Product Systems

Subproduct systems

C*-representability

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Covariant Representations of Subproduct Systems

Ami Viselter

Technion

April 8, 2010

Hilbert C*-modules

Product Systems

Subproduct systems

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Definition

Let \mathscr{M} be a C^* -algebra. A Hilbert C^* -module over \mathscr{M} is a linear space, which is a right \mathscr{M} -module E with a function $\langle \cdot, \cdot \rangle : E \times E \to \mathscr{M}$ (called a rigging), satisfying a) $\langle \zeta, \zeta \rangle \ge 0$, and equality holds iff $\zeta = 0$ c) $\langle \zeta, \cdot \rangle$ is linear and $\langle \zeta, \eta a \rangle = \langle \zeta, \eta \rangle a$ c) $\langle \zeta, \eta \rangle^* = \langle \eta, \zeta \rangle$ that is complete with respect to the norm $\|\zeta\| := \|\langle \zeta, \zeta \rangle^{1/2}\|_{\mathscr{M}}$.

Pre	imin	aries
0.00	000	

Subproduct systems

C*-representability

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Hilbert C^* -modules

Examples

- $\mathcal{M} := \mathbb{C}$ and $E := \mathcal{H}$ is a Hilbert space.
- $\ \, {\it O} \ \, E:=\mathscr{M} \text{, with the rigging } \langle a,b\rangle:=a^*b. \ \, \text{Denoted by } \mathscr{M}_{\mathscr{M}}.$
- X is a locally compact Hausdorff space and \mathcal{H} is a Hilbert space. Take $\mathcal{M} := C_0(X)$ and $E := C_0(X, \mathcal{H})$.

Pre	imin	aries
000	000	

Subproduct systems

C*-representability

Hilbert C*-modules

Examples

- $\mathcal{M} := \mathbb{C}$ and $E := \mathcal{H}$ is a Hilbert space.
- ${\it O} \ \, E:=\mathscr{M}, \ \, \text{with the rigging } \langle a,b\rangle:=a^*b. \ \, \text{Denoted by } \mathscr{M}_{\mathscr{M}}.$

• X is a locally compact Hausdorff space and \mathcal{H} is a Hilbert space. Take $\mathcal{M} := C_0(X)$ and $E := C_0(X, \mathcal{H})$.

Direct sums

If $(E_i)_I$ is a family of Hilbert C^* -modules over \mathcal{M} , let $\bigoplus_I E_i$ be the Hilbert C^* -module defined to be the set of all $(\zeta_i)_I \in \prod_I E_i$ such that

$$\sum_{I} \langle \zeta_i, \zeta_i \rangle \text{ converges in } \mathcal{M}.$$

The rigging is defined "as usual":

$$\langle (\zeta_i)_I, (\eta_i)_I \rangle := \sum_I \langle \zeta_i, \eta_i \rangle.$$

Hilbert C*-modules

Product Systems

Subproduct systems

C*-representability

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Definition (Adjointable operators)

Let E, F be Hilbert C^* -modules over \mathscr{M} . We denote by $\mathcal{L}(E, F)$ the Banach space of all *adjointable* operators from E to F; that is, all functions $T : E \to F$ admitting a function $T^* : F \to E$ satisfying

$$(\forall \zeta \in E, \eta \in F) \qquad \langle T\zeta, \eta \rangle_F = \langle \zeta, T^*\eta \rangle_E.$$

Such a function is necessarily a linear operator, an \mathcal{M} -module map $(\mathcal{T}(\zeta a) = (\mathcal{T}\zeta)a)$ and bounded with respect to the norms on E, F. The space $\mathcal{L}(E) := \mathcal{L}(E, E)$ is a C^* -algebra.

Hilbert C*-modules

Product Systems

Subproduct systems

C*-representability

Definition (Adjointable operators)

Let E, F be Hilbert C^* -modules over \mathscr{M} . We denote by $\mathcal{L}(E, F)$ the Banach space of all *adjointable* operators from E to F; that is, all functions $T : E \to F$ admitting a function $T^* : F \to E$ satisfying

$$(\forall \zeta \in E, \eta \in F) \qquad \langle T\zeta, \eta \rangle_F = \langle \zeta, T^*\eta \rangle_E$$

Such a function is necessarily a linear operator, an \mathcal{M} -module map $(\mathcal{T}(\zeta a) = (\mathcal{T}\zeta)a)$ and bounded with respect to the norms on E, F. The space $\mathcal{L}(E) := \mathcal{L}(E, E)$ is a C^* -algebra.

Not all bounded module maps are adjointable

Take $\mathscr{M} := C([0,1])$, $\mathcal{J} := \{f \in \mathscr{M} : f(0) = 0\} \trianglelefteq \mathscr{M}$ and $E := \mathscr{M} \oplus \mathcal{J}$. Then $T : E \to E$ defined by T(f,g) := (g,0) is a bounded module map, but it is not adjointable.

Preliminaries	Product Systems	Subproduct systems	C*-representability
000000			
C*-correspondences			

Definition

A Hilbert C^* -module E over \mathcal{M} is a C^* -correspondence if it is also a *left* \mathcal{M} -module, with multiplication on the left given by adjointable operators.

That is: there exists a *-homomorphism $\varphi : \mathcal{M} \to \mathcal{L}(E)$ such that $a \cdot \zeta$ is defined to be $\varphi(a)\zeta$ for $a \in \mathcal{M}$ and $\zeta \in E$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Preliminaries	Product Systems	Subproduct systems	C*-representability
000000			
C*-correspondences			

Definition

A Hilbert C^* -module E over \mathcal{M} is a C^* -correspondence if it is also a *left* \mathcal{M} -module, with multiplication on the left given by adjointable operators.

That is: there exists a *-homomorphism $\varphi : \mathcal{M} \to \mathcal{L}(E)$ such that $a \cdot \zeta$ is defined to be $\varphi(a)\zeta$ for $a \in \mathcal{M}$ and $\zeta \in E$.

