Covariant Representations of Subproduct Systems

Ami Viselter

Technion, Israel
GPOTS 2010

C*-correspondences

Let \mathscr{M} denote a C^{*}-algebra throughout.

Definition

A (right) Hilbert C^{*}-module E over \mathscr{M} is a C^{*}-correspondence if it is also a left \mathscr{M}-module, with multiplication on the left given by adjointable operators.

That is: there exists a $*$-homomorphism $\varphi: \mathscr{M} \rightarrow \mathcal{L}(E)$ such that $a \cdot \zeta$ is defined to be $\varphi(a) \zeta$ for $a \in \mathscr{M}$ and $\zeta \in E$.

Examples

(1) $\mathscr{M}=\mathbb{C}, E=\mathcal{H}$ and $\varphi(\alpha) \zeta:=\alpha \zeta$.
(2) $E=\mathscr{M}, \alpha$ is an endomorphism of \mathscr{M} and $\varphi(a) \zeta:=\alpha(a) \zeta$.

Subproduct systems

Definition

A subproduct system is a family $X=(X(n))_{n \in \mathbb{Z}_{+}}$of C^{*}-correspondences over the C^{*}-algebra $\mathscr{M}:=X(0)$, such that

$$
X(n+m) \subseteq X(n) \otimes X(m)
$$

and moreover, $X(n+m)$ is orthogonally complementable in $X(n) \otimes X(m)$, for all $n, m \in \mathbb{Z}_{+}$.

Setting $E:=X(1)$, we have $X(n) \subseteq E^{\otimes n}$. Denote by $p_{n} \in \mathcal{L}\left(E^{\otimes n}\right)$ the orthogonal projection of $E^{\otimes n}$ on $X(n)$.

Examples

Example (Product systems)

E is a C^{*}-correspondence over \mathscr{M} and $X(n)=E^{\otimes n}$ for all $n \in \mathbb{Z}_{+}$.

Example (The symmetric subproduct system)

$X(n)=\left(\mathbb{C}^{d}\right)^{\mathbb{S} n}$ (the n-fold symmetric tensor product of \mathbb{C}^{d}) for all n.
Denoted by SSP_{d}.

Creation operators over the X-Fock space

Definition (The X-Fock space)

$$
\mathcal{F}_{X}:=\bigoplus_{n \in \mathbb{Z}_{+}} X(n)=\mathscr{M} \oplus E \oplus X(2) \oplus X(3) \oplus \ldots
$$

Definition (The creation operators (X-shifts))

Given $n \in \mathbb{Z}_{+}$and $\zeta \in X(n)$, define an operator $S_{n}^{X}(\zeta) \in \mathcal{L}\left(\mathcal{F}_{X}\right)$ by

$$
\left(\forall m \in \mathbb{Z}_{+}, \eta \in X(m)\right) \quad S_{n}^{X}(\zeta) \eta:=p_{n+m}(\zeta \otimes \eta) \in X(n+m)
$$

The Toeplitz and tensor algebras

Definitions

(1) The Toeplitz algebra of X is the C^{*}-subalgebra of $\mathcal{L}\left(\mathcal{F}_{X}\right)$ generated by $\left\{S_{n}^{X}(\zeta): n \in \mathbb{Z}_{+}, \zeta \in X(n)\right\}$. Denoted by $\mathcal{T}(X)$.
(2) The tensor algebra of X is the non-selfadjoint subalgebra of $\mathcal{L}\left(\mathcal{F}_{X}\right)$ generated by the same operators. Denoted by $\mathcal{T}_{+}(X)$.

Question

How do the representations of $\mathcal{T}(X)$ and $\mathcal{T}_{+}(X)$ look like?

Covariant representations of C^{*}-correspondences

Fix a C^{*}-correspondence F over \mathscr{M}.

Definition

A pair (T, σ) is called a covariant representation of F on \mathcal{H} if:
(1) σ is a nondegenerate C^{*}-representation of \mathscr{M} on \mathcal{H}.
(2) $T: F \rightarrow B(\mathcal{H})$ is a linear bimodule map with respect to σ, that is:

$$
T(a \zeta)=\sigma(a) T(\zeta), T(\zeta a)=T(\zeta) \sigma(a) \text { for all } \zeta \in F \text { and } a \in \mathscr{M}
$$

(T, σ) is called completely contractive in case T is completely contractive with respect to the structure of the "linking algebra" of \mathscr{M} and F.

Covariant representations of subproduct systems

Let $X=(X(n))_{n \in \mathbb{Z}_{+}}$be a fixed subproduct system.

