Covariant Representations of Subproduct Systems

Ami Viselter

Technion, Israel

GPOTS 2010

Ami Viselter (Technion, Israel)

Covariant representations

GPOTS 2010 1 / 20

Let \mathcal{M} denote a C^* -algebra throughout.

Definition

A (right) Hilbert C^* -module E over \mathcal{M} is a C^* -correspondence if it is also a *left* \mathcal{M} -module, with multiplication on the left given by adjointable operators.

That is: there exists a *-homomorphism $\varphi : \mathcal{M} \to \mathcal{L}(E)$ such that $a \cdot \zeta$ is defined to be $\varphi(a)\zeta$ for $a \in \mathcal{M}$ and $\zeta \in E$.

Examples

$$\bullet \ \mathscr{M} = \mathbb{C}, \ \mathsf{\textit{E}} = \mathcal{H} \ \mathsf{and} \ \varphi(\alpha) \zeta := \alpha \zeta.$$

 $\ \, {\it O} \ \, {\it E}=\mathscr{M}, \ \, \alpha \ \, {\rm is \ an \ endomorphism \ of \ \, } \mathscr{M} \ \, {\rm and \ \, } \varphi({\it a})\zeta:=\alpha({\it a})\zeta.$

A subproduct system is a family $X = (X(n))_{n \in \mathbb{Z}_+}$ of C*-correspondences over the C*-algebra $\mathscr{M} := X(0)$, such that

 $X(n+m) \subseteq X(n) \otimes X(m),$

and moreover, X(n + m) is orthogonally complementable in $X(n) \otimes X(m)$, for all $n, m \in \mathbb{Z}_+$.

Setting E := X(1), we have $X(n) \subseteq E^{\otimes n}$. Denote by $p_n \in \mathcal{L}(E^{\otimes n})$ the orthogonal projection of $E^{\otimes n}$ on X(n).

Example (Product systems)

E is a C^* -correspondence over \mathscr{M} and $X(n) = E^{\otimes n}$ for all $n \in \mathbb{Z}_+$.

Example (The symmetric subproduct system)

 $X(n) = (\mathbb{C}^d)^{\otimes n}$ (the *n*-fold symmetric tensor product of \mathbb{C}^d) for all *n*. Denoted by SSP_d .

Definition (The X-Fock space)

$$\mathcal{F}_X := \bigoplus_{n \in \mathbb{Z}_+} X(n) = \mathscr{M} \oplus E \oplus X(2) \oplus X(3) \oplus \ldots$$

Definition (The creation operators (X-shifts))

Given $n \in \mathbb{Z}_+$ and $\zeta \in X(n)$, define an operator $S^X_n(\zeta) \in \mathcal{L}(\mathcal{F}_X)$ by

$$(\forall m \in \mathbb{Z}_+, \eta \in X(m))$$
 $S_n^X(\zeta)\eta := p_{n+m}(\zeta \otimes \eta) \in X(n+m)$

- The Toeplitz algebra of X is the C*-subalgebra of L(F_X) generated by {S^X_n(ζ) : n ∈ Z₊, ζ ∈ X(n)}. Denoted by T(X).
- 2 The tensor algebra of X is the non-selfadjoint subalgebra of $\mathcal{L}(\mathcal{F}_X)$ generated by the same operators. Denoted by $\mathcal{T}_+(X)$.

Question

How do the representations of $\mathcal{T}(X)$ and $\mathcal{T}_+(X)$ look like?

Fix a C^* -correspondence F over \mathcal{M} .

Definition

A pair (T, σ) is called a *covariant representation* of F on \mathcal{H} if:

• σ is a nondegenerate C^* -representation of \mathcal{M} on \mathcal{H} .

2 $T: F \to B(\mathcal{H})$ is a linear bimodule map with respect to σ , that is: $T(a\zeta) = \sigma(a)T(\zeta), \ T(\zeta a) = T(\zeta)\sigma(a)$ for all $\zeta \in F$ and $a \in \mathcal{M}$.

 (T, σ) is called *completely contractive* in case T is completely contractive with respect to the structure of the "linking algebra" of \mathcal{M} and F.