うして ふゆう ふほう ふほう うらつ

Examples

1
$$\mathcal{M} = \mathbb{C}, \ \mathcal{E} = \mathcal{H} \ \mathsf{and} \ \varphi(\alpha)\zeta = \alpha\zeta.$$

2 $E = \mathcal{M}$ and φ is an endomorphism of \mathcal{M} .

C*-correspondences

Product Systems

Subproduct systems

Definition (Interior tensor product)

Suppose that:

- E, F are Hilbert C^* -modules over \mathcal{M}, \mathcal{N} respectively.
- 2 $\sigma: \mathcal{M} \to \mathcal{L}(F)$ is a *-homomorphism.

Denote by $E \otimes_{a \mid g} F$ the algebraic tensor product of E and F balanced by σ , that is: $(\zeta a) \otimes \eta = \zeta \otimes \sigma(a)\eta$. This is an \mathcal{N} -module. Give it the rigging

$$\langle \zeta_1 \otimes \eta_1, \zeta_2 \otimes \eta_2 \rangle := \langle \eta_1, \sigma(\langle \zeta_1, \zeta_2 \rangle) \eta_2 \rangle_F.$$

The interior tensor product of *E* and *F*, denoted by $E \otimes_{\sigma} F$, is the completion of this module. It is a Hilbert *C**-module over \mathcal{N} .

Preliminaries 00000● Product Systems

Subproduct systems

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

C*-correspondences

Two important examples

- E, F are both C*-correspondences over M. Take σ = φ_F (the implementation of left multiplication in F). Then E ⊗_{φ_F} F is a C*-correspondence over M.
- *E* is a Hilbert C*-module over *M*, *H* is a Hilbert space, and σ is a (perhaps degenerate) C*-representation of *M* on *H*. Then E ⊗_σ *H* is a Hilbert space.

Subproduct systems

Covariant representations

Fix a C^* -correspondence E over \mathcal{M} .

Definition

A pair (T, σ) is called a *covariant representation* of E on \mathcal{H} if:

- $\ \, \bullet \ \, \sigma \ \, \text{is a nondegenerate} \ \, C^*\text{-representation of} \ \, \mathcal{M} \ \, \text{on} \ \, \mathcal{H}.$
- 2 $T: E \to B(\mathcal{H})$ is a linear mapping.
- T is a bimodule map with respect to σ , that is: $T(a\zeta) = \sigma(a)T(\zeta), \ T(\zeta a) = T(\zeta)\sigma(a)$ for all $\zeta \in E$ and $a \in \mathcal{M}$.

 (T, σ) is called *completely contractive* in case T is completely contractive with respect to the structure of the "linking algebra" of \mathcal{M} and E.

 (T, σ) is called *isometric* if the following condition holds for all $\zeta, \eta \in E$:

$$T(\zeta)^* T(\eta) = \sigma(\langle \zeta, \eta \rangle)$$

Product Systems

Subproduct systems

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Examples

Covariant representations

Take E = M = C. There is a bijection between completely contractive, covariant representations of E on H and contractions in B(H) given by (T, σ) → T(1). (T, σ) is isometric ⇔ T(1) is an isometry.

Product Systems

Subproduct systems

Covariant representations

Examples

- Take E = M = C. There is a bijection between completely contractive, covariant representations of E on H and contractions in B(H) given by (T, σ) → T(1). (T, σ) is isometric ⇔ T(1) is an isometry.
- Take M = C and E = C^d. There is a bijection between completely contractive, covariant representations of E on H and row contractions of length d in B(H) given by (T, σ) → (T(e₁),...,T(e_d)). (T, σ) is isometric ⇔ T(e₁),...,T(e_d) are all isometries.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 の�?

Product Systems

Subproduct systems

Two operator algebras

Definition (The Fock space)

$$\mathcal{F}(E) := \bigoplus_{n \in \mathbb{Z}_+} E^{\otimes n} = \mathscr{M} \oplus E \oplus E^{\otimes 2} \oplus \dots$$

Definition

Given $a \in \mathcal{M}$, define the operator $\varphi_{\infty}(a) \in \mathcal{L}(\mathcal{F}(E))$ of left multiplication by a as follows:

$$arphi_\infty(\mathsf{a})(\zeta_0\oplus\zeta_1\oplus\zeta_2\oplus\ldots):=\mathsf{a}\zeta_0\oplus\mathsf{a}\zeta_1\oplus\mathsf{a}\zeta_2\oplus\ldots$$

Given $\zeta \in E$, define the creation (shift) operator $S(\zeta) \in \mathcal{L}(\mathcal{F}(E))$ by "left tensoring" with ζ . That is, for all $n \in \mathbb{Z}_+$ and $\eta \in E^{\otimes n}$,

$$S(\zeta)\eta := \zeta \otimes \eta \in E^{\otimes (n+1)}.$$

Preliminaries	Product Systems	Subproduct systems	C*-representability
	00000000		
Two operator algebras			

The pair (S, φ_{∞}) is an *isometric* covariant representation of E on $\mathcal{F}(E)$:

ション ふゆ アメリア メリア しょうくしゃ

• $\varphi_{\infty} : \mathcal{M} \to \mathcal{L}(\mathcal{F}(E))$ is a *-homomorphism.

• $S: E \to \mathcal{L}(\mathcal{F}(E))$ is linear and $S(a\zeta) = \varphi_{\infty}(a)S(\zeta)$, $S(\zeta a) = S(\zeta)\varphi_{\infty}(a)$.

Preliminaries	Product Systems	Subproduct systems	C*-representability
000000	00000000	00000000000	0000000000000000
Two operator algebras			

The pair (S, φ_{∞}) is an *isometric* covariant representation of E on $\mathcal{F}(E)$:

• $\varphi_{\infty} : \mathcal{M} \to \mathcal{L}(\mathcal{F}(E))$ is a *-homomorphism.

2
$$S: E \to \mathcal{L}(\mathcal{F}(E))$$
 is linear and $S(a\zeta) = \varphi_{\infty}(a)S(\zeta)$,
 $S(\zeta a) = S(\zeta)\varphi_{\infty}(a)$.

