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Hilbert C∗-modules

De�nition

Let M be a C ∗-algebra. A Hilbert C ∗-module over M is a linear

space, which is a right M -module E with a function

〈·, ·〉 : E × E →M (called a rigging), satisfying

1 〈ζ, ζ〉 ≥ 0, and equality holds i� ζ = 0

2 〈ζ, ·〉 is linear and 〈ζ, ηa〉 = 〈ζ, η〉 a
3 〈ζ, η〉∗ = 〈η, ζ〉

that is complete with respect to the norm ‖ζ‖ :=
∥∥〈ζ, ζ〉1/2∥∥

M
.
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Hilbert C∗-modules

Examples

1 M := C and E := H is a Hilbert space.

2 E := M , with the rigging 〈a, b〉 := a∗b. Denoted by MM .

3 X is a locally compact Hausdor� space and H is a Hilbert

space. Take M := C0(X ) and E := C0(X ,H).

Direct sums

If (Ei )I is a family of Hilbert C ∗-modules over M , let
⊕

I
Ei be the

Hilbert C ∗-module de�ned to be the set of all (ζi )I ∈
∏

I
Ei such

that ∑
I

〈ζi , ζi 〉 converges in M .

The rigging is de�ned �as usual�:

〈(ζi )I , (ηi )I 〉 :=
∑
I

〈ζi , ηi 〉 .
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Hilbert C∗-modules

De�nition (Adjointable operators)

Let E ,F be Hilbert C ∗-modules over M . We denote by L(E ,F )
the Banach space of all adjointable operators from E to F ; that is,

all functions T : E → F admitting a function T ∗ : F → E satisfying

(∀ζ ∈ E , η ∈ F ) 〈T ζ, η〉
F

= 〈ζ,T ∗η〉
E
.

Such a function is necessarily a linear operator, an M -module map

(T (ζa) = (T ζ)a) and bounded with respect to the norms on E ,F .
The space L(E ) := L(E ,E ) is a C ∗-algebra.

Not all bounded module maps are adjointable

Take M := C ([0, 1]), J := {f ∈M : f (0) = 0} E M and

E := M ⊕ J . Then T : E → E de�ned by T (f , g) := (g , 0) is a

bounded module map, but it is not adjointable.
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C
∗-correspondences

De�nition

A Hilbert C ∗-module E over M is a C ∗-correspondence if it is also

a left M -module, with multiplication on the left given by

adjointable operators.

That is: there exists a *-homomorphism ϕ : M → L(E ) such that

a · ζ is de�ned to be ϕ(a)ζ for a ∈M and ζ ∈ E .

Examples

1 M = C, E = H and ϕ(α)ζ = αζ.

2 E = M and ϕ is an endomorphism of M .
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De�nition (Interior tensor product)

Suppose that:

1 E ,F are Hilbert C ∗-modules over M ,N respectively.

2 σ : M → L(F ) is a *-homomorphism.

Denote by E ⊗alg F the algebraic tensor product of E and F

balanced by σ, that is: (ζa)⊗ η = ζ ⊗ σ(a)η. This is an
N -module. Give it the rigging

〈ζ1 ⊗ η1, ζ2 ⊗ η2〉 := 〈η1, σ (〈ζ1, ζ2〉) η2〉F .

The interior tensor product of E and F , denoted by E ⊗σ F , is the
completion of this module. It is a Hilbert C ∗-module over N .
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Two important examples

1 E ,F are both C ∗-correspondences over M . Take σ = ϕF (the

implementation of left multiplication in F ). Then E ⊗ϕF F is a

C ∗-correspondence over M .

2 E is a Hilbert C ∗-module over M , H is a Hilbert space, and σ
is a (perhaps degenerate) C ∗-representation of M on H.
Then E ⊗σ H is a Hilbert space.
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Covariant representations

Fix a C ∗-correspondence E over M .

De�nition

A pair (T , σ) is called a covariant representation of E on H if:

1 σ is a nondegenerate C ∗-representation of M on H.
2 T : E → B(H) is a linear mapping.

