O T is relatively isometric, and
Q limioo||(pe ® Q)0 ® Té*—mh)HX(€)®gH = [ITm(n) @hlly, for
all suitable m,n, h.

Then there exist Hilbert spaces U, D and a fully coisometric,
covariant representation Z of X on U, which extends to a
C*-representation, such that

Ta(¢) = (S5(Q) ® Ip) @ Za(Q).

In particular, T extends to a C*-representation.




Additions & comments

@ Dilations of completely contractive, covariant representations.
@ Von Neumann inequalities
@ The W*-setting:

A is a von Neumann algebra
Hilbert W*-modules
W*-correspondences
covariant representations
Fock space
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Additions & comments

Questions?
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