Remark

This is actually not accurate, as $\mathcal{F}(E)$ is not necessarily a Hilbert space. To overcome this "obstacle", let π denote a *faithful* C^* -representation of $\mathcal{L}(\mathcal{F}(E))$ on some Hilbert space \mathcal{H} . Now consider the pair $(\pi \circ S, \pi \circ \varphi_{\infty})$ instead of (S, φ_{∞}) .

Product Systems

Subproduct systems

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Two operator algebras

Definitions

- The Toeplitz algebra, T(E), is the C*-subalgebra of L(F(E)) generated by {φ_∞(a) : a ∈ M} and {S(ζ) : ζ ∈ E}.
- The tensor algebra, T₊(E), is the non-selfadjoint subalgebra of L(F(E)) generated by the same operators.

Product Systems

Subproduct systems

C*-representability

Two operator algebras

Definitions

- The Toeplitz algebra, T(E), is the C*-subalgebra of L(F(E)) generated by {φ_∞(a) : a ∈ M} and {S(ζ) : ζ ∈ E}.
- The tensor algebra, T₊(E), is the non-selfadjoint subalgebra of L(F(E)) generated by the same operators.

Example

Take $E = \mathcal{M} = \mathbb{C}$. Then:

Product Systems

Subproduct systems

C*-representability

Two operator algebras

Definitions

- The Toeplitz algebra, T(E), is the C*-subalgebra of L(F(E)) generated by {φ_∞(a) : a ∈ M} and {S(ζ) : ζ ∈ E}.
- The tensor algebra, T₊(E), is the non-selfadjoint subalgebra of L(F(E)) generated by the same operators.

Example

Take $E = \mathcal{M} = \mathbb{C}$. Then:

• $\mathcal{F}(E) \cong \ell_2(\mathbb{Z}_+) \cong H^2(\mathbb{T}).$

Product Systems

Subproduct systems

C*-representability

Two operator algebras

Definitions

- The Toeplitz algebra, T(E), is the C*-subalgebra of L(F(E)) generated by {φ_∞(a) : a ∈ M} and {S(ζ) : ζ ∈ E}.
- The tensor algebra, T₊(E), is the non-selfadjoint subalgebra of L(F(E)) generated by the same operators.

Example

Take $E = \mathcal{M} = \mathbb{C}$. Then:

- $\mathcal{F}(E) \cong \ell_2(\mathbb{Z}_+) \cong H^2(\mathbb{T}).$
- $\mathcal{T}_+(E)$ is the non-selfadjoint algebra generated by the unilateral shift taking e_n to e_{n+1} . Therefore $\mathcal{T}_+(E) \cong A(\mathbb{D})$, the disc algebra (consisting of all functions in $C(\overline{\mathbb{D}})$ that are analytic on \mathbb{D}).

Product Systems

Subproduct systems

C*-representability

Two operator algebras

Definitions

- The Toeplitz algebra, T(E), is the C*-subalgebra of L(F(E)) generated by {φ_∞(a) : a ∈ M} and {S(ζ) : ζ ∈ E}.
- The tensor algebra, T₊(E), is the non-selfadjoint subalgebra of L(F(E)) generated by the same operators.

Example

Take $E = \mathcal{M} = \mathbb{C}$. Then:

- $\mathcal{F}(E) \cong \ell_2(\mathbb{Z}_+) \cong H^2(\mathbb{T}).$
- $\mathcal{T}_+(E)$ is the non-selfadjoint algebra generated by the unilateral shift taking e_n to e_{n+1} . Therefore $\mathcal{T}_+(E) \cong A(\mathbb{D})$, the disc algebra (consisting of all functions in $C(\overline{\mathbb{D}})$ that are analytic on \mathbb{D}).
- *T*(*E*) is the C*-algebra generated by the unilateral shift. It equals the subalgebra {*T_f* : *f* ∈ C(T)} + K of B(H²(T)).

Product Systems

Subproduct systems

Two operator algebras

Example

- Take $\mathcal{M} = \mathbb{C}$ and $E = \mathbb{C}^d$. Then:
 - $\mathcal{F}(E) = \mathbb{C} \oplus \mathbb{C}^d \oplus (\mathbb{C}^d)^{\otimes 2} \oplus \ldots$
 - \$\mathcal{T}_+(E)\$ is Popescu's non-commutative, multidimensional disc algebra \$\mathcal{A}_d\$.
 - $\mathcal{T}(E)$ is the Toeplitz extension of the Cuntz algebra \mathcal{O}_d .

Example

- Take $E = \mathscr{M}$ and let φ be an automorphism of \mathscr{M} .
 - $\mathcal{T}(E)$ is the Toeplitz extension of $\mathscr{M} \rtimes_{\varphi} \mathbb{Z}$.
 - *T*₊(E) is the "analytic crossed product" of *M* by Z determined by φ.

Preliminaries
Universality

Subproduct systems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Pimsner, 1997)

If (T, σ) is an <u>isometric</u> covariant representation of E on \mathcal{H} , then there exists a C^* -representation π of $\mathcal{T}(E)$ on \mathcal{H} , such that $\pi(S(\zeta)) = T(\zeta)$ and $\pi(\varphi_{\infty}(a)) = \sigma(a)$.

Preliminaries
Universality

Subproduct systems

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Theorem (Pimsner, 1997)

If (T, σ) is an <u>isometric</u> covariant representation of E on \mathcal{H} , then there exists a C^* -representation π of $\mathcal{T}(E)$ on \mathcal{H} , such that $\pi(S(\zeta)) = T(\zeta)$ and $\pi(\varphi_{\infty}(a)) = \sigma(a)$.

In other words: there is a bijection between isometric covariant representations of E and C^* -representations of $\mathcal{T}(E)$.

Preliminaries
Universality

Subproduct systems

ション ふゆ アメリア メリア しょうくしゃ

Theorem (Pimsner, 1997)

If (T, σ) is an <u>isometric</u> covariant representation of E on \mathcal{H} , then there exists a C^* -representation π of $\mathcal{T}(E)$ on \mathcal{H} , such that $\pi(S(\zeta)) = T(\zeta)$ and $\pi(\varphi_{\infty}(a)) = \sigma(a)$.