3 T is a bimodule map with respect to σ, that is:
T (aζ) = σ(a)T (ζ), T (ζa) = T (ζ)σ(a) for all ζ ∈ E and

a ∈M .

(T , σ) is called completely contractive in case T is completely

contractive with respect to the structure of the �linking algebra� of

M and E .

(T , σ) is called isometric if the following condition holds for all

ζ, η ∈ E :

T (ζ)∗T (η) = σ (〈ζ, η〉)
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Covariant representations

Examples

1 Take E = M = C. There is a bijection between completely

contractive, covariant representations of E on H and

contractions in B(H) given by (T , σ) 7→ T (1).
(T , σ) is isometric ⇐⇒ T (1) is an isometry.

2 Take M = C and E = Cd . There is a bijection between

completely contractive, covariant representations of E on H
and row contractions of length d in B(H) given by

(T , σ) 7→ (T (e1), . . . ,T (ed )).
(T , σ) is isometric ⇐⇒ T (e1), . . . ,T (ed ) are all isometries.
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Two operator algebras

De�nition (The Fock space)

F(E ) :=
⊕
n∈Z+

E⊗n = M ⊕ E ⊕ E⊗2 ⊕ . . .

De�nition

Given a ∈M , de�ne the operator ϕ∞(a) ∈ L(F(E )) of left

multiplication by a as follows:

ϕ∞(a)(ζ0 ⊕ ζ1 ⊕ ζ2 ⊕ . . .) := aζ0 ⊕ aζ1 ⊕ aζ2 ⊕ . . .

Given ζ ∈ E , de�ne the creation (shift) operator S(ζ) ∈ L(F(E ))
by �left tensoring� with ζ. That is, for all n ∈ Z+ and η ∈ E⊗n,

S(ζ)η := ζ ⊗ η ∈ E⊗(n+1).
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Two operator algebras

The pair (S , ϕ∞) is an isometric covariant representation of E on

F(E ):

1 ϕ∞ : M → L(F(E )) is a *-homomorphism.

2 S : E → L(F(E )) is linear and S(aζ) = ϕ∞(a)S(ζ),
S(ζa) = S(ζ)ϕ∞(a).

3 S(ζ)∗S(η) = ϕ∞(〈ζ, η〉).

Remark

This is actually not accurate, as F(E ) is not necessarily a Hilbert

space. To overcome this �obstacle�, let π denote a faithful

C ∗-representation of L(F(E )) on some Hilbert space H. Now
consider the pair (π ◦ S , π ◦ ϕ∞) instead of (S , ϕ∞).
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Two operator algebras

De�nitions

1 The Toeplitz algebra, T (E ), is the C ∗-subalgebra of L(F(E ))
generated by {ϕ∞(a) : a ∈M } and {S(ζ) : ζ ∈ E}.

2 The tensor algebra, T+(E ), is the non-selfadjoint subalgebra of

L(F(E )) generated by the same operators.

Example

Take E = M = C. Then:

F(E ) ∼= `2(Z+) ∼= H2(T).

T+(E ) is the non-selfadjoint algebra generated by the

unilateral shift taking en to en+1. Therefore T+(E ) ∼= A(D),
the disc algebra (consisting of all functions in C (D) that are

analytic on D).
T (E ) is the C ∗-algebra generated by the unilateral shift. It

equals the subalgebra {Tf : f ∈ C (T)}+ K of B(H2(T)).
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Two operator algebras

Example

Take M = C and E = Cd . Then:

1 F(E ) = C⊕ Cd ⊕ (Cd )⊗2 ⊕ . . ..
2 T+(E ) is Popescu's non-commutative, multidimensional disc

algebra Ad .

3 T (E ) is the Toeplitz extension of the Cuntz algebra Od .

Example

Take E = M and let ϕ be an automorphism of M .

1 T (E ) is the Toeplitz extension of M oϕ Z.
2 T+(E ) is the �analytic crossed product� of M by Z determined

by ϕ.
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Universality

Theorem (Pimsner, 1997)

If (T , σ) is an isometric covariant representation of E on H, then
there exists a C ∗-representation π of T (E ) on H, such that

π(S(ζ)) = T (ζ) and π(ϕ∞(a)) = σ(a).