Let
$$X = (X(n))_{n \in \mathbb{Z}_+}$$
 be a fixed subproduct system.

A family $T = (T_n)_{n \in \mathbb{Z}_+}$ is called a *covariant representation* of X if the following conditions hold with $\sigma := T_0$:

• For every $n \in \mathbb{Z}_+$, (T_n, σ) is a covariant representation of the C^* -correspondence X(n).

$${f 2}$$
 For every $n,m\in {\Bbb Z}_+$, $\zeta\in X(n)$ and $\eta\in X(m)$,

$$T_{n+m}(p_{n+m}(\zeta \otimes \eta)) = T_n(\zeta)T_m(\eta).$$

The covariant representation is called *completely contractive* if T_n is completely contractive for all n.

If π is a completely contractive representation of $\mathcal{T}_+(X)$ then upon defining

$$T_n(\zeta) := \pi(S_n^X(\zeta))$$

one obtains a completely contractive, covariant representation of X.

Does the converse hold? When does π extend to a C^* -representation of $\mathcal{T}(X)$?

Let F be a C^* -correspondence. Given a completely contractive, covariant representation (T, σ) of F on \mathcal{H} , define an operator

$$\widetilde{T}: F \otimes_{\sigma} \mathcal{H} \to \mathcal{H}$$

by

$$\widetilde{T}(\zeta \otimes h) := T(\zeta)h.$$

 \overline{T} is convenient to use since it is an operator between two Hilbert *spaces*. It can be shown to be well-defined and contractive. Suppose that $X = (X(n))_{n \in \mathbb{Z}_+}$ is a subproduct system and $T = (T_n)_{n \in \mathbb{Z}_+}$ is a completely contractive, covariant representation of X on \mathcal{H} .

- For $n \in \mathbb{Z}_+$, $T_n : X(n) \to B(\mathcal{H})$ is a completely contractive, covariant representation of X(n) on \mathcal{H} . Hence $\widetilde{T}_n : X(n) \otimes_{\sigma} \mathcal{H} \to \mathcal{H}$ is a well-defined contraction.
- The sequence $\{\widetilde{T}_n\widetilde{T}_n^*\}_{n\in\mathbb{Z}_+}$ is a decreasing sequence of positive contractions in $B(\mathcal{H})$. It thus possesses a strong limit, Q.
- T is called *pure* if Q = 0.
- T is said to be fully coisometric in case $\widetilde{T}_n \widetilde{T}_n^* = I_{\mathcal{H}}$ for all $n \in \mathbb{Z}_+$.

A completely contractive, covariant representation T of a subproduct system X on \mathcal{H} extends to a C^* -representation if there exists a C^* -representation π of $\mathcal{T}(X)$ on \mathcal{H} such that

 $\pi(S_n^X(\zeta))=T_n(\zeta).$

When does a completely contractive, covariant representation extend to a C^* -representation?

Motivated by a Wold decomposition-like dilation theorem, we divide the problem to two cases: the *pure* and the *fully coisometric*.

A completely contractive, covariant representation T of a subproduct system X on \mathcal{H} is called *relatively isometric* if:

• The maps T_n , $n \in \mathbb{Z}_+$, are all partial isometries. Denote by Δ_* the projection $I_{\mathcal{H}} - \widetilde{T}_1 \widetilde{T}_1^*$.

2 For all
$$n \in \mathbb{Z}_+$$
 and $\zeta \in X(n)$,

$$\Delta_* T_n(\zeta)^* T_n(\zeta) \Delta_* = \sigma\left(\langle \zeta, \zeta \rangle\right) \Delta_*.$$

Theorem (V., 2010)

Let T be a completely contractive, covariant representation of the subproduct system X. The following are equivalent:

- **1** *T* is relatively isometric.
- There exist Hilbert spaces U, D and a fully coisometric, covariant representation Z of X on U such that

$$T_n(\zeta) = (S_n^X(\zeta) \otimes I_{\mathcal{D}}) \oplus Z_n(\zeta).$$

Corollary

If T is relatively isometric and pure, then $T_n(\zeta) = S_n^X(\zeta) \otimes I_D$, i.e., T is an induced representation. It therefore extends to a C^* -representation $(\pi : \mathcal{T}(X) \to \mathcal{L}(\mathcal{F}_X \otimes_\sigma D)$ is defined by $\pi(A) = A \otimes I_D)$.