In other words: there is a bijection between isometric covariant representations of E and C^* -representations of $\mathcal{T}(E)$.

In other words (2): the Toeplitz algebra is the <u>universal</u> C^* -algebra generated by an isometric covariant representation of E.

Preliminaries
Universality

Subproduct systems

Theorem (Muhly and Solel, 1998)

If (T, σ) is a <u>completely contractive</u>, covariant representation of Eon \mathcal{H} , then there exists a (completely contractive) representation π of $\mathcal{T}_+(E)$ on \mathcal{H} , such that $\pi(S(\zeta)) = T(\zeta)$ and $\pi(\varphi_{\infty}(a)) = \sigma(a)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Preliminaries
Universality

Subproduct systems

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem (Muhly and Solel, 1998)

If (T, σ) is a <u>completely contractive</u>, covariant representation of Eon \mathcal{H} , then there exists a (completely contractive) representation π of $\mathcal{T}_+(E)$ on \mathcal{H} , such that $\pi(S(\zeta)) = T(\zeta)$ and $\pi(\varphi_{\infty}(a)) = \sigma(a)$.

In other words: there is a bijection between completely contractive, covariant representations of E and completely contractive representations of $\mathcal{T}_+(E)$.

Subproduct systems

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Theorem (Muhly and Solel, 1998)

If (T, σ) is a <u>completely contractive</u>, covariant representation of Eon \mathcal{H} , then there exists a (completely contractive) representation π of $\mathcal{T}_{+}(E)$ on \mathcal{H} , such that $\pi(S(\zeta)) = T(\zeta)$ and $\pi(\varphi_{\infty}(a)) = \sigma(a)$.

In other words: there is a bijection between completely contractive, covariant representations of E and completely contractive representations of $\mathcal{T}_+(E)$.

In other words (2): the tensor algebra is the <u>universal</u> non-selfadjoint algebra generated by a completely contractive, covariant representation of E.

Product Systems ○○○○○○○● Subproduct systems

C*-representability

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

The Wold decomposition

Theorem (Wold decomposition for isometries)

Every isometry V may be written as the direct sum $V = (S \otimes I_D) \oplus U$ where:

- S is the unilateral shift.
- **2** \mathcal{D} is some Hilbert space.
- O is unitary.

Product Systems ○○○○○○○● Subproduct systems

The Wold decomposition

Theorem (Wold decomposition for isometries)

Every isometry V may be written as the direct sum $V = (S \otimes I_D) \oplus U$ where:

- **1** *S* is the unilateral shift.
- **2** \mathcal{D} is some Hilbert space.

O is unitary.

Theorem (Muhly and Solel, 1999)

Every isometric covariant representation V of E on \mathcal{H} may be written as the direct sum $V(\zeta) = (S(\zeta) \otimes I_{\mathcal{D}}) \oplus V^{\mathrm{f}}(\zeta)$, where^a:

- **1** \mathcal{D} is a subspace of \mathcal{H} .
- V^f is a <u>fully coisometric</u>, isometric, covariant representation of E.

 ${}^{s}S(\cdot)\otimes I_{\mathcal{D}}$ is the *induced representation* of $S(\cdot)$ on $\mathcal{F}(E)\otimes_{\sigma}\mathcal{D}$

Pre	im	in	ri	e	
000					

Basics

Product Systems

Subproduct systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Definition

A subproduct system^a is a family $X = (X(n))_{n \in \mathbb{Z}_+}$ of C^* -correspondences over the C^* -algebra $\mathcal{M} := X(0)$, such that

 $X(n+m) \subseteq X(n) \otimes X(m),$

and moreover, X(n + m) is orthogonally complementable in $X(n) \otimes X(m)$, for all $n, m \in \mathbb{Z}_+$.

"in the "standard" form

	rel	im		а	ri	e	

Basics

Subproduct systems

Definition

A subproduct system^a is a family $X = (X(n))_{n \in \mathbb{Z}_+}$ of C^* -correspondences over the C^* -algebra $\mathcal{M} := X(0)$, such that

 $X(n+m) \subseteq X(n) \otimes X(m),$

and moreover, X(n + m) is orthogonally complementable in $X(n) \otimes X(m)$, for all $n, m \in \mathbb{Z}_+$.

'in the "standard" form

Setting E := X(1), we have $X(n) \subseteq E^{\otimes n}$. Denote by $p_n \in \mathcal{L}(E^{\otimes n})$ the orthogonal projection of $E^{\otimes n}$ on X(n).

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Basics

Product System

Subproduct systems

C*-representability

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Definition (The X-Fock space)

$$\mathcal{F}_X := \bigoplus_{n \in \mathbb{Z}_+} X(n) = \mathscr{M} \oplus E \oplus X(2) \oplus X(3) \oplus \ldots \subseteq \mathcal{F}(E)$$

Basics

Product Systems

Subproduct systems

C*-representability

Definition (The X-Fock space)

$$\mathcal{F}_X := \bigoplus_{n \in \mathbb{Z}_+} X(n) = \mathscr{M} \oplus E \oplus X(2) \oplus X(3) \oplus \ldots \subseteq \mathcal{F}(E)$$

Definition (The creation operators (X-shifts))

Given $n \in \mathbb{Z}_+$ and $\zeta \in X(n)$, define an operator $S_n^X(\zeta) \in \mathcal{L}(\mathcal{F}_X)$ by

$$S_n^X(\zeta)\eta := p_{n+m}(\zeta \otimes \eta)$$

for $m \in \mathbb{Z}_+$ and $\eta \in X(m)$. That is, upon writing $P := \bigoplus_{n \in \mathbb{Z}_+} p_n \in \mathcal{L}(\mathcal{F}(E))$, we have

$$S_n^X(\zeta) = PS_n(\zeta)_{|\mathcal{F}_X}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Basics

Product Systems

Subproduct systems

C*-representability

Definitions

- The C*-subalgebra of L(F_X) generated by
 {S^X_n(ζ) : n ∈ Z₊, ζ ∈ X(n)} is called the *Toeplitz algebra* of
 X. It is denoted by T(X).
- **2** The non-selfadjoint subalgebra of $\mathcal{L}(\mathcal{F}_X)$ generated by the same operators is called the *tensor algebra* of X. It is denoted by $\mathcal{T}_+(X)$.

Example

Fix a C*-algebra \mathcal{M} , and take $X(n) := E^{\otimes n}$, $n \in \mathbb{Z}_+$. This subproduct system is called a *product* system. We have:

•
$$\mathcal{F}_X = \mathcal{F}(E)$$
.

•
$$S_0^X(a)=arphi_\infty(a)$$
 and $S_1^X(\zeta)=S(\zeta).$

• $\mathcal{T}(X) = \mathcal{T}(E)$ and $\mathcal{T}_+(X) = \mathcal{T}_+(E)$.

Product Systems

Subproduct systems

C*-representability

ション ふゆ アメリア メリア しょうくしゃ

Covariant representations of subproduct systems

Let
$$X = (X(n))_{n \in \mathbb{Z}_+}$$
 be a fixed subproduct system.

Definition

A family $T = (T_n)_{n \in \mathbb{Z}_+}$ is called a *covariant representation* of X if the following conditions hold with $\sigma := T_0$:

- For every $n \in \mathbb{Z}_+$, (T_n, σ) is a covariant representation of the C^* -correspondence X(n).
- 3 For every $n, m \in \mathbb{Z}_+$, $\zeta \in X(n)$ and $\eta \in X(m)$,

$$T_{n+m}(p_{n+m}(\zeta \otimes \eta)) = T_n(\zeta)T_m(\eta).$$

The covariant representation is called *completely contractive* if T_n is completely contractive for all n.

Product Systems

Subproduct systems

C*-representability

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Covariant representations of subproduct systems

If X is a *product* system, there is a bijection between completely contractive, covariant representations of X on \mathcal{H}

and

completely contractive, covariant representations of ${\it E}$ on ${\it H},$ given by

$T\mapsto (T_1, T_0)$

Product Systems

Subproduct systems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

Universality, C^* -representability

A completely contractive, covariant representation T of a subproduct system X on \mathcal{H} extends to a C^* -representation if there exists a C^* -representation π of $\mathcal{T}(X)$ on \mathcal{H} such that

 $\pi(S_n^X(\zeta))=T_n(\zeta).$

Product Systems

Subproduct systems

C*-representability

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Definition

Universality, C^* -representability

A completely contractive, covariant representation T of a subproduct system X on \mathcal{H} extends to a C^* -representation if there exists a C^* -representation π of $\mathcal{T}(X)$ on \mathcal{H} such that

 $\pi(S_n^X(\zeta))=T_n(\zeta).$

As we have seen, if X is a *product* system, then

T extends to a C^* -representation $\iff T$ is isometric.

Product Systems

Subproduct systems

Definition

Universality, C^* -representability

A completely contractive, covariant representation T of a subproduct system X on \mathcal{H} extends to a C^* -representation if there exists a C^* -representation π of $\mathcal{T}(X)$ on \mathcal{H} such that

 $\pi(S_n^X(\zeta))=T_n(\zeta).$

As we have seen, if X is a *product* system, then

T extends to a C^* -representation $\iff T$ is isometric.

This is <u>not</u> true for general subproduct systems. In fact, even in the simplest examples, there is not "convenient" relation describing compositions such as $S_n^X(\zeta)^* S_m^X(\eta)$ and $S_n^X(\zeta) S_m^X(\eta)^*$.

Product Systems

Subproduct systems

C*-representability

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Universality, C^* -representability

Questions

- Are the algebras $\mathcal{T}(X)$, $\mathcal{T}_+(X)$ universal in some sense?
- When does a (completely contractive) covariant representation extend to a C*-representation?

Product Systems

Subproduct systems

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Theorem (V., 2009)

Universality, C^* -representability

If T is a <u>completely contractive</u>, covariant representation of X on \mathcal{H} , then there exists a (completely contractive) representation π of $\mathcal{T}_+(X)$ on \mathcal{H} , such that $\pi(S_n^X(\zeta)) = T_n(\zeta)$ for all $n \in \mathbb{Z}_+$, $\zeta \in X(n)$.

Product Systems

Subproduct systems

C*-representability

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem (V., 2009)

Universality, C^* -representability

If T is a <u>completely contractive</u>, covariant representation of X on \mathcal{H} , then there exists a (completely contractive) representation π of $\mathcal{T}_+(X)$ on \mathcal{H} , such that $\pi(S_n^X(\zeta)) = T_n(\zeta)$ for all $n \in \mathbb{Z}_+$, $\zeta \in X(n)$.

In other words: there is a bijection between completely contractive, covariant representations of X and completely contractive representations of $\mathcal{T}_+(X)$.

Product Systems

Subproduct systems

Theorem (V., 2009)

Universality, C^* -representability

If T is a <u>completely contractive</u>, covariant representation of X on \mathcal{H} , then there exists a (completely contractive) representation π of $\mathcal{T}_+(X)$ on \mathcal{H} , such that $\pi(S_n^X(\zeta)) = T_n(\zeta)$ for all $n \in \mathbb{Z}_+$, $\zeta \in X(n)$.

In other words: there is a bijection between completely contractive, covariant representations of X and completely contractive representations of $\mathcal{T}_+(X)$.

In other words (2): the tensor algebra is the <u>universal</u> non-selfadjoint algebra generated by a completely contractive, covariant representation of X.

Product Systems

Subproduct systems

C*-representability

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An important example: the symmetric subproduct system

Definition

Fix $d \in \mathbb{N}$. The symmetric tensor product $(\mathbb{C}^d)^{\otimes n}$ is defined to be the subspace of $(\mathbb{C}^d)^{\otimes n}$ spanned by $\{z \otimes \cdots \otimes z : z \in \mathbb{C}^d\}$.