Definition

A family $T=\left(T_{n}\right)_{n \in \mathbb{Z}_{+}}$is called a covariant representation of X if the following conditions hold with $\sigma:=T_{0}$:
(1) For every $n \in \mathbb{Z}_{+},\left(T_{n}, \sigma\right)$ is a covariant representation of the C^{*}-correspondence $X(n)$.
(2) For every $n, m \in \mathbb{Z}_{+}, \zeta \in X(n)$ and $\eta \in X(m)$,

$$
T_{n+m}\left(p_{n+m}(\zeta \otimes \eta)\right)=T_{n}(\zeta) T_{m}(\eta)
$$

The covariant representation is called completely contractive if T_{n} is completely contractive for all n.

Representations vs. covariant representations

If π is a completely contractive representation of $\mathcal{T}_{+}(X)$ then upon defining

$$
T_{n}(\zeta):=\pi\left(S_{n}^{X}(\zeta)\right)
$$

one obtains a completely contractive, covariant representation of X.

Does the converse hold?
 When does π extend to a C^{*}-representation of $\mathcal{T}(X)$?

The tilde operators

Definition

Let F be a C^{*}-correspondence. Given a completely contractive, covariant representation (T, σ) of F on \mathcal{H}, define an operator

$$
\widetilde{T}: F \otimes_{\sigma} \mathcal{H} \rightarrow \mathcal{H}
$$

by

$$
\widetilde{T}(\zeta \otimes h):=T(\zeta) h
$$

\widetilde{T} is convenient to use since it is an operator between two Hilbert spaces. It can be shown to be well-defined and contractive.

The tilde operators (cont.)

Suppose that $X=(X(n))_{n \in \mathbb{Z}_{+}}$is a subproduct system and $T=\left(T_{n}\right)_{n \in \mathbb{Z}_{+}}$ is a completely contractive, covariant representation of X on \mathcal{H}.

- For $n \in \mathbb{Z}_{+}, T_{n}: X(n) \rightarrow B(\mathcal{H})$ is a completely contractive, covariant representation of $X(n)$ on \mathcal{H}. Hence $\widetilde{T}_{n}: X(n) \otimes_{\sigma} \mathcal{H} \rightarrow \mathcal{H}$ is a well-defined contraction.
- The sequence $\left\{\widetilde{T}_{n} \widetilde{T}_{n}^{*}\right\}_{n \in \mathbb{Z}_{+}}$is a decreasing sequence of positive contractions in $B(\mathcal{H})$. It thus possesses a strong limit, Q.
- T is called pure if $Q=0$.
- T is said to be fully coisometric in case $\widetilde{T}_{n} \widetilde{T}_{n}^{*}=I_{\mathcal{H}}$ for all $n \in \mathbb{Z}_{+}$.

The C^{*}-representability question

Definition

A completely contractive, covariant representation T of a subproduct system X on \mathcal{H} extends to a C^{*}-representation if there exists a C^{*}-representation π of $\mathcal{T}(X)$ on \mathcal{H} such that

$$
\pi\left(S_{n}^{X}(\zeta)\right)=T_{n}(\zeta)
$$

When does a completely contractive, covariant representation extend to a C^{*}-representation?

Motivated by a Wold decomposition-like dilation theorem, we divide the problem to two cases: the pure and the fully coisometric.

The pure case

Definition

A completely contractive, covariant representation T of a subproduct system X on \mathcal{H} is called relatively isometric if:
(1) The maps $\widetilde{T}_{n}, n \in \mathbb{Z}_{+}$, are all partial isometries.

Denote by Δ_{*} the projection $I_{\mathcal{H}}-\widetilde{T}_{1} \widetilde{T}_{1}^{*}$.
(2) For all $n \in \mathbb{Z}_{+}$and $\zeta \in X(n)$,

$$
\Delta_{*} T_{n}(\zeta)^{*} T_{n}(\zeta) \Delta_{*}=\sigma(\langle\zeta, \zeta\rangle) \Delta_{*}
$$

The pure case (cont.)

Theorem (V., 2010)

Let T be a completely contractive, covariant representation of the subproduct system X. The following are equivalent:
(1) T is relatively isometric.
(2) There exist Hilbert spaces \mathcal{U}, \mathcal{D} and a fully coisometric, covariant representation Z of X on \mathcal{U} such that

$$
T_{n}(\zeta)=\left(S_{n}^{X}(\zeta) \otimes I_{\mathcal{D}}\right) \oplus Z_{n}(\zeta)
$$

Corollary

If T is relatively isometric and pure, then $T_{n}(\zeta)=S_{n}^{X}(\zeta) \otimes I_{\mathcal{D}}$, i.e., T is an induced representation. It therefore extends to a C^{*}-representation $\left(\pi: \mathcal{T}(X) \rightarrow \mathcal{L}\left(\mathcal{F}_{X} \otimes_{\sigma} \mathcal{D}\right)\right.$ is defined by $\left.\pi(A)=A \otimes I_{\mathcal{D}}\right)$.