Image: A matrix and a matrix

Theorem (V., 2010)

Let T be a fully coisometric, covariant representation of the subproduct system X on $\mathcal H$ that satisfies

$$\lim_{\ell \to \infty} \left\| (p_{\ell} \otimes l_{\mathcal{H}})(\eta \otimes \widetilde{T}^*_{\ell-m}h) \right\|_{\boldsymbol{X}(\ell) \otimes_{\sigma} \mathcal{H}} = \left\| T_m(\eta)h \right\|_{\mathcal{H}}$$

for all $m \in \mathbb{N}$, $\eta \in X(m)$ and $h \in \mathcal{H}$. Then T extends to a C^* -representation.

Remark

The sequence $\{\|(p_{\ell} \otimes I_{\mathcal{H}})(\eta \otimes \widetilde{T}^*_{\ell-m}h)\|_{X(\ell) \otimes_{\sigma} \mathcal{H}}\}_{\ell \geq m}$ is decreasing, so that the its limit always exists, and it is greater than or equal to $\|T_m(\eta)h\|_{\mathcal{H}}$.

Ami Viselter (Technion, Israel)

Recall the notation $Q := \operatorname{s-lim}_{n \to \infty} \widetilde{T}_n \widetilde{T}_n^*$.

Theorem

If T is a completely contractive, covariant representation of X on \mathcal{H} , such that T is relatively isometric, and

$$\lim_{\ell\to\infty} \left\| (p_{\ell}\otimes Q)(\eta\otimes \widetilde{T}_{\ell-m}^*h) \right\|_{X(\ell)\otimes_{\sigma}\mathcal{H}} = \left\| T_m(\eta)Qh \right\|_{\mathcal{H}}$$

for all suitable m, η, h .

Then there exist Hilbert spaces \mathcal{U}, \mathcal{D} and a fully coisometric, covariant representation Z of X on \mathcal{U} , which extends to a C^{*}-representation, such that

$$T_n(\zeta) = (S_n^X(\zeta) \otimes I_{\mathcal{D}}) \oplus Z_n(\zeta).$$

In particular, T extends to a C^* -representation.

We presented sufficient conditions for the C^* -extendability of T. Are they also necessary?

The general answer is unknown. However, it is positive in (at least) a few important special cases:

- If X is a product system. Our condition coincides with the *isometricity* condition of M. V. Pimsner (1997).
- **2** If X consists of finite dimensional Hilbert spaces and T is pure.
 - Our conditions are very easy to check
 - Related to the work of G. Popescu
- If $X = SSP_d$ and T is fully coisometric
 - Our conditions are equivalent to T being spherical in the sense of W. Arveson (1998).

Theorem (V., 2009)

If T is a completely contractive, covariant representation of X on \mathcal{H} , then there exists a (completely contractive) representation π of $\mathcal{T}_+(X)$ on \mathcal{H} , such that $\pi(S_n^X(\zeta)) = T_n(\zeta)$ for all $n \in \mathbb{Z}_+$, $\zeta \in X(n)$.

In other words: there is a bijection $T \leftrightarrow \pi$ between completely contractive, covariant representations of X and completely contractive representations of $\mathcal{T}_+(X)$.

In other words (2): the tensor algebra is the universal non-selfadjoint algebra generated by a completely contractive, covariant representation of X.

This is a generalization of a theorem of P. S. Muhly and B. Solel (1998) about *product* systems.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

From the last theorem we derive the following von Neumann inequality:

Corollary

If T is a completely contractive, covariant representation of X on $\mathcal{H},$ then

$$\|p(T)\|_{B(\mathcal{H})} \leq \|p(S^X)\|_{\mathcal{L}(\mathcal{F}_X)}$$

for every "polynomial" p over X.

Questions?

Ami Viselter (Technion, Israel)

Covariant representations

GPOTS 2010 20 / 20

< 行い

э