In other words: there is a bijection between isometric covariant

representations of E and C ∗-representations of T (E ).

In other words (2): the Toeplitz algebra is the universal C ∗-algebra
generated by an isometric covariant representation of E .
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Universality

Theorem (Muhly and Solel, 1998)

If (T , σ) is a completely contractive, covariant representation of E

on H, then there exists a (completely contractive) representation π
of T+(E ) on H, such that π(S(ζ)) = T (ζ) and π(ϕ∞(a)) = σ(a).

In other words: there is a bijection between completely contractive,

covariant representations of E and completely contractive

representations of T+(E ).

In other words (2): the tensor algebra is the universal

non-selfadjoint algebra generated by a completely contractive,

covariant representation of E .
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The Wold decomposition

Theorem (Wold decomposition for isometries)

Every isometry V may be written as the direct sum

V = (S ⊗ ID)⊕ U where:

1 S is the unilateral shift.

2 D is some Hilbert space.

3 U is unitary.

Theorem (Muhly and Solel, 1999)

Every isometric covariant representation V of E on H may be

written as the direct sum V (ζ) = (S(ζ)⊗ ID)⊕ V f(ζ), wherea:

1 D is a subspace of H.
2 V f is a fully coisometric, isometric, covariant representation of

E .

aS(·)⊗ ID is the induced representation of S(·) on F(E)⊗σ D
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Basics

De�nition

A subproduct systema is a family X = (X (n))
n∈Z+

of

C ∗-correspondences over the C ∗-algebra M := X (0), such that

X (n + m) ⊆ X (n)⊗ X (m),

and moreover, X (n + m) is orthogonally complementable in

X (n)⊗ X (m), for all n,m ∈ Z+.

a
in the �standard� form

Setting E := X (1), we have X (n) ⊆ E⊗n. Denote by pn ∈ L(E⊗n)
the orthogonal projection of E⊗n on X (n).
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Basics

De�nition (The X-Fock space)

FX :=
⊕
n∈Z+

X (n) = M ⊕ E ⊕ X (2)⊕ X (3)⊕ . . . ⊆ F(E )

De�nition (The creation operators (X-shifts))

Given n ∈ Z+ and ζ ∈ X (n), de�ne an operator SX
n (ζ) ∈ L(FX ) by

SX
n (ζ)η := pn+m(ζ ⊗ η)

for m ∈ Z+ and η ∈ X (m).
That is, upon writing P :=

⊕
n∈Z+

pn ∈ L(F(E )), we have

SX
n (ζ) = PSn(ζ)|FX .
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Basics

De�nitions

1 The C ∗-subalgebra of L(FX ) generated by{
SX
n (ζ) : n ∈ Z+, ζ ∈ X (n)

}
is called the Toeplitz algebra of

X . It is denoted by T (X ).

2 The non-selfadjoint subalgebra of L(FX ) generated by the

same operators is called the tensor algebra of X . It is denoted

by T+(X ).

Example

Fix a C ∗-algebra M , and take X (n) := E⊗n, n ∈ Z+. This

subproduct system is called a product system. We have:

FX = F(E ).

SX
0 (a) = ϕ∞(a) and SX

1 (ζ) = S(ζ).

T (X ) = T (E ) and T+(X ) = T+(E ).



Preliminaries Product Systems Subproduct systems C
∗-representability

Covariant representations of subproduct systems

Let X = (X (n))
n∈Z+

be a �xed subproduct system.

De�nition

A family T = (Tn)
n∈Z+

is called a covariant representation of X if

the following conditions hold with σ := T0:

1 For every n ∈ Z+, (Tn, σ) is a covariant representation of the

C ∗-correspondence X (n).

2 For every n,m ∈ Z+, ζ ∈ X (n) and η ∈ X (m),

Tn+m(pn+m(ζ ⊗ η)) = Tn(ζ)Tm(η).