The fully coisometric case

Theorem (V., 2010)

Let T be a fully coisometric, covariant representation of the subproduct system X on \mathcal{H} that satisfies

$$
\lim _{\ell \rightarrow \infty}\left\|\left(p_{\ell} \otimes \mathcal{I}_{\mathcal{H}}\right)\left(\eta \otimes \widetilde{T}_{\ell-m}^{*} h\right)\right\|_{X(\ell) \otimes_{\sigma} \mathcal{H}}=\left\|T_{m}(\eta) h\right\|_{\mathcal{H}}
$$

for all $m \in \mathbb{N}, \eta \in X(m)$ and $h \in \mathcal{H}$. Then T extends to a C^{*}-representation.

Remark

The sequence $\left\{\left\|\left(p_{\ell} \otimes I_{\mathcal{H}}\right)\left(\eta \otimes \widetilde{T}_{\ell-m}^{*} h\right)\right\|_{X(\ell) \otimes_{\sigma} \mathcal{H}}\right\}_{\ell \geq m}$ is decreasing, so that the its limit always exists, and it is greater than or equal to $\left\|T_{m}(\eta) h\right\|_{\mathcal{H}}$.

General covariant representations

Recall the notation $Q:=s-\lim _{n \rightarrow \infty} \widetilde{T}_{n} \widetilde{T}_{n}^{*}$.

Theorem

If T is a completely contractive, covariant representation of X on \mathcal{H}, such that T is relatively isometric, and

$$
\lim _{\ell \rightarrow \infty}\left\|\left(p_{\ell} \otimes Q\right)\left(\eta \otimes \widetilde{T}_{\ell-m}^{*} h\right)\right\|_{X(\ell) \otimes_{\sigma} \mathcal{H}}=\left\|T_{m}(\eta) Q h\right\|_{\mathcal{H}}
$$

for all suitable m, η, h.
Then there exist Hilbert spaces \mathcal{U}, \mathcal{D} and a fully coisometric, covariant representation Z of X on \mathcal{U}, which extends to a C^{*}-representation, such that

$$
T_{n}(\zeta)=\left(S_{n}^{X}(\zeta) \otimes I_{\mathcal{D}}\right) \oplus Z_{n}(\zeta)
$$

In particular, T extends to a C^{*}-representation.

Necessity?

We presented sufficient conditions for the C^{*}-extendability of T. Are they also necessary?
The general answer is unknown. However, it is positive in (at least) a few important special cases:
(1) If X is a product system. Our condition coincides with the isometricity condition of M. V. Pimsner (1997).
(2) If X consists of finite dimensional Hilbert spaces and T is pure.

- Our conditions are very easy to check
- Related to the work of G. Popescu
(3) If $X=\operatorname{SSP}_{d}$ and T is fully coisometric
- Our conditions are equivalent to T being spherical in the sense of W . Arveson (1998).

Universality of the tensor algebra

Theorem (V., 2009)

If T is a completely contractive, covariant representation of X on \mathcal{H}, then there exists a (completely contractive) representation π of $\mathcal{T}_{+}(X)$ on \mathcal{H}, such that $\pi\left(S_{n}^{X}(\zeta)\right)=T_{n}(\zeta)$ for all $n \in \mathbb{Z}_{+}, \zeta \in X(n)$.

In other words: there is a bijection $T \leftrightarrow \pi$ between completely contractive, covariant representations of X and completely contractive representations of $\mathcal{T}_{+}(X)$.

In other words (2): the tensor algebra is the universal non-selfadjoint algebra generated by a completely contractive, covariant representation of X.

This is a generalization of a theorem of P. S. Muhly and B. Solel (1998) about product systems.

A von Neumann inequality

From the last theorem we derive the following von Neumann inequality:

Corollary

If T is a completely contractive, covariant representation of X on \mathcal{H}, then

$$
\|p(T)\|_{B(\mathcal{H})} \leq\left\|p\left(S^{X}\right)\right\|_{\mathcal{L}\left(\mathcal{F}_{X}\right)}
$$

for every "polynomial" p over X.

Thank you for listening!

Questions?