Product Systems

Subproduct systems

C*-representability

ション ふゆ く 山 マ チャット しょうくしゃ

An important example: the symmetric subproduct system

Definition

Fix $d \in \mathbb{N}$. The symmetric tensor product $(\mathbb{C}^d)^{\otimes n}$ is defined to be the subspace of $(\mathbb{C}^d)^{\otimes n}$ spanned by $\{z \otimes \cdots \otimes z : z \in \mathbb{C}^d\}$. The projection p_n of $(\mathbb{C}^d)^{\otimes n}$ on $(\mathbb{C}^d)^{\otimes n}$ is defined by

$$p_n(z_1 \otimes \cdots \otimes z_n) = \frac{1}{n!} \sum_{\pi} z_{\pi(1)} \otimes \cdots \otimes z_{\pi(n)},$$

 π ranging over all permutations of $\{1, 2, \ldots, n\}$.

Product Systems

Subproduct systems

C*-representability

An important example: the symmetric subproduct system

Definition

Fix $d \in \mathbb{N}$. The symmetric tensor product $(\mathbb{C}^d)^{\otimes n}$ is defined to be the subspace of $(\mathbb{C}^d)^{\otimes n}$ spanned by $\{z \otimes \cdots \otimes z : z \in \mathbb{C}^d\}$. The projection p_n of $(\mathbb{C}^d)^{\otimes n}$ on $(\mathbb{C}^d)^{\otimes n}$ is defined by

$$p_n(z_1 \otimes \cdots \otimes z_n) = \frac{1}{n!} \sum_{\pi} z_{\pi(1)} \otimes \cdots \otimes z_{\pi(n)},$$

 π ranging over all permutations of $\{1, 2, \ldots, n\}$.

Example

Take d = 2. Then $(\mathbb{C}^2)^{\otimes 2}$ is spanned by $e_1 \otimes e_1$, $e_2 \otimes e_2$ and $e_1 \otimes e_2 + e_2 \otimes e_1$. In particular, $e_1 \otimes e_2 - e_2 \otimes e_1$ does *not* belong to $(\mathbb{C}^2)^{\otimes 2}$.

Product Systems

Subproduct systems

An important example: the symmetric subproduct system

Definition

The subproduct system defined by $SSP_d := ((\mathbb{C}^d)^{\otimes n})_{n \in \mathbb{Z}_+}$ is called the symmetric subproduct system. Particularly, $\mathscr{M} = \mathbb{C}$ and $E = \mathbb{C}^d$.

There is a bijection between the completely contractive, covariant representations of ${\rm SSP}_d$ on ${\mathcal H}$

and

commuting row contractions of length d on \mathcal{H} , given by $\mathcal{T} \mapsto (\mathcal{T}_1(e_1), \ldots, \mathcal{T}_1(e_d)).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Product Systems

Subproduct systems

C*-representability

An important example: the symmetric subproduct system

When does a completely contractive, covariant representations of SSP_d extend to a C^* -representation?

Product Systems

Subproduct systems

C*-representability

ション ふゆ アメリア メリア しょうめん

An important example: the symmetric subproduct system

When does a completely contractive, covariant representations of SSP_d extend to a C^* -representation?

Definition

A *d*-tuple of operators $(T(1), \ldots, T(d))$ over \mathcal{H} is *spherical* if $T(1), \ldots, T(d)$ are commuting normal operators satisfying $T(1)T(1)^* + \ldots + T(d)T(d)^* = I_{\mathcal{H}}$. This is a *d*-dimensional "counterpart" of unitary operators.

A completely contractive, covariant representation Z of SSP_d if called *spherical* if $(Z_1(e_1), \ldots, Z_1(e_d))$ is spherical.

Product Systems

Subproduct systems

C*-representability

An important example: the symmetric subproduct system

When does a completely contractive, covariant representations of SSP_d extend to a C^* -representation?

Definition

A *d*-tuple of operators $(T(1), \ldots, T(d))$ over \mathcal{H} is *spherical* if $T(1), \ldots, T(d)$ are commuting normal operators satisfying $T(1)T(1)^* + \ldots + T(d)T(d)^* = I_{\mathcal{H}}$. This is a *d*-dimensional "counterpart" of unitary operators.

A completely contractive, covariant representation Z of SSP_d if called *spherical* if $(Z_1(e_1), \ldots, Z_1(e_d))$ is spherical.

Example

If B_d denotes the unit ball of \mathbb{C}^d , then the tuple $(M_{z_1}, \ldots, M_{z_d})$ is spherical in $L^2(\partial B_d)$.

Product Systems

Subproduct systems

C*-representability

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

An important example: the symmetric subproduct system

Theorem (Arveson, 1998)

Let T be a completely contractive, covariant representations of SSP_d . Then T extends to a C*-representation \iff there exist a Hilbert space \mathcal{D} and a spherical covariant representation Z of SSP_d such that

$$T_1(e_k) \cong (S_1^{\mathrm{SSP}_d}(e_k) \otimes I_{\mathcal{D}}) \oplus Z_1(e_k)$$

for all $1 \leq k \leq d$.

Product Systems

Subproduct systems

C*-representability

An important example: the symmetric subproduct system

Theorem (Arveson, 1998)

Let T be a completely contractive, covariant representations of SSP_d . Then T extends to a C*-representation \iff there exist a Hilbert space \mathcal{D} and a spherical covariant representation Z of SSP_d such that

$$T_1(e_k) \cong (S_1^{\mathrm{SSP}_d}(e_k) \otimes I_{\mathcal{D}}) \oplus Z_1(e_k)$$

for all $1 \leq k \leq d$.

The proof:

Relies on the fine structure of $\mathcal{T}(SSP_d)$:

```
\mathcal{T}(\mathrm{SSP}_d)/\mathbb{K} = \mathcal{C}(\partial B_d).
```

It is thus not reproducible in the general case.

Product Systems

Subproduct systems

Background: covariant representations of a (single) C^* -correspondence

Let *E* be a C^* -correspondence over a C^* -algebra \mathcal{M} .

Definition

Given a covariant representation (T, σ) of E on \mathcal{H} , define an operator $\widetilde{T} : E \otimes_{\sigma} \mathcal{H} \to \mathcal{H}$ by

 $\widetilde{T}(\zeta \otimes h) := T(\zeta)h.$

 $\widetilde{\mathcal{T}}$ is convenient to use since it is an operator between two Hilbert *spaces*.