The covariant representation is called completely contractive if Tn

is completely contractive for all n.
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Covariant representations of subproduct systems

If X is a product system, there is a bijection between completely

contractive, covariant representations of X on H

and

completely contractive, covariant representations of E on H, given
by

T 7→ (T1,T0)
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Universality, C∗-representability

De�nition

A completely contractive, covariant representation T of a

subproduct system X on H extends to a C ∗-representation if there

exists a C ∗-representation π of T (X ) on H such that

π(SX
n (ζ)) = Tn(ζ).

As we have seen, if X is a product system, then

T extends to a C ∗-representation ⇐⇒ T is isometric.

This is not true for general subproduct systems. In fact, even in the

simplest examples, there is not �convenient� relation describing

compositions such as SX
n (ζ)∗SX

m (η) and SX
n (ζ)SX

m (η)∗.
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Universality, C∗-representability

Questions

Are the algebras T (X ), T+(X ) universal in some sense?

When does a (completely contractive) covariant representation

extend to a C ∗-representation?
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Universality, C∗-representability

Theorem (V., 2009)

If T is a completely contractive, covariant representation of X on

H, then there exists a (completely contractive) representation π of

T+(X ) on H, such that π(SX
n (ζ)) = Tn(ζ) for all n ∈ Z+,

ζ ∈ X (n).

In other words: there is a bijection between completely contractive,

covariant representations of X and completely contractive

representations of T+(X ).

In other words (2): the tensor algebra is the universal

non-selfadjoint algebra generated by a completely contractive,

covariant representation of X .
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An important example: the symmetric subproduct system

De�nition

Fix d ∈ N. The symmetric tensor product
(
Cd
)sn

is de�ned to be

the subspace of
(
Cd
)⊗n

spanned by
{
z ⊗ · · · ⊗ z : z ∈ Cd

}
.

The projection pn of
(
Cd
)⊗n

on
(
Cd
)sn

is de�ned by

pn(z1 ⊗ · · · ⊗ zn) =
1

n!

∑
π

zπ(1) ⊗ · · · ⊗ zπ(n),

π ranging over all permutations of {1, 2, . . . , n}.

Example

Take d = 2. Then
(
C2
)s2

is spanned by e1 ⊗ e1, e2 ⊗ e2 and

e1 ⊗ e2 + e2 ⊗ e1. In particular, e1 ⊗ e2 − e2 ⊗ e1 does not belong

to
(
C2
)s2

.
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An important example: the symmetric subproduct system

De�nition

The subproduct system de�ned by SSPd :=
(
(Cd )sn

)
n∈Z+

is called

the symmetric subproduct system.

Particularly, M = C and E = Cd .

There is a bijection between the completely contractive, covariant

representations of SSPd on H

and

commuting row contractions of length d on H, given by

T 7→ (T1(e1), . . . ,T1(ed )).
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An important example: the symmetric subproduct system

When does a completely contractive, covariant representations of

SSPd extend to a C ∗-representation?

De�nition

A d -tuple of operators (T (1), . . . ,T (d)) over H is spherical if

T (1), . . . ,T (d) are commuting normal operators satisfying

T (1)T (1)∗ + . . .+ T (d)T (d)∗ = IH.
This is a d -dimensional �counterpart� of unitary operators.

A completely contractive, covariant representation Z of SSPd if

called spherical if (Z1(e1), . . . ,Z1(ed )) is spherical.

Example

If Bd denotes the unit ball of Cd , then the tuple (Mz1 , . . . ,Mzd
) is

spherical in L2(∂Bd ).
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An important example: the symmetric subproduct system

Theorem (Arveson, 1998)

Let T be a completely contractive, covariant representations of

SSPd . Then T extends to a C ∗-representation ⇐⇒ there exist a

Hilbert space D and a spherical covariant representation Z of SSPd

such that

T1(ek) ∼= (SSSPd
1 (ek)⊗ ID)⊕ Z1(ek)

for all 1 ≤ k ≤ d.

