Covariant Representations of Subproduct Systems

Ami Viselter

Technion

April 8, 2010

Definition

Let \mathscr{M} be a C^{*}-algebra. A Hilbert C^{*}-module over \mathscr{M} is a linear space, which is a right \mathscr{M}-module E with a function
$\langle\cdot, \cdot\rangle: E \times E \rightarrow \mathscr{M}$ (called a rigging), satisfying
(1) $\langle\zeta, \zeta\rangle \geq 0$, and equality holds iff $\zeta=0$
(2) $\langle\zeta, \cdot\rangle$ is linear and $\langle\zeta, \eta a\rangle=\langle\zeta, \eta\rangle$ a
(3) $\langle\zeta, \eta\rangle^{*}=\langle\eta, \zeta\rangle$
that is complete with respect to the norm $\|\zeta\|:=\left\|\langle\zeta, \zeta\rangle^{1 / 2}\right\|_{\mathscr{M}}$.

Examples

(1) $\mathscr{M}:=\mathbb{C}$ and $E:=\mathcal{H}$ is a Hilbert space.
(2) $E:=\mathscr{M}$, with the rigging $\langle a, b\rangle:=a^{*} b$. Denoted by $\mathscr{M}_{\mathscr{M}}$.
(3) X is a locally compact Hausdorff space and \mathcal{H} is a Hilbert space. Take $\mathscr{M}:=C_{0}(X)$ and $E:=C_{0}(X, \mathcal{H})$.

Hilbert C^{*}-modules

Examples

(1) $\mathscr{M}:=\mathbb{C}$ and $E:=\mathcal{H}$ is a Hilbert space.
(2) $E:=\mathscr{M}$, with the rigging $\langle a, b\rangle:=a^{*} b$. Denoted by $\mathscr{M}_{\mathscr{M}}$.
(3) X is a locally compact Hausdorff space and \mathcal{H} is a Hilbert space. Take $\mathscr{M}:=C_{0}(X)$ and $E:=C_{0}(X, \mathcal{H})$.

Direct sums

If $\left(E_{i}\right)$, is a family of Hilbert C^{*}-modules over \mathscr{M}, let $\bigoplus_{l} E_{i}$ be the Hilbert C^{*}-module defined to be the set of all $\left(\zeta_{i}\right)_{I} \in \prod_{I} E_{i}$ such that

$$
\sum_{l}\left\langle\zeta_{i}, \zeta_{i}\right\rangle \text { converges in } \mathscr{M} .
$$

The rigging is defined "as usual":

$$
\left\langle\left(\zeta_{i}\right)_{I},\left(\eta_{i}\right)_{I}\right\rangle:=\sum_{l}\left\langle\zeta_{i}, \eta_{i}\right\rangle .
$$

Hilbert C*-modules

Definition (Adjointable operators)

Let E, F be Hilbert C^{*}-modules over \mathscr{M}. We denote by $\mathcal{L}(E, F)$ the Banach space of all adjointable operators from E to F; that is, all functions $T: E \rightarrow F$ admitting a function $T^{*}: F \rightarrow E$ satisfying

$$
(\forall \zeta \in E, \eta \in F) \quad\langle T \zeta, \eta\rangle_{F}=\left\langle\zeta, T^{*} \eta\right\rangle_{E}
$$

Such a function is necessarily a linear operator, an \mathscr{M}-module map $(T(\zeta a)=(T \zeta) a)$ and bounded with respect to the norms on E, F. The space $\mathcal{L}(E):=\mathcal{L}(E, E)$ is a C^{*}-algebra.

Definition (Adjointable operators)

Let E, F be Hilbert C^{*}-modules over \mathscr{M}. We denote by $\mathcal{L}(E, F)$ the Banach space of all adjointable operators from E to F; that is, all functions $T: E \rightarrow F$ admitting a function $T^{*}: F \rightarrow E$ satisfying

$$
(\forall \zeta \in E, \eta \in F) \quad\langle T \zeta, \eta\rangle_{F}=\left\langle\zeta, T^{*} \eta\right\rangle_{E}
$$

Such a function is necessarily a linear operator, an \mathscr{M}-module map $(T(\zeta a)=(T \zeta) a)$ and bounded with respect to the norms on E, F. The space $\mathcal{L}(E):=\mathcal{L}(E, E)$ is a C^{*}-algebra.

Not all bounded module maps are adjointable
Take $\mathscr{M}:=C([0,1]), \mathcal{J}:=\{f \in \mathscr{M}: f(0)=0\} \unlhd \mathscr{M}$ and $E:=\mathscr{M} \oplus \mathcal{J}$. Then $T: E \rightarrow E$ defined by $T(f, g):=(g, 0)$ is a bounded module map, but it is not adjointable.

Definition

A Hilbert C^{*}-module E over \mathscr{M} is a C^{*}-correspondence if it is also a left \mathscr{M}-module, with multiplication on the left given by adjointable operators.

That is: there exists a ${ }^{*}$-homomorphism $\varphi: \mathscr{M} \rightarrow \mathcal{L}(E)$ such that $a \cdot \zeta$ is defined to be $\varphi(a) \zeta$ for $a \in \mathscr{M}$ and $\zeta \in E$.

Definition

A Hilbert C^{*}-module E over \mathscr{M} is a C^{*}-correspondence if it is also a left \mathscr{M}-module, with multiplication on the left given by adjointable operators.

That is: there exists a ${ }^{*}$-homomorphism $\varphi: \mathscr{M} \rightarrow \mathcal{L}(E)$ such that $a \cdot \zeta$ is defined to be $\varphi(a) \zeta$ for $a \in \mathscr{M}$ and $\zeta \in E$.

Examples

(1) $\mathscr{M}=\mathbb{C}, E=\mathcal{H}$ and $\varphi(\alpha) \zeta=\alpha \zeta$.
(2) $E=\mathscr{M}$ and φ is an endomorphism of \mathscr{M}.

Definition (Interior tensor product)

Suppose that:
(1) E, F are Hilbert C^{*}-modules over \mathscr{M}, \mathscr{N} respectively.
(2) $\sigma: \mathscr{M} \rightarrow \mathcal{L}(F)$ is a *-homomorphism.

Denote by $E \otimes_{\text {alg }} F$ the algebraic tensor product of E and F balanced by σ, that is: $(\zeta a) \otimes \eta=\zeta \otimes \sigma(a) \eta$. This is an \mathscr{N}-module. Give it the rigging

$$
\left\langle\zeta_{1} \otimes \eta_{1}, \zeta_{2} \otimes \eta_{2}\right\rangle:=\left\langle\eta_{1}, \sigma\left(\left\langle\zeta_{1}, \zeta_{2}\right\rangle\right) \eta_{2}\right\rangle_{F} .
$$

The interior tensor product of E and F, denoted by $E \otimes_{\sigma} F$, is the completion of this module. It is a Hilbert C^{*}-module over \mathscr{N}.

Two important examples

(1) E, F are both C^{*}-correspondences over \mathscr{M}. Take $\sigma=\varphi_{F}$ (the implementation of left multiplication in F). Then $E \otimes_{\varphi_{F}} F$ is a C^{*}-correspondence over \mathscr{M}.
(2) E is a Hilbert C^{*}-module over \mathscr{M}, \mathcal{H} is a Hilbert space, and σ is a (perhaps degenerate) C^{*}-representation of \mathscr{M} on \mathcal{H}. Then $E \otimes_{\sigma} \mathcal{H}$ is a Hilbert space.

Fix a C^{*}-correspondence E over \mathscr{M}.

Definition

A pair (T, σ) is called a covariant representation of E on \mathcal{H} if:
(1) σ is a nondegenerate C^{*}-representation of \mathscr{M} on \mathcal{H}.
(2) $T: E \rightarrow B(\mathcal{H})$ is a linear mapping.
(3) T is a bimodule map with respect to σ, that is:

$$
\begin{aligned}
& T(a \zeta)=\sigma(a) T(\zeta), T(\zeta a)=T(\zeta) \sigma(a) \text { for all } \zeta \in E \text { and } \\
& a \in \mathscr{M} .
\end{aligned}
$$

(T, σ) is called completely contractive in case T is completely contractive with respect to the structure of the "linking algebra" of \mathscr{M} and E.
(T, σ) is called isometric if the following condition holds for all $\zeta, \eta \in E:$

$$
T(\zeta)^{*} T(\eta)=\sigma(\langle\zeta, \eta\rangle)
$$

Examples

(1) Take $E=\mathscr{M}=\mathbb{C}$. There is a bijection between completely contractive, covariant representations of E on \mathcal{H} and contractions in $B(\mathcal{H})$ given by $(T, \sigma) \mapsto T(1)$. (T, σ) is isometric $\Longleftrightarrow T(1)$ is an isometry.

Examples

(1) Take $E=\mathscr{M}=\mathbb{C}$. There is a bijection between completely contractive, covariant representations of E on \mathcal{H} and contractions in $B(\mathcal{H})$ given by $(T, \sigma) \mapsto T(1)$. (T, σ) is isometric $\Longleftrightarrow T(1)$ is an isometry.
(2) Take $\mathscr{M}=\mathbb{C}$ and $E=\mathbb{C}^{d}$. There is a bijection between completely contractive, covariant representations of E on \mathcal{H} and row contractions of length d in $B(\mathcal{H})$ given by $(T, \sigma) \mapsto\left(T\left(e_{1}\right), \ldots, T\left(e_{d}\right)\right)$.
(T, σ) is isometric $\Longleftrightarrow T\left(e_{1}\right), \ldots, T\left(e_{d}\right)$ are all isometries.

Definition (The Fock space)

$$
\mathcal{F}(E):=\bigoplus_{n \in \mathbb{Z}_{+}} E^{\otimes n}=\mathscr{M} \oplus E \oplus E^{\otimes 2} \oplus \ldots
$$

Definition

Given $a \in \mathscr{M}$, define the operator $\varphi_{\infty}(a) \in \mathcal{L}(\mathcal{F}(E))$ of left multiplication by a as follows:

$$
\varphi_{\infty}(a)\left(\zeta_{0} \oplus \zeta_{1} \oplus \zeta_{2} \oplus \ldots\right):=a \zeta_{0} \oplus a \zeta_{1} \oplus a \zeta_{2} \oplus \ldots
$$

Given $\zeta \in E$, define the creation (shift) operator $S(\zeta) \in \mathcal{L}(\mathcal{F}(E))$ by "left tensoring" with ζ. That is, for all $n \in \mathbb{Z}_{+}$and $\eta \in E^{\otimes n}$,

$$
S(\zeta) \eta:=\zeta \otimes \eta \in E^{\otimes(n+1)}
$$

The pair $\left(S, \varphi_{\infty}\right)$ is an isometric covariant representation of E on $\mathcal{F}(E)$:
(1) $\varphi_{\infty}: \mathscr{M} \rightarrow \mathcal{L}(\mathcal{F}(E))$ is a *-homomorphism.
(2) $S: E \rightarrow \mathcal{L}(\mathcal{F}(E))$ is linear and $S(a \zeta)=\varphi_{\infty}(a) S(\zeta)$, $S(\zeta a)=S(\zeta) \varphi_{\infty}(a)$.
(3) $S(\zeta)^{*} S(\eta)=\varphi_{\infty}(\langle\zeta, \eta\rangle)$.

The pair $\left(S, \varphi_{\infty}\right)$ is an isometric covariant representation of E on $\mathcal{F}(E)$:
(1) $\varphi_{\infty}: \mathscr{M} \rightarrow \mathcal{L}(\mathcal{F}(E))$ is a ${ }^{*}$-homomorphism.
(2) $S: E \rightarrow \mathcal{L}(\mathcal{F}(E))$ is linear and $S(a \zeta)=\varphi_{\infty}(a) S(\zeta)$, $S(\zeta a)=S(\zeta) \varphi_{\infty}(a)$.
(3) $S(\zeta)^{*} S(\eta)=\varphi_{\infty}(\langle\zeta, \eta\rangle)$.

Remark

This is actually not accurate, as $\mathcal{F}(E)$ is not necessarily a Hilbert space. To overcome this "obstacle", let π denote a faithful C^{*}-representation of $\mathcal{L}(\mathcal{F}(E))$ on some Hilbert space \mathcal{H}. Now consider the pair $\left(\pi \circ S, \pi \circ \varphi_{\infty}\right)$ instead of $\left(S, \varphi_{\infty}\right)$.

Definitions

(1) The Toeplitz algebra, $\mathcal{T}(E)$, is the C^{*}-subalgebra of $\mathcal{L}(\mathcal{F}(E))$ generated by $\left\{\varphi_{\infty}(a): a \in \mathscr{M}\right\}$ and $\{S(\zeta): \zeta \in E\}$.
(2) The tensor algebra, $\mathcal{T}_{+}(E)$, is the non-selfadjoint subalgebra of $\mathcal{L}(\mathcal{F}(E))$ generated by the same operators.

Definitions

(1) The Toeplitz algebra, $\mathcal{T}(E)$, is the C^{*}-subalgebra of $\mathcal{L}(\mathcal{F}(E))$ generated by $\left\{\varphi_{\infty}(a): a \in \mathscr{M}\right\}$ and $\{S(\zeta): \zeta \in E\}$.
(2) The tensor algebra, $\mathcal{T}_{+}(E)$, is the non-selfadjoint subalgebra of $\mathcal{L}(\mathcal{F}(E))$ generated by the same operators.

Example

Take $E=\mathscr{M}=\mathbb{C}$. Then:

Definitions

(1) The Toeplitz algebra, $\mathcal{T}(E)$, is the C^{*}-subalgebra of $\mathcal{L}(\mathcal{F}(E))$ generated by $\left\{\varphi_{\infty}(a): a \in \mathscr{M}\right\}$ and $\{S(\zeta): \zeta \in E\}$.
(2) The tensor algebra, $\mathcal{T}_{+}(E)$, is the non-selfadjoint subalgebra of $\mathcal{L}(\mathcal{F}(E))$ generated by the same operators.

Example

Take $E=\mathscr{M}=\mathbb{C}$. Then:

- $\mathcal{F}(E) \cong \ell_{2}\left(\mathbb{Z}_{+}\right) \cong H^{2}(\mathbb{T})$.

Definitions

(1) The Toeplitz algebra, $\mathcal{T}(E)$, is the C^{*}-subalgebra of $\mathcal{L}(\mathcal{F}(E))$ generated by $\left\{\varphi_{\infty}(a): a \in \mathscr{M}\right\}$ and $\{S(\zeta): \zeta \in E\}$.
(2) The tensor algebra, $\mathcal{T}_{+}(E)$, is the non-selfadjoint subalgebra of $\mathcal{L}(\mathcal{F}(E))$ generated by the same operators.

Example

Take $E=\mathscr{M}=\mathbb{C}$. Then:

- $\mathcal{F}(E) \cong \ell_{2}\left(\mathbb{Z}_{+}\right) \cong H^{2}(\mathbb{T})$.
- $\mathcal{T}_{+}(E)$ is the non-selfadjoint algebra generated by the unilateral shift taking e_{n} to e_{n+1}. Therefore $\mathcal{T}_{+}(E) \cong A(\mathbb{D})$, the disc algebra (consisting of all functions in $C(\overline{\mathbb{D}})$ that are analytic on \mathbb{D}).

Definitions

(1) The Toeplitz algebra, $\mathcal{T}(E)$, is the C^{*}-subalgebra of $\mathcal{L}(\mathcal{F}(E))$ generated by $\left\{\varphi_{\infty}(a): a \in \mathscr{M}\right\}$ and $\{S(\zeta): \zeta \in E\}$.
(2) The tensor algebra, $\mathcal{T}_{+}(E)$, is the non-selfadjoint subalgebra of $\mathcal{L}(\mathcal{F}(E))$ generated by the same operators.

Example

Take $E=\mathscr{M}=\mathbb{C}$. Then:

- $\mathcal{F}(E) \cong \ell_{2}\left(\mathbb{Z}_{+}\right) \cong H^{2}(\mathbb{T})$.
- $\mathcal{T}_{+}(E)$ is the non-selfadjoint algebra generated by the unilateral shift taking e_{n} to e_{n+1}. Therefore $\mathcal{T}_{+}(E) \cong A(\mathbb{D})$, the disc algebra (consisting of all functions in $C(\overline{\mathbb{D}})$ that are analytic on \mathbb{D}).
- $\mathcal{T}(E)$ is the C^{*}-algebra generated by the unilateral shift. It equals the subalgebra $\left\{T_{f}: f \in C(\mathbb{T})\right\}+\mathbb{K}$ of $B\left(H^{2}(\mathbb{T})\right)$.

Example

Take $\mathscr{M}=\mathbb{C}$ and $E=\mathbb{C}^{d}$. Then:
(1) $\mathcal{F}(E)=\mathbb{C} \oplus \mathbb{C}^{d} \oplus\left(\mathbb{C}^{d}\right)^{\otimes 2} \oplus \ldots$.
(2) $\mathcal{T}_{+}(E)$ is Popescu's non-commutative, multidimensional disc algebra \mathscr{A}_{d}.
(3) $\mathcal{T}(E)$ is the Toeplitz extension of the Cuntz algebra \mathcal{O}_{d}.

Example

Take $E=\mathscr{M}$ and let φ be an automorphism of \mathscr{M}.
(1) $\mathcal{T}(E)$ is the Toeplitz extension of $\mathscr{M} \rtimes_{\varphi} \mathbb{Z}$.
(2) $\mathcal{T}_{+}(E)$ is the "analytic crossed product" of \mathscr{M} by \mathbb{Z} determined by φ.

Theorem (Pimsner, 1997)

If (T, σ) is an isometric covariant representation of E on \mathcal{H}, then there exists a C^{*}-representation π of $\mathcal{T}(E)$ on \mathcal{H}, such that $\pi(S(\zeta))=T(\zeta)$ and $\pi\left(\varphi_{\infty}(a)\right)=\sigma(a)$.

Theorem (Pimsner, 1997)

If (T, σ) is an isometric covariant representation of E on \mathcal{H}, then there exists a C^{*}-representation π of $\mathcal{T}(E)$ on \mathcal{H}, such that $\pi(S(\zeta))=T(\zeta)$ and $\pi\left(\varphi_{\infty}(a)\right)=\sigma(a)$.

In other words: there is a bijection between isometric covariant representations of E and C^{*}-representations of $\mathcal{T}(E)$.

Theorem (Pimsner, 1997)

If (T, σ) is an isometric covariant representation of E on \mathcal{H}, then there exists a C^{*}-representation π of $\mathcal{T}(E)$ on \mathcal{H}, such that $\pi(S(\zeta))=T(\zeta)$ and $\pi\left(\varphi_{\infty}(a)\right)=\sigma(a)$.

In other words: there is a bijection between isometric covariant representations of E and C^{*}-representations of $\mathcal{T}(E)$.

In other words (2): the Toeplitz algebra is the universal C^{*}-algebra generated by an isometric covariant representation of E.

Theorem (Muhly and Solel, 1998)

If (T, σ) is a completely contractive, covariant representation of E on \mathcal{H}, then there exists a (completely contractive) representation π of $\mathcal{T}_{+}(E)$ on \mathcal{H}, such that $\pi(S(\zeta))=T(\zeta)$ and $\pi\left(\varphi_{\infty}(a)\right)=\sigma(a)$.

Theorem (Muhly and Solel, 1998)

If (T, σ) is a completely contractive, covariant representation of E on \mathcal{H}, then there exists a (completely contractive) representation π of $\mathcal{T}_{+}(E)$ on \mathcal{H}, such that $\pi(S(\zeta))=T(\zeta)$ and $\pi\left(\varphi_{\infty}(a)\right)=\sigma(a)$.

In other words: there is a bijection between completely contractive, covariant representations of E and completely contractive representations of $\mathcal{T}_{+}(E)$.

Theorem (Muhly and Solel, 1998)

If (T, σ) is a completely contractive, covariant representation of E on \mathcal{H}, then there exists a (completely contractive) representation π of $\mathcal{T}_{+}(E)$ on \mathcal{H}, such that $\pi(S(\zeta))=T(\zeta)$ and $\pi\left(\varphi_{\infty}(a)\right)=\sigma(a)$.

In other words: there is a bijection between completely contractive, covariant representations of E and completely contractive representations of $\mathcal{T}_{+}(E)$.

In other words (2): the tensor algebra is the universal non-selfadjoint algebra generated by a completely contractive, covariant representation of E.

Theorem (Wold decomposition for isometries)

Every isometry V may be written as the direct sum
$V=\left(S \otimes I_{\mathcal{D}}\right) \oplus U$ where:
(1) S is the unilateral shift.
(2) \mathcal{D} is some Hilbert space.
(3) U is unitary.

Theorem (Wold decomposition for isometries)

Every isometry V may be written as the direct sum
$V=\left(S \otimes I_{\mathcal{D}}\right) \oplus U$ where:
(1) S is the unilateral shift.
(2) \mathcal{D} is some Hilbert space.
(3) U is unitary.

Theorem (Muhly and Solel, 1999)

Every isometric covariant representation V of E on \mathcal{H} may be written as the direct sum $V(\zeta)=\left(S(\zeta) \otimes I_{\mathcal{D}}\right) \oplus V^{\mathrm{f}}(\zeta)$, where ${ }^{\mathrm{a}}$:
(1) \mathcal{D} is a subspace of \mathcal{H}.
(2) V^{f} is a fully coisometric, isometric, covariant representation of E.
${ }^{a} S(\cdot) \otimes I_{\mathcal{D}}$ is the induced representation of $S(\cdot)$ on $\mathcal{F}(E) \otimes_{\sigma} \mathcal{D}$

Definition

A subproduct system ${ }^{a}$ is a family $X=(X(n))_{n \in \mathbb{Z}_{+}}$of C^{*}-correspondences over the C^{*}-algebra $\mathscr{M}:=X(0)$, such that

$$
X(n+m) \subseteq X(n) \otimes X(m)
$$

and moreover, $X(n+m)$ is orthogonally complementable in $X(n) \otimes X(m)$, for all $n, m \in \mathbb{Z}_{+}$.

[^0]
Definition

A subproduct system ${ }^{a}$ is a family $X=(X(n))_{n \in \mathbb{Z}_{+}}$of C^{*}-correspondences over the C^{*}-algebra $\mathscr{M}:=X(0)$, such that

$$
X(n+m) \subseteq X(n) \otimes X(m)
$$

and moreover, $X(n+m)$ is orthogonally complementable in $X(n) \otimes X(m)$, for all $n, m \in \mathbb{Z}_{+}$.
${ }^{\text {a }}$ in the "standard" form
Setting $E:=X(1)$, we have $X(n) \subseteq E^{\otimes n}$. Denote by $p_{n} \in \mathcal{L}\left(E^{\otimes n}\right)$ the orthogonal projection of $E^{\otimes n}$ on $X(n)$.

Definition (The X-Fock space)

$$
\mathcal{F}_{X}:=\bigoplus_{n \in \mathbb{Z}_{+}} X(n)=\mathscr{M} \oplus E \oplus X(2) \oplus X(3) \oplus \ldots \subseteq \mathcal{F}(E)
$$

Definition (The X-Fock space)

$$
\mathcal{F}_{X}:=\bigoplus_{n \in \mathbb{Z}_{+}} X(n)=\mathscr{M} \oplus E \oplus X(2) \oplus X(3) \oplus \ldots \subseteq \mathcal{F}(E)
$$

Definition (The creation operators (X-shifts))

Given $n \in \mathbb{Z}_{+}$and $\zeta \in X(n)$, define an operator $S_{n}^{X}(\zeta) \in \mathcal{L}\left(\mathcal{F}_{X}\right)$ by

$$
S_{n}^{X}(\zeta) \eta:=p_{n+m}(\zeta \otimes \eta)
$$

for $m \in \mathbb{Z}_{+}$and $\eta \in X(m)$.
That is, upon writing $P:=\bigoplus_{n \in \mathbb{Z}_{+}} p_{n} \in \mathcal{L}(\mathcal{F}(E))$, we have

$$
S_{n}^{X}(\zeta)=P S_{n}(\zeta)_{\mid \mathcal{F}_{X}}
$$

Definitions

(1) The C^{*}-subalgebra of $\mathcal{L}\left(\mathcal{F}_{X}\right)$ generated by $\left\{S_{n}^{X}(\zeta): n \in \mathbb{Z}_{+}, \zeta \in X(n)\right\}$ is called the Toeplitz algebra of X. It is denoted by $\mathcal{T}(X)$.
(2) The non-selfadjoint subalgebra of $\mathcal{L}\left(\mathcal{F}_{X}\right)$ generated by the same operators is called the tensor algebra of X. It is denoted by $\mathcal{T}_{+}(X)$.

Example

Fix a C^{*}-algebra \mathscr{M}, and take $X(n):=E^{\otimes n}, n \in \mathbb{Z}_{+}$. This subproduct system is called a product system. We have:

- $\mathcal{F}_{X}=\mathcal{F}(E)$.
- $S_{0}^{X}(a)=\varphi_{\infty}(a)$ and $S_{1}^{X}(\zeta)=S(\zeta)$.
- $\mathcal{T}(X)=\mathcal{T}(E)$ and $\mathcal{T}_{+}(X)=\mathcal{T}_{+}(E)$.

Let $X=(X(n))_{n \in \mathbb{Z}_{+}}$be a fixed subproduct system.

Definition

A family $T=\left(T_{n}\right)_{n \in \mathbb{Z}_{+}}$is called a covariant representation of X if the following conditions hold with $\sigma:=T_{0}$:
(1) For every $n \in \mathbb{Z}_{+},\left(T_{n}, \sigma\right)$ is a covariant representation of the C^{*}-correspondence $X(n)$.
(2) For every $n, m \in \mathbb{Z}_{+}, \zeta \in X(n)$ and $\eta \in X(m)$,

$$
T_{n+m}\left(p_{n+m}(\zeta \otimes \eta)\right)=T_{n}(\zeta) T_{m}(\eta)
$$

The covariant representation is called completely contractive if T_{n} is completely contractive for all n.

If X is a product system, there is a bijection between completely contractive, covariant representations of X on \mathcal{H}
and
completely contractive, covariant representations of E on \mathcal{H}, given by

$$
T \mapsto\left(T_{1}, T_{0}\right)
$$

Definition

A completely contractive, covariant representation T of a subproduct system X on \mathcal{H} extends to a C^{*}-representation if there exists a C^{*}-representation π of $\mathcal{T}(X)$ on \mathcal{H} such that

$$
\pi\left(S_{n}^{X}(\zeta)\right)=T_{n}(\zeta) .
$$

Definition

A completely contractive, covariant representation T of a subproduct system X on \mathcal{H} extends to a C^{*}-representation if there exists a C^{*}-representation π of $\mathcal{T}(X)$ on \mathcal{H} such that

$$
\pi\left(S_{n}^{X}(\zeta)\right)=T_{n}(\zeta)
$$

As we have seen, if X is a product system, then
T extends to a C^{*}-representation $\Longleftrightarrow T$ is isometric.

Definition

A completely contractive, covariant representation T of a subproduct system X on \mathcal{H} extends to a C^{*}-representation if there exists a C^{*}-representation π of $\mathcal{T}(X)$ on \mathcal{H} such that

$$
\pi\left(S_{n}^{X}(\zeta)\right)=T_{n}(\zeta)
$$

As we have seen, if X is a product system, then
T extends to a C^{*}-representation $\Longleftrightarrow T$ is isometric.
This is not true for general subproduct systems. In fact, even in the simplest examples, there is not "convenient" relation describing compositions such as $S_{n}^{X}(\zeta)^{*} S_{m}^{X}(\eta)$ and $S_{n}^{X}(\zeta) S_{m}^{X}(\eta)^{*}$.

Questions

- Are the algebras $\mathcal{T}(X), \mathcal{T}_{+}(X)$ universal in some sense?
- When does a (completely contractive) covariant representation extend to a C^{*}-representation?

Theorem (V., 2009)

If T is a completely contractive, covariant representation of X on \mathcal{H}, then there exists a (completely contractive) representation π of $\mathcal{T}_{+}(X)$ on \mathcal{H}, such that $\pi\left(S_{n}^{X}(\zeta)\right)=T_{n}(\zeta)$ for all $n \in \mathbb{Z}_{+}$, $\zeta \in X(n)$.

Theorem (V., 2009)

If T is a completely contractive, covariant representation of X on \mathcal{H}, then there exists a (completely contractive) representation π of $\mathcal{T}_{+}(X)$ on \mathcal{H}, such that $\pi\left(S_{n}^{X}(\zeta)\right)=T_{n}(\zeta)$ for all $n \in \mathbb{Z}_{+}$, $\zeta \in X(n)$.

In other words: there is a bijection between completely contractive, covariant representations of X and completely contractive representations of $\mathcal{T}_{+}(X)$.

Theorem (V., 2009)

If T is a completely contractive, covariant representation of X on \mathcal{H}, then there exists a (completely contractive) representation π of $\mathcal{T}_{+}(X)$ on \mathcal{H}, such that $\pi\left(S_{n}^{X}(\zeta)\right)=T_{n}(\zeta)$ for all $n \in \mathbb{Z}_{+}$, $\zeta \in X(n)$.

In other words: there is a bijection between completely contractive, covariant representations of X and completely contractive representations of $\mathcal{T}_{+}(X)$.

In other words (2): the tensor algebra is the universal non-selfadjoint algebra generated by a completely contractive, covariant representation of X.

Definition

Fix $d \in \mathbb{N}$. The symmetric tensor product $\left(\mathbb{C}^{d}\right)^{ⓝ}$ is defined to be the subspace of $\left(\mathbb{C}^{d}\right)^{\otimes n}$ spanned by $\left\{z \otimes \cdots \otimes z: z \in \mathbb{C}^{d}\right\}$.

Definition

Fix $d \in \mathbb{N}$. The symmetric tensor product $\left(\mathbb{C}^{d}\right)^{\subseteq} n$ is defined to be the subspace of $\left(\mathbb{C}^{d}\right)^{\otimes n}$ spanned by $\left\{z \otimes \cdots \otimes z: z \in \mathbb{C}^{d}\right\}$.
The projection p_{n} of $\left(\mathbb{C}^{d}\right)^{\otimes n}$ on $\left(\mathbb{C}^{d}\right)^{® n}$ is defined by

$$
p_{n}\left(z_{1} \otimes \cdots \otimes z_{n}\right)=\frac{1}{n!} \sum_{\pi} z_{\pi(1)} \otimes \cdots \otimes z_{\pi(n)}
$$

π ranging over all permutations of $\{1,2, \ldots, n\}$.

Definition

Fix $d \in \mathbb{N}$. The symmetric tensor product $\left(\mathbb{C}^{d}\right)^{\mathbb{S n} n}$ is defined to be the subspace of $\left(\mathbb{C}^{d}\right)^{\otimes n}$ spanned by $\left\{z \otimes \cdots \otimes z: z \in \mathbb{C}^{d}\right\}$.
The projection p_{n} of $\left(\mathbb{C}^{d}\right)^{\otimes n}$ on $\left(\mathbb{C}^{d}\right)^{® n}$ is defined by

$$
p_{n}\left(z_{1} \otimes \cdots \otimes z_{n}\right)=\frac{1}{n!} \sum_{\pi} z_{\pi(1)} \otimes \cdots \otimes z_{\pi(n)}
$$

π ranging over all permutations of $\{1,2, \ldots, n\}$.

Example

Take $d=2$. Then $\left(\mathbb{C}^{2}\right)^{(5) 2}$ is spanned by $e_{1} \otimes e_{1}, e_{2} \otimes e_{2}$ and $e_{1} \otimes e_{2}+e_{2} \otimes e_{1}$. In particular, $e_{1} \otimes e_{2}-e_{2} \otimes e_{1}$ does not belong to $\left(\mathbb{C}^{2}\right)^{\circledR 2}$.

Definition

The subproduct system defined by $\operatorname{SSP}_{d}:=\left(\left(\mathbb{C}^{d}\right)^{\mathbb{S} n}\right)_{n \in \mathbb{Z}_{+}}$is called the symmetric subproduct system.
Particularly, $\mathscr{M}=\mathbb{C}$ and $E=\mathbb{C}^{d}$.
There is a bijection between the completely contractive, covariant representations of SSP_{d} on \mathcal{H}
and
commuting row contractions of length d on \mathcal{H}, given by $T \mapsto\left(T_{1}\left(e_{1}\right), \ldots, T_{1}\left(e_{d}\right)\right)$.

When does a completely contractive, covariant representations of SSP_{d} extend to a C^{*}-representation?

When does a completely contractive, covariant representations of SSP_{d} extend to a C^{*}-representation?

Definition

A d-tuple of operators $(T(1), \ldots, T(d))$ over \mathcal{H} is spherical if $T(1), \ldots, T(d)$ are commuting normal operators satisfying $T(1) T(1)^{*}+\ldots+T(d) T(d)^{*}=I_{\mathcal{H}}$.
This is a d-dimensional "counterpart" of unitary operators.
A completely contractive, covariant representation Z of SSP_{d} if called spherical if $\left(Z_{1}\left(e_{1}\right), \ldots, Z_{1}\left(e_{d}\right)\right)$ is spherical.

When does a completely contractive, covariant representations of SSP_{d} extend to a C^{*}-representation?

Definition

A d-tuple of operators $(T(1), \ldots, T(d))$ over \mathcal{H} is spherical if $T(1), \ldots, T(d)$ are commuting normal operators satisfying
$T(1) T(1)^{*}+\ldots+T(d) T(d)^{*}=I_{\mathcal{H}}$.
This is a d-dimensional "counterpart" of unitary operators.
A completely contractive, covariant representation Z of SSP_{d} if called spherical if $\left(Z_{1}\left(e_{1}\right), \ldots, Z_{1}\left(e_{d}\right)\right)$ is spherical.

Example

If B_{d} denotes the unit ball of \mathbb{C}^{d}, then the tuple $\left(M_{z_{1}}, \ldots, M_{z_{d}}\right)$ is spherical in $L^{2}\left(\partial B_{d}\right)$.

Theorem (Arveson, 1998)

Let T be a completely contractive, covariant representations of SSP_{d}. Then T extends to a C^{*}-representation \Longleftrightarrow there exist a Hilbert space \mathcal{D} and a spherical covariant representation Z of SSP_{d} such that

$$
T_{1}\left(e_{k}\right) \cong\left(S_{1}^{S S P_{d}}\left(e_{k}\right) \otimes I_{\mathcal{D}}\right) \oplus Z_{1}\left(e_{k}\right)
$$

for all $1 \leq k \leq d$.

Theorem (Arveson, 1998)

Let T be a completely contractive, covariant representations of SSP_{d}. Then T extends to a C^{*}-representation \Longleftrightarrow there exist a Hilbert space \mathcal{D} and a spherical covariant representation Z of SSP_{d} such that

$$
T_{1}\left(e_{k}\right) \cong\left(S_{1}^{S S P_{d}}\left(e_{k}\right) \otimes I_{\mathcal{D}}\right) \oplus Z_{1}\left(e_{k}\right)
$$

for all $1 \leq k \leq d$.

The proof:

Relies on the fine structure of $\mathcal{T}\left(\mathrm{SSP}_{d}\right)$:

$$
\mathcal{T}\left(\mathrm{SSP}_{d}\right) / \mathbb{K}=C\left(\partial B_{d}\right)
$$

It is thus not reproducible in the general case.

Let E be a C^{*}-correspondence over a C^{*}-algebra \mathscr{M}.

Definition

Given a covariant representation (T, σ) of E on \mathcal{H}, define an operator $\widetilde{T}: E \otimes_{\sigma} \mathcal{H} \rightarrow \mathcal{H}$ by

$$
\tilde{T}(\zeta \otimes h):=T(\zeta) h .
$$

\widetilde{T} is convenient to use since it is an operator between two Hilbert spaces.

Proposition

(1) T is completely contractive $\Longleftrightarrow \widetilde{T}$ is a well-defined contraction.
(2) T is isometric $\Longleftrightarrow \widetilde{T}$ is an isometry.

Corollary

The following are equivalent:
(1) T extends to a C^{*}-representation.
(2) T is an isometric covariant representation.
(3) \tilde{T} is an isometry.

Suppose that $X=(X(n))_{n \in \mathbb{Z}_{+}}$is a subproduct system and $T=\left(T_{n}\right)_{n \in \mathbb{Z}_{+}}$is a completely contractive, covariant representation of X on \mathcal{H}.

Suppose that $X=(X(n))_{n \in \mathbb{Z}_{+}}$is a subproduct system and $T=\left(T_{n}\right)_{n \in \mathbb{Z}_{+}}$is a completely contractive, covariant representation of X on \mathcal{H}.
(1) For $n \in \mathbb{Z}_{+}, T_{n}: X(n) \rightarrow B(\mathcal{H})$ is a completely contractive, covariant representation of $X(n)$ on \mathcal{H}. Hence $\widetilde{T}_{n}: X(n) \otimes_{\sigma} \mathcal{H} \rightarrow \mathcal{H}$ is a well-defined contraction.

Suppose that $X=(X(n))_{n \in \mathbb{Z}_{+}}$is a subproduct system and $T=\left(T_{n}\right)_{n \in \mathbb{Z}_{+}}$is a completely contractive, covariant representation of X on \mathcal{H}.
(1) For $n \in \mathbb{Z}_{+}, T_{n}: X(n) \rightarrow B(\mathcal{H})$ is a completely contractive, covariant representation of $X(n)$ on \mathcal{H}. Hence $\widetilde{T}_{n}: X(n) \otimes_{\sigma} \mathcal{H} \rightarrow \mathcal{H}$ is a well-defined contraction.
(2) The sequence $\widetilde{T}_{n} \widetilde{T}_{n n \in \mathbb{Z}_{+}}^{*}$ is a decreasing sequence of positive contractions in $B(\mathcal{H})$. It thus possesses a strong limit, $Q . T$ is called pure if $Q=0$.

Suppose that $X=(X(n))_{n \in \mathbb{Z}_{+}}$is a subproduct system and $T=\left(T_{n}\right)_{n \in \mathbb{Z}_{+}}$is a completely contractive, covariant representation of X on \mathcal{H}.
(1) For $n \in \mathbb{Z}_{+}, T_{n}: X(n) \rightarrow B(\mathcal{H})$ is a completely contractive, covariant representation of $X(n)$ on \mathcal{H}. Hence $\widetilde{T}_{n}: X(n) \otimes_{\sigma} \mathcal{H} \rightarrow \mathcal{H}$ is a well-defined contraction.
(2) The sequence $\widetilde{T}_{n} \widetilde{T}_{n}^{*}{ }_{n \in \mathbb{Z}_{+}}$is a decreasing sequence of positive contractions in $B(\mathcal{H})$. It thus possesses a strong limit, $Q . T$ is called pure if $Q=0$.
(3) T is said to be fully coisometric in case $\widetilde{T}_{n} \widetilde{T}_{n}^{*}=I_{\mathcal{H}}$ for all $n \in \mathbb{Z}_{+}$.
(It is enough to check for $n=1$: i.e., that $\widetilde{T}_{1} \widetilde{T}_{1}^{*}=I_{\mathcal{H}}$.)

Examples

(1) If $X=(X(n))_{n \in \mathbb{Z}_{+}}$is a subproduct system and \mathcal{D} is a Hilbert space, then the induced covariant representation $\left(S_{n}^{X}(\cdot) \otimes I_{\mathcal{D}}\right)_{n \in \mathbb{Z}_{+}}$is pure.
(2) If $(T(1), \ldots, T(d))$ is a spherical tuple (of commuting operators), then the matching covariant representation of SSP_{d} is fully coisometric.

The C*-representability question
Pimsner's proof is not applicable in the subproduct systems case, even to predict which covariant representations extend to C^{*}-representations.

The C*-representability question
Pimsner's proof is not applicable in the subproduct systems case, even to predict which covariant representations extend to C^{*}-representations.

Motivated by a Wold decomposition-like dilation theorem, we divide first the problem to two cases: the pure and the fully coisometric.

Definition

A completely contractive, covariant representation T of a subproduct system X on \mathcal{H} is called relatively isometric if:
(1) The maps $\widetilde{T}_{n}, n \in \mathbb{Z}_{+}$, are all partial isometries.

Denote by Δ_{*} the projection $I_{\mathcal{H}}-\widetilde{T}_{1} \widetilde{T}_{1}^{*}$.
(2) For all $n \in \mathbb{Z}_{+}$and $\zeta \in X(n)$,

$$
\Delta_{*} T_{n}(\zeta)^{*} T_{n}(\zeta) \Delta_{*}=\sigma(\langle\zeta, \zeta\rangle) \Delta_{*}
$$

Theorem (V., 2010)

The following are equivalent:
(1) T is relatively isometric.
(2) There exist Hilbert spaces \mathcal{U}, \mathcal{D} and a fully coisometric, covariant representation Z of X on \mathcal{U} such that

$$
T_{n}(\zeta)=\left(S_{n}^{X}(\zeta) \otimes I_{\mathcal{D}}\right) \oplus Z_{n}(\zeta)
$$

Corollary

If T is relatively isometric and pure, then $T_{n}(\zeta)=S_{n}^{X}(\zeta) \otimes I_{\mathcal{D}}$, i.e., T is an induced representation. It therefore extends to a C^{*}-representation $\left(\pi: \mathcal{T}(X) \rightarrow \mathcal{L}\left(\mathcal{F}_{X} \otimes_{\sigma} \mathcal{D}\right)\right.$ is defined by $\left.\pi(A)=A \otimes I_{\mathcal{D}}\right)$.

The corollary gives only sufficiency. What about necessity?

The corollary gives only sufficiency. What about necessity?

Proposition

If X is a product system and T is a pure completely contractive, covariant representation of X, then the following are equivalent:
(1) T is isometric ($\Longleftrightarrow T$ extends to a C^{*}-representation).
(2) T is relatively isometric.

The corollary gives only sufficiency. What about necessity?

Proposition

If X is a product system and T is a pure completely contractive, covariant representation of X, then the following are equivalent:
(1) T is isometric ($\Longleftrightarrow T$ extends to a C^{*}-representation).
(2) T is relatively isometric.

Proposition

If X is a subproduct system such that $E=X(1)$ is a finite dimensional Hilbert space and T is a pure completely contractive, covariant representation of X, then the following are equivalent:
(1) T extends to a C^{*}-representation.
(2) T is relatively isometric.

Example: $X=\operatorname{SSP}_{d}$.

Example

$X=(X(n))_{n \in \mathbb{Z}_{+}}$is a subproduct system satisfying $X(n)=\{0\}$ for all $n \geq n_{0}$.

Fix a completely contractive, covariant representation T of X on \mathcal{H}. Recall that $\widetilde{T}_{n}: X(n) \otimes_{\sigma} \mathcal{H} \rightarrow \mathcal{H}$ is defined by $\widetilde{T}_{n}(\zeta \otimes h):=T_{n}(\zeta) h$. Hence $\widetilde{T}_{n}=0$ for all $n \geq n_{0}$, and thus $Q=s-\lim _{n \rightarrow \infty} \widetilde{T}_{n} \widetilde{T}_{n}^{*}=0$, that is, T is automatically pure. Thus T extends to a C^{*}-representation if it is relatively isometric.

Theorem (V., 2010)

Let T be a fully coisometric, covariant representation of the subproduct system X on \mathcal{H} that satisfies

$$
\begin{equation*}
\lim _{\ell \rightarrow \infty}\left\|\left(p_{\ell} \otimes I_{\mathcal{H}}\right)\left(\eta \otimes \widetilde{T}_{\ell-m}^{*} h\right)\right\|_{X(\ell) \otimes_{\sigma} \mathcal{H}}=\left\|T_{m}(\eta) h\right\|_{\mathcal{H}} \tag{1}
\end{equation*}
$$

for all $m \in \mathbb{N}, \eta \in X(m)$ and $h \in \mathcal{H}$. Then T extends to a C^{*}-representation.

Theorem (V., 2010)

Let T be a fully coisometric, covariant representation of the subproduct system X on \mathcal{H} that satisfies

$$
\begin{equation*}
\lim _{\ell \rightarrow \infty}\left\|\left(p_{\ell} \otimes I_{\mathcal{H}}\right)\left(\eta \otimes \widetilde{T}_{\ell-m}^{*} h\right)\right\|_{X(\ell) \otimes_{\sigma} \mathcal{H}}=\left\|T_{m}(\eta) h\right\|_{\mathcal{H}} \tag{1}
\end{equation*}
$$

for all $m \in \mathbb{N}, \eta \in X(m)$ and $h \in \mathcal{H}$. Then T extends to a C^{*}-representation.

Remark

The sequence $\left\{\left\|\left(p_{\ell} \otimes I_{\mathcal{H}}\right)\left(\eta \otimes \widetilde{T}_{\ell-m}^{*} h\right)\right\|_{X(\ell) \otimes_{\sigma} \mathcal{H}}\right\}_{\ell \geq m}$ is decreasing, so that the its limit always exists, and it is greater than or equal to $\left\|T_{m}(\eta) h\right\|_{\mathcal{H}}$.

What about necessity?

What about necessity?

Proposition

If X is a product system and T is a fully coisometric, covariant representation of X, then the following are equivalent:
(1) T is isometric ($\Longleftrightarrow T$ extends to a C^{*}-representation).
(2) Condition (1) holds.

And if $E=X(1)$ is a finite dimensional Hilbert space?

And if $E=X(1)$ is a finite dimensional Hilbert space?

Nothing to which we can compare Condition (1)—aside from the symmetric product system, no other case has yet been studied individually.

And if $E=X(1)$ is a finite dimensional Hilbert space?
Nothing to which we can compare Condition (1)—aside from the symmetric product system, no other case has yet been studied individually.

Theorem

Let T be a fully coisometric, covariant representation of SSP_{d}. Then the following are equivalent:
(1) T is spherical ($\Longleftrightarrow T$ extends to a C^{*}-representation)
(2) T satisfies Condition (1).

Being more specific, we prove that the limit in (1) equals $\left\|T_{m}(\eta)^{*} h\right\|$. Therefore (1) holds if and only if
$\left\|T_{m}(\eta)^{*} h\right\|=\left\|T_{m}(\eta) h\right\|$, that is, $T_{m}(\eta)$ is normal for all m, η, as desired.

Recall the definition $Q:=s-\lim n \rightarrow \infty=\widetilde{T}_{n} \widetilde{T}_{n}^{*}$.

Theorem

If T is a completely contractive, covariant representation of X on \mathcal{H}, such that
(1) T is relatively isometric, and
(2) $\lim _{\ell \rightarrow \infty}\left\|\left(p_{\ell} \otimes Q\right)\left(\eta \otimes \widetilde{T}_{\ell-m}^{*} h\right)\right\|_{X(\ell) \otimes_{\sigma} \mathcal{H}}=\left\|T_{m}(\eta) Q h\right\|_{\mathcal{H}}$ for all suitable m, η, h.
Then there exist Hilbert spaces \mathcal{U}, \mathcal{D} and a fully coisometric, covariant representation Z of X on \mathcal{U}, which extends to a C^{*}-representation, such that

$$
T_{n}(\zeta)=\left(S_{n}^{X}(\zeta) \otimes I_{\mathcal{D}}\right) \oplus Z_{n}(\zeta)
$$

In particular, T extends to a C^{*}-representation.

- Dilations of completely contractive, covariant representations.
- Von Neumann inequalities
- The W^{*}-setting:
- \mathscr{M} is a von Neumann algebra
- Hilbert W^{*}-modules
- W^{*}-correspondences
- covariant representations
- Fock space
- ...

Questions?

[^0]: ${ }^{\text {a }}$ in the "standard" form