Proposition

- T is completely contractive $\iff \widetilde{T}$ is a well-defined contraction.
- 2 T is isometric $\iff \widetilde{T}$ is an isometry.

Product Systems

Subproduct systems

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Background: covariant representations of a (single) C^* -correspondence

Corollary

The following are equivalent:

- T extends to a C^* -representation.
- \bigcirc T is an isometric covariant representation.
- \odot \widetilde{T} is an isometry.

Product Systems

Subproduct systems

C*-representability

Pure and fully coisometric covariant representations

Suppose that $X = (X(n))_{n \in \mathbb{Z}_+}$ is a subproduct system and $T = (T_n)_{n \in \mathbb{Z}_+}$ is a completely contractive, covariant representation of X on \mathcal{H} .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Product Systems

Subproduct systems

C*-representability

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Pure and fully coisometric covariant representations

Suppose that $X = (X(n))_{n \in \mathbb{Z}_+}$ is a subproduct system and $T = (T_n)_{n \in \mathbb{Z}_+}$ is a completely contractive, covariant representation of X on \mathcal{H} .

 For n ∈ Z₊, T_n : X(n) → B(H) is a completely contractive, covariant representation of X(n) on H. Hence *T*_n : X(n) ⊗_σ H → H is a well-defined contraction.

Product Systems

Subproduct systems

(ロ) (型) (E) (E) (E) (O)

Pure and fully coisometric covariant representations

Suppose that $X = (X(n))_{n \in \mathbb{Z}_+}$ is a subproduct system and $T = (T_n)_{n \in \mathbb{Z}_+}$ is a completely contractive, covariant representation of X on \mathcal{H} .

- For $n \in \mathbb{Z}_+$, $T_n : X(n) \to B(\mathcal{H})$ is a completely contractive, covariant representation of X(n) on \mathcal{H} . Hence $\widetilde{T}_n : X(n) \otimes_{\sigma} \mathcal{H} \to \mathcal{H}$ is a well-defined contraction.
- The sequence $T_n T_{n n \in \mathbb{Z}_+}^*$ is a decreasing sequence of positive contractions in B(H). It thus possesses a strong limit, Q. T is called pure if Q = 0.

Product Systems

Subproduct systems

Pure and fully coisometric covariant representations

Suppose that $X = (X(n))_{n \in \mathbb{Z}_+}$ is a subproduct system and $T = (T_n)_{n \in \mathbb{Z}_+}$ is a completely contractive, covariant representation of X on \mathcal{H} .

- For n ∈ Z₊, T_n : X(n) → B(H) is a completely contractive, covariant representation of X(n) on H. Hence T_n : X(n) ⊗_σ H → H is a well-defined contraction.
- ② The sequence $T_n T_{n n \in \mathbb{Z}_+}^*$ is a decreasing sequence of positive contractions in B(H). It thus possesses a strong limit, Q. T is called pure if Q = 0.
- T is said to be fully coisometric in case T̃_n T̃^{*}_n = l_H for all n ∈ Z₊.
 (It is enough to check for n = 1: i.e., that T̃₁ T̃^{*}₁ = l_H.)

(ロト (個) (E) (E) (E) (O)

Product Systems

Subproduct systems

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Pure and fully coisometric covariant representations

Examples

- If X = (X(n))_{n∈Z+} is a subproduct system and D is a Hilbert space, then the *induced* covariant representation (S^X_n(·) ⊗ I_D)_{n∈Z+} is *pure*.
- If (T(1),...,T(d)) is a spherical tuple (of commuting operators), then the matching covariant representation of SSP_d is fully coisometric.

Product Systems

Subproduct systems

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Pure and fully coisometric covariant representations

The C*-representability question

Pimsner's proof is not applicable in the subproduct systems case, even to predict which covariant representations extend to C^* -representations.

Product Systems

Subproduct systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Pure and fully coisometric covariant representations

The C*-representability question

Pimsner's proof is not applicable in the subproduct systems case, even to predict which covariant representations extend to C^* -representations.

Motivated by a Wold decomposition-like dilation theorem, we divide first the problem to two cases: the *pure* and the *fully coisometric*.

Product Systems

Subproduct systems

The pure case

Definition

A completely contractive, covariant representation T of a subproduct system X on H is called <u>relatively isometric</u> if:

• The maps \widetilde{T}_n , $n \in \mathbb{Z}_+$, are all partial isometries. Denote by Δ_* the projection $I_{\mathcal{H}} - \widetilde{T}_1 \widetilde{T}_1^*$.

② For all
$$n\in\mathbb{Z}_+$$
 and $\zeta\in X(n)$,

$$\Delta_* T_n(\zeta)^* T_n(\zeta) \Delta_* = \sigma\left(\langle \zeta, \zeta \rangle\right) \Delta_*.$$

Theorem (V., 2010)

The following are equivalent:

- **1** T is relatively isometric.
- There exist Hilbert spaces U, D and a fully coisometric, covariant representation Z of X on U such that

 $T_n(\zeta) = (S_n^X(\zeta) \otimes I_D) \oplus Z_n(\zeta).$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Corollary

If T is <u>relatively isometric</u> and <u>pure</u>, then $T_n(\zeta) = S_n^X(\zeta) \otimes I_D$, i.e., T is an induced representation. It therefore <u>extends</u> to a C^* -representation $(\pi : \mathcal{T}(X) \to \mathcal{L}(\mathcal{F}_X \otimes_{\sigma} D)$ is defined by $\pi(A) = A \otimes I_D)$.

Preliminaries	Product Systems	Subproduct systems	C*-representability
000000	00000000		○○○○○○●○○○○○○
The pure case			

The corollary gives only sufficiency. What about necessity?

Pre	imiı	naries	
000	000	С	

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

The pure case

The corollary gives only sufficiency. What about necessity?

Proposition

If X is a *product system* and T is a *pure* completely contractive, covariant representation of X, then the following are equivalent:

- T is isometric (\iff T extends to a C*-representation).
- 2 T is relatively isometric.