The proof:

Relies on the �ne structure of T (SSPd ):

T (SSPd )/K = C (∂Bd ).

It is thus not reproducible in the general case.
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Background: covariant representations of a (single) C∗-correspondence

Let E be a C ∗-correspondence over a C ∗-algebra M .

De�nition

Given a covariant representation (T , σ) of E on H, de�ne an

operator T̃ : E ⊗σ H → H by

T̃ (ζ ⊗ h) := T (ζ)h.

T̃ is convenient to use since it is an operator between two Hilbert

spaces.

Proposition

1 T is completely contractive ⇐⇒ T̃ is a well-de�ned

contraction.

2 T is isometric ⇐⇒ T̃ is an isometry.



Preliminaries Product Systems Subproduct systems C
∗-representability

Background: covariant representations of a (single) C∗-correspondence

Corollary

The following are equivalent:

1 T extends to a C ∗-representation.

2 T is an isometric covariant representation.

3 T̃ is an isometry.
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Pure and fully coisometric covariant representations

Suppose that X = (X (n))
n∈Z+

is a subproduct system and

T = (Tn)
n∈Z+

is a completely contractive, covariant representation

of X on H.

1 For n ∈ Z+, Tn : X (n)→ B(H) is a completely contractive,

covariant representation of X (n) on H. Hence
T̃n : X (n)⊗σ H → H is a well-de�ned contraction.

2 The sequence T̃nT̃
∗
n n∈Z+

is a decreasing sequence of positive

contractions in B(H). It thus possesses a strong limit, Q. T is

called pure if Q = 0.

3 T is said to be fully coisometric in case T̃nT̃
∗
n = IH for all

n ∈ Z+.

(It is enough to check for n = 1: i.e., that T̃1T̃
∗
1 = IH.)
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Pure and fully coisometric covariant representations

Examples

1 If X = (X (n))
n∈Z+

is a subproduct system and D is a Hilbert

space, then the induced covariant representation(
SX
n (·)⊗ ID

)
n∈Z+

is pure.

2 If (T (1), . . . ,T (d)) is a spherical tuple (of commuting

operators), then the matching covariant representation of

SSPd is fully coisometric.
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Pure and fully coisometric covariant representations

The C*-representability question

Pimsner's proof is not applicable in the subproduct systems
case, even to predict which covariant representations extend to

C ∗-representations.

Motivated by a Wold decomposition-like dilation theorem, we
divide �rst the problem to two cases: the pure and the fully

coisometric.



Preliminaries Product Systems Subproduct systems C
∗-representability

Pure and fully coisometric covariant representations

The C*-representability question

Pimsner's proof is not applicable in the subproduct systems
case, even to predict which covariant representations extend to

C ∗-representations.

Motivated by a Wold decomposition-like dilation theorem, we
divide �rst the problem to two cases: the pure and the fully

coisometric.



Preliminaries Product Systems Subproduct systems C
∗-representability

The pure case

De�nition

A completely contractive, covariant representation T of a

subproduct system X on H is called relatively isometric if:

1 The maps T̃n, n ∈ Z+, are all partial isometries.

Denote by ∆∗ the projection IH − T̃1T̃
∗
1 .

2 For all n ∈ Z+ and ζ ∈ X (n),

∆∗Tn(ζ)∗Tn(ζ)∆∗ = σ (〈ζ, ζ〉) ∆∗.

Theorem (V., 2010)

The following are equivalent:

1 T is relatively isometric.

2 There exist Hilbert spaces U ,D and a fully coisometric,

covariant representation Z of X on U such that

Tn(ζ) = (SX
n (ζ)⊗ ID)⊕ Zn(ζ).
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The pure case

Corollary

If T is relatively isometric and pure, then Tn(ζ) = SX
n (ζ)⊗ ID, i.e.,

T is an induced representation. It therefore extends to a

C ∗-representation (π : T (X )→ L(FX ⊗σ D) is de�ned by

π(A) = A⊗ ID).



Preliminaries Product Systems Subproduct systems C
∗-representability

The pure case

The corollary gives only su�ciency. What about necessity?