The pure case

The corollary gives only sufficiency. What about necessity?

Proposition

If X is a *product system* and T is a *pure* completely contractive, covariant representation of X, then the following are equivalent:

- T is isometric (\iff T extends to a C*-representation).
- 2 T is relatively isometric.

Proposition

If X is a subproduct system such that E = X(1) is a *finite* dimensional Hilbert space and T is a pure completely contractive, covariant representation of X, then the following are equivalent:

- T extends to a C^* -representation.
- 2 T is relatively isometric.

Example: $X = SSP_d$.

The	pure	case
Preli	imina	ries

ション ふゆ アメリア メリア しょうめん

Example

 $X = (X(n))_{n \in \mathbb{Z}_+}$ is a subproduct system satisfying $X(n) = \{0\}$ for all $n \ge n_0$.

Fix a completely contractive, covariant representation T of X on \mathcal{H} . Recall that $\widetilde{T}_n : X(n) \otimes_{\sigma} \mathcal{H} \to \mathcal{H}$ is defined by $\widetilde{T}_n(\zeta \otimes h) := T_n(\zeta)h$. Hence $\widetilde{T}_n = 0$ for all $n \ge n_0$, and thus $Q = \text{s-lim}_{n \to \infty} \widetilde{T}_n \widetilde{T}_n^* = 0$, that is, T is automatically pure. Thus Textends to a C^* -representation if it is relatively isometric.

The fully coisometric case

Product Systems

Subproduct systems

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Theorem (V., 2010)

Let T be a <u>fully coisometric</u>, covariant representation of the subproduct system X on \mathcal{H} that satisfies

$$\lim_{\ell \to \infty} \left\| (p_{\ell} \otimes I_{\mathcal{H}})(\eta \otimes \widetilde{T}^*_{\ell-m}h) \right\|_{X(\ell) \otimes_{\sigma} \mathcal{H}} = \left\| T_m(\eta)h \right\|_{\mathcal{H}}$$
(1)

for all $m \in \mathbb{N}$, $\eta \in X(m)$ and $h \in \mathcal{H}$. Then T extends to a C^* -representation.

The fully coisometric case

Product Systems

Subproduct systems

<u>Theorem (V., 2010)</u>

Let T be a <u>fully coisometric</u>, covariant representation of the subproduct system X on $\mathcal H$ that satisfies

$$\lim_{\ell \to \infty} \left\| (p_{\ell} \otimes l_{\mathcal{H}})(\eta \otimes \widetilde{T}^*_{\ell-m}h) \right\|_{X(\ell) \otimes_{\sigma} \mathcal{H}} = \left\| \mathcal{T}_m(\eta)h \right\|_{\mathcal{H}}$$
(1)

for all $m \in \mathbb{N}$, $\eta \in X(m)$ and $h \in \mathcal{H}$. Then T extends to a C^* -representation.

Remark

The sequence $\{\|(p_{\ell}\otimes l_{\mathcal{H}})(\eta\otimes \widetilde{T}_{\ell-m}^*h)\|_{X(\ell)\otimes_{\sigma}\mathcal{H}}\}_{\ell\geq m}$ is decreasing, so that the its limit always exists, and it is greater than or equal to $\|\mathcal{T}_m(\eta)h\|_{\mathcal{H}}$.

Product System

Subproduct systems

C^{*}-representability ○○○○○○○○○○○○○○

The fully coisometric case

What about necessity?

Product Systems

Subproduct systems

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

The fully coisometric case

What about necessity?

Proposition

If X is a product system and T is a fully coisometric, covariant representation of X, then the following are equivalent:

- T is isometric (\iff T extends to a C*-representation).
- Ondition (1) holds.

Product System

Subproduct systems

C*-representability

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ - のへで

The fully coisometric case

And if E = X(1) is a finite dimensional Hilbert space?

Preliminaries	Product Systems	Subproduct systems	C*-representability
000000	000000000		○○○○○○○○○○○○○
The fully coisometric case			

And if E = X(1) is a finite dimensional Hilbert space?

Nothing to which we can compare Condition (1)—aside from the symmetric product system, no other case has yet been studied individually.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Pre	im	in		ri	e	

Product Systems

Subproduct systems

C*-representability

The fully coisometric case

And if E = X(1) is a finite dimensional Hilbert space?

Nothing to which we can compare Condition (1)—aside from the symmetric product system, no other case has yet been studied individually.

Theorem

Let T be a fully coisometric, covariant representation of SSP_d . Then the following are equivalent:

- **1** T is spherical (\iff T extends to a C^{*}-representation)
- **2** T satisfies Condition (1).

Being more specific, we prove that the limit in (1) equals $||T_m(\eta)^*h||$. Therefore (1) holds if and only if $||T_m(\eta)^*h|| = ||T_m(\eta)h||$, that is, $T_m(\eta)$ is normal for all m, η , as desired.

Product Systems

Subproduct systems

General covariant representations

Recall the definition
$$Q := s-\lim_{n \to \infty} \widetilde{T}_n \widetilde{T}_n^*$$
.

Theorem

If T is a completely contractive, covariant representation of X on \mathcal{H} , such that

- T is relatively isometric, and

Then there exist Hilbert spaces \mathcal{U}, \mathcal{D} and a fully coisometric, covariant representation Z of X on \mathcal{U} , which extends to a C^* -representation, such that

$$T_n(\zeta) = (S_n^X(\zeta) \otimes I_{\mathcal{D}}) \oplus Z_n(\zeta).$$

In particular, <u>*T*</u> extends to a *C*^{*}-representation</sup>.

Preliminaries	Product Systems	Subproduct systems	C*-representability
000000	000000000		○○○○○○○○○○●○
Additions & comments			

• Dilations of completely contractive, covariant representations.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Von Neumann inequalities
- The *W**-setting:
 - $\mathcal M$ is a von Neumann algebra
 - Hilbert W*-modules
 - W*-correspondences
 - covariant representations
 - Fock space
 - ...

Product System

Subproduct systems

C^{*}-representability ○○○○○○○○○○○○

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Additions & comments

Questions?