Proposition

If X is a product system and T is a pure completely contractive,

covariant representation of X , then the following are equivalent:

1 T is isometric (⇐⇒ T extends to a C ∗-representation).

2 T is relatively isometric.

Proposition

If X is a subproduct system such that E = X (1) is a �nite

dimensional Hilbert space and T is a pure completely contractive,

covariant representation of X , then the following are equivalent:

1 T extends to a C ∗-representation.

2 T is relatively isometric.

Example: X = SSPd .
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The pure case

Example

X = (X (n))
n∈Z+

is a subproduct system satisfying X (n) = {0} for
all n ≥ n0.

Fix a completely contractive, covariant representation T of X on H.
Recall that T̃n : X (n)⊗σ H → H is de�ned by

T̃n(ζ ⊗ h) := Tn(ζ)h. Hence T̃n = 0 for all n ≥ n0, and thus

Q = s-limn→∞ T̃nT̃
∗
n = 0, that is, T is automatically pure. Thus T

extends to a C ∗-representation if it is relatively isometric.
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The fully coisometric case

Theorem (V., 2010)

Let T be a fully coisometric, covariant representation of the

subproduct system X on H that satis�es

lim
`→∞

∥∥(p` ⊗ IH)(η ⊗ T̃ ∗`−mh)
∥∥
X (`)⊗σH = ‖Tm(η)h‖H (1)

for all m ∈ N, η ∈ X (m) and h ∈ H. Then T extends to a

C ∗-representation.

Remark

The sequence
{∥∥(p` ⊗ IH)(η ⊗ T̃ ∗`−mh)

∥∥
X (`)⊗σH

}
`≥m is decreasing,

so that the its limit always exists, and it is greater than or equal to

‖Tm(η)h‖H.
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The fully coisometric case

What about necessity?

Proposition

If X is a product system and T is a fully coisometric, covariant

representation of X , then the following are equivalent:

1 T is isometric (⇐⇒ T extends to a C ∗-representation).

2 Condition (1) holds.



Preliminaries Product Systems Subproduct systems C
∗-representability

The fully coisometric case

What about necessity?

Proposition

If X is a product system and T is a fully coisometric, covariant

representation of X , then the following are equivalent:

1 T is isometric (⇐⇒ T extends to a C ∗-representation).

2 Condition (1) holds.



Preliminaries Product Systems Subproduct systems C
∗-representability

The fully coisometric case

And if E = X (1) is a �nite dimensional Hilbert space?

Nothing to which we can compare Condition (1)�aside from the

symmetric product system, no other case has yet been studied

individually.

Theorem

Let T be a fully coisometric, covariant representation of SSPd .

Then the following are equivalent:

1 T is spherical (⇐⇒ T extends to a C ∗-representation)

2 T satis�es Condition (1).

Being more speci�c, we prove that the limit in (1) equals

‖Tm(η)∗h‖. Therefore (1) holds if and only if

‖Tm(η)∗h‖ = ‖Tm(η)h‖, that is, Tm(η) is normal for all m, η, as
desired.
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General covariant representations

Recall the de�nition Q := s-limn→∞ T̃nT̃
∗
n .

Theorem

If T is a completely contractive, covariant representation of X on

H, such that

1 T is relatively isometric, and

2 lim`→∞
∥∥(p` ⊗ Q)(η ⊗ T̃ ∗`−mh)

∥∥
X (`)⊗σH = ‖Tm(η)Qh‖H for

all suitable m, η, h.

Then there exist Hilbert spaces U ,D and a fully coisometric,

covariant representation Z of X on U , which extends to a

C ∗-representation, such that

Tn(ζ) = (SX
n (ζ)⊗ ID)⊕ Zn(ζ).

In particular, T extends to a C ∗-representation.
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Additions & comments

Dilations of completely contractive, covariant representations.

Von Neumann inequalities

The W ∗-setting:

M is a von Neumann algebra

Hilbert W ∗-modules

W
∗-correspondences

covariant representations

Fock space

...
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Additions & comments

Questions